Regular Functions on
Certain Infinite-dimensional Groups

Victor G. Kac and Dale H. Peterson

To Igor Rostislavovich Shafarevich on his 60th birthday

§0. Introduction

In the paper [18], we began a detailed study of the “smallest” group G associated to a Kac-Moody algebra $\mathfrak{g}(A)$ and of the (in general infinite-dimensional) flag varieties $\mathcal{P}V_A$ associated to G. In the present paper we introduce and study the algebra $F[G]$ of “strongly regular” functions on G. We establish a Peter-Weyl-type decomposition of $F[G]$ with respect to the natural action of $G \times G$ (Theorem 1) and prove that $F[G]$ is a unique factorization domain (Theorem 3).

These considerations are intimately related to the study of the algebra $F[V_A]$ of polynomial functions on the variety V_A (Theorem 2) and the so-called Bruhat and Birkhoff decompositions of V_A.

The group G is a (possibly infinite-dimensional) algebraic group in the sense of Shafarevich [20], and belongs to one of the following three classes (we assume A to be indecomposable):

1) Finite type groups. These are connected simply-connected split simple finite-dimensional algebraic groups. In this case almost all the results of the paper are well-known.

2) Affine type groups. Such a G is an F^*-extension of the group of regular maps from F^* to a group of finite type, or a “twisted” analogue. The simplest flag variety may be regarded as the space of based polynomial loops on a compact Lie group (in the case $F = C$).

3) “Wild” type groups. No “concrete” realization of these groups or their flag varieties is known.

The study of the groups G and the varieties V_A in the affine case is of particular importance because of applications to topology [2], [8], analysis [1], [9], soliton equations [4], etc.

Throughout the paper the base field F is of characteristic zero.

We thank M. Hochster for numerous consultations in commutative algebra.
§1. Kac-Moody Algebras and Associated Groups. Integrable Representations

1A) A symmetrizable generalized Cartan matrix \(A = (a_{ij})_{i,j \in I} \) indexed by a nonempty finite set \(I \) is a matrix of integers satisfying:
\(a_{ii} = 2 \) for all \(i \); \(a_{ij} \leq 0 \) if \(i \neq j \); \(\Delta A \) is symmetric for some nondegenerate diagonal matrix \(D \). We fix such a matrix \(A \), assumed for simplicity to be indecomposable.

Choose a triple \((\mathfrak{h}, \Pi, \Pi^\vee)\), unique up to isomorphism, where \(\mathfrak{h} \) is a vector space over \(\mathbb{F} \) of dimension \(|I| + \text{corank } A \), and \(\Pi = \{ \alpha_i \}_{i \in I} \subset \mathfrak{h}^* \), \(\Pi^\vee = \{ \alpha_i \} \subset \mathfrak{h} \) are linearly independent indexed sets satisfying \(\alpha_i(h_i) = a_{ij} \).

The Kac-Moody algebra \(\mathfrak{g} = \mathfrak{g}(A) \) is the Lie algebra over \(\mathbb{F} \) generated by \(\mathfrak{h} \) and symbols \(e_i \) and \(f_i (i \in I) \) with defining relations:

\[
(1.1) \quad [h, e_i] = \alpha_i(h) e_i, \quad [h, f_i] = -\alpha_i(h) f_i \quad (h \in \mathfrak{h});
\]

\[
(1.2) \quad (ad e_i)^{1-a_{ij}}(e_j) = 0, \quad (ad f_i)^{1-a_{ij}}(e_j) = 0 \quad (i \neq j).
\]

We have the canonical embedding \(\mathfrak{h} \subset \mathfrak{g} \) and linearly independent indecomposable Chevalley generators \(e_i, f_i (i \in I) \) for the derived algebra \(\mathfrak{g}' \) of \(\mathfrak{g} \). The center \(t \) of \(\mathfrak{g} \) lies in \(\mathfrak{h}' := \mathfrak{h} \cap \mathfrak{g}' = \sum \mathbb{F} h_i \). Every ideal of \(\mathfrak{g} \) contains \(\mathfrak{g}' \) or is contained in \(t \) [7].

Define an involution \(\omega \) of \(\mathfrak{g} \) by requiring:
\(\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h) = -h \quad (h \in \mathfrak{h}) \). Let \(\mathfrak{n}_- \) be the subalgebra of \(\mathfrak{g} \) generated by the \(e_i (i \in I) \), and put \(\mathfrak{m} = \mathfrak{m}(\mathfrak{n}_-) \). We have the vector space decomposition \(\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{n}_+ \oplus \mathfrak{n}_- \).

We have the root space decomposition \(\mathfrak{g} = \bigoplus_{\alpha \in \Delta} \mathfrak{g}_\alpha \), where
\(\mathfrak{g}_\alpha = \{ x \in \mathfrak{g} \mid [h, x] = \alpha(h)x \) for all \(h \in \mathfrak{h} \}. \) Put \(Q = \sum_{\alpha \in \Delta} \mathbb{Z} \alpha_i \), \(Q_+ = \sum_{\alpha \in \Delta} \mathbb{Z} \alpha_i \) (where \(\mathbb{Z} = \{ 0, 1, \ldots \} \)), and define a partial order on \(\mathfrak{h}' \) by:
\(\lambda \geq \mu \) if \(\lambda - \mu \in Q_+ \). A root (resp. positive root) is an element of \(\Delta := \{ \alpha \in \mathfrak{h}' \mid \alpha \neq 0, \alpha_\alpha \neq 0 \} \) (resp. \(\Delta^+ := \Delta \cap Q_+ \)). We have: \(\mathfrak{h} = \mathfrak{g}_0, \mathfrak{n}_- = \bigoplus_{\alpha \in \Delta^-} \mathfrak{g}_\alpha \). For \(\alpha = \sum k_i \alpha_i \in \Delta \), we write \(\alpha = \sum k_i \).

Define fundamental reflections \(r_i \in \text{Aut}_F(\mathfrak{h}), i \in I \), by \(r_i(h) = h - \alpha_i(h) h_i \). They generate the Weyl group \(W \), which is a Coxeter group on \(\{ r_i \}_{i \in I} \), with length function \(w \mapsto l(w) \). \(W \) preserves the root system \(\Delta \). A real root is an element of \(\Delta^* := \{ w(\alpha) \mid w \in W, \alpha \in \Pi \} \). If \(\alpha \in \Delta^* \), then \(\dim \mathfrak{g}_\alpha = 1 \). Put \(\Delta_\alpha^* = \Delta^* \cap \Delta_\alpha \). For \(\alpha \in \Delta^* \), write \(\alpha = \omega(\alpha) \) for some \(\in \mathfrak{w} \) and \(i \in I \); then \(\rho := w_i w^{-1} \) depends only on \(\alpha \).

We choose a nondegenerate \(\mathfrak{g} \)-invariant symmetric \(\mathbb{F} \)-bilinear form \((\cdot, \cdot) \) on \(\mathfrak{g} \) such that \((h_i, h_i) \) is positive rational for all \(i \in I \). \(\mathfrak{g}' \) is nondegenerate and \(W \)-invariant on \(\mathfrak{h} \), and hence induces an isomorphism \(\nu: \mathfrak{h} \rightarrow \mathfrak{h}' \) and a form \((\cdot, \cdot) \) on \(\mathfrak{h}' \) [10, Chapter II].

1B) Consider a \(\mathfrak{g}' \)-module \(V \), or \((V, \pi)\), where \(\pi: \mathfrak{g}' \rightarrow \text{End}_F(V) \). Let \(V_{\text{fin}} = \{ v \in V \mid \text{for every } \alpha \in \Delta^* \text{ there exists } N \text{ such that } \pi(\mathfrak{g}_\alpha)^N(v) = 0 \} \) \((\alpha \in \pm I \text{ suffices}) \). \(V_{\text{fin}} \) is a \(\mathfrak{g}' \)-submodule of \(V \); the \(\mathfrak{g}' \)-module \(V \) is called integrable if \(V = V_{\text{fin}} \). \((g, ad) \) is an integrable \(\mathfrak{g}' \)-module.

Remark 1.1. We feel that the functor \(V \mapsto V_{\text{fin}} \) from the category of all \(\mathfrak{g}' \)-modules to the category of integrable \(\mathfrak{g}' \)-modules is important.

Lemma 1.1. Let \((V, \pi)\) be locally-finite \(\mathfrak{sl}_2(\mathbb{F}) \)-module and let \(\{ e, f, h \} \) be the standard basis of \(\mathfrak{sl}_2(\mathbb{F}) \). Let \(x \in \text{End}_F(V) \) satisfy

\[
(1.3) \quad [\pi(f), x] = 0 \quad \text{and} \quad [\pi(h), x] = ax, \quad \text{where } -a \in \mathbb{Z}_+.
\]

Then \((ad(x))^{1-a} = 0 \).

Proof. The \(\mathfrak{sl}_2(\mathbb{F}) \)-module \(V \) decomposes into a direct sum of finite-dimensional submodules: \(V = \bigoplus_i V_i \). Then \(x \) has a "block decomposition": \(\sum_i x_{ij}, \text{ where } x_{ij} \in \text{Hom}_F(V_i, V_j) \). (1.3) holds for each \(x_{ij} \), and hence we have \((ad(x))^{1-a} = 0 \) for all \(i, j \) by the finite-dimensional representation theory of \(\mathfrak{sl}_2 \).

Q.E.D.

One immediately deduces the following corollary, which allows us to "differentiate" integrable \(G \)-modules (i.e., modules such that the \(U_\alpha(\alpha) \text{ act locally unipotently} \).

Corollary 1.1. Let \(\mathfrak{g}' \) be the Lie algebra on generators \(e_i, f_i, h_i \) \((i \in I)\) with defining relations (1.1), with \(\mathfrak{h \mathfrak{r}} \) replaced by \(\sum_{i \in I} i_{hi} \). Let \((V, \pi)\) be a \(\mathfrak{g}' \)-module such that all \(\pi(e_i), \pi(f_i) \) are locally nilpotent. Then \(\pi(e_i) \) and \(\pi(f_i) \) satisfy relations (1.2), so that we may regard \((V, \pi)\) as an integrable \(\mathfrak{g}' \)-module.

1C) We now recall the construction of the group \(G \) associated to the Lie algebra \(\mathfrak{g}' \) [18].
Let \(G^* \) be the free product of the additive groups \(g_\alpha, \alpha \in \Delta^{*r} \), with canonical inclusions \(i_\alpha: g_\alpha \to G^* \). For any integrable \(g^* \)-module \((V, \pi)\), define a homomorphism \(\pi^*: G^* \to \text{Aut}_F(V) \) by \(\pi^*(i_\alpha(e)) = \exp \pi(e) \). Let \(N^* \) be the intersection of all \(\ker(\pi^*) \), put \(G = G^*/N^* \), and let \(q: G^* \to G \) be the canonical homomorphism. For \(e \in g_\alpha (\alpha \in \Delta^{*r}) \), put \(\exp e = q (i_\alpha e) \), so that \(U_\alpha := \exp g_\alpha \) is an additive one-parameter subgroup of \(G \). The \(U_\alpha (\alpha \in \pm \Pi) \) generate \(G \), and \(G \) is its own derived group. Denote by \(U_+ \) (resp. \(U_- \)) the subgroup of \(G \) generated by the \(U_\alpha \) (resp. \(U_- \)), \(\alpha \in \Delta^{*r} \).

Example 1.1. a) Let \(A \) be the Cartan matrix of a split simple finite-dimensional Lie algebra \(g \) over \(F \). Then the group \(G \) associated to \(g \approx g^*(A) \) is the group \(G(F) \) of \(F \)-valued points of the connected simply-connected algebraic group \(G \) associated to \(g \), and \(U_+ aU(F) \) for some maximal unipotent subgroup \(U \) of \(G \). These groups \(G \) are called **groups of finite type**.

b) Let \(g \) be as in a), and let \(\hat{A} \) be the extended Cartan matrix of \(g \). Then the group \(\hat{G} \) associated to \(g^*(A) \) is a central extension by \(F^* \) of \(G(F[x, x^{-1}]) \), and

\[
U_+ \cong \{ g \in G(F[x]) : g_\ast = 0 \in U(F) \}.
\]

These groups \(G \) and their twisted analogues are called **groups of affine type**.

To any integrable \(g^* \)-module \((V, \pi)\) we associate the homogeneous module \((G, \pi)\) (again denoted by \(\pi: G \to \text{Aut}_F(V) \) satisfying \(\pi(e) = \exp \pi(e) \)). The homomorphism associated to \((g, ad)\), denoted \(ad \), maps \(G \to \text{Aut}(g) \). The kernel of \(ad \) is the center \(C \) of \(G \), and \(ad(G) \) acts faithfully on \(g^* \). We have \(\pi(Ad(g)x) = \pi(g)\pi(x)\pi(g)^{-1} \) for any integrable \(g^* \)-module \((V, \pi)\) and all \(g \in G, x \in g^* \). It follows that if \((V, \pi)\) is an integrable \(g^* \)-module and \(\ker \pi \subset \mathfrak{t} \), then \(\ker \pi \subset C \).

For each \(\eta \in \Pi \) we have a unique homomorphism \(\varphi_\eta: SL_2(F) \to G \) satisfying:

\[
\varphi_\eta \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right) = \exp t e_\eta, \quad \varphi_\eta \left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array} \right) = \exp t f_\eta \quad (t \in F).
\]

Let \(N_\eta = \varphi_\eta(SL_2(F)), H_\eta = \varphi_\eta(\{ \text{diag}(t, t^{-1}) : t \in F^* \}) \), and let \(N_\eta \) be the normalizer of \(H_\eta \) in \(G_\eta \). Let \(H \) (resp. \(N_\eta \)) be the subgroup of \(G \) generated by \(H_\eta \) (resp. \(N_\eta \)); \(H \) is an abelian normal subgroup of \(N \). The \(\varphi_\eta \) are monomorphisms and \(H \) is the direct product of the \(H_\eta \). We have an isomorphism \(\varphi: W \to N/H \) such that \(\varphi(r_\eta) \) is the coset \(N_\eta H \setminus H \). We identify \(W \) and \(N/H \) using \(\varphi \); this gives sense to expressions such as \(wH \)

and \(wU_+ w^{-1} \) occurring in the sequel. If \(h \in h, w \in W \) and \(n \in wH \), then \(Ad(n)h = w(h) \). We put \(B_+ = H U_+ B_+ = H U_- \).

1D) Choose \(\Lambda \in h^* (\Lambda \in h^*) \) satisfying \(\Lambda = \delta_{ij} (j \in I) \). Put \(P_+ (resp. P_-) = \{ \sum k_i H_i \mid k_i \in Z \text{ and } k_i \geq 0 \} \). Given \(\Lambda \in P_+ \) (or more generally, \(\Lambda \in h^* \) such that all \(\Lambda(h_i) \in Z_+ \)), there exists an irreducible \(g^* \)-module \((L, \pi_\Lambda)\), unique up to isomorphism, containing a \(v_\Lambda \neq 0 \) satisfying: \(\pi_\Lambda(v_\Lambda) = 0 \); \(\pi_\Lambda(h)v_\Lambda = \Lambda(h)v_\Lambda \in h \). \(L \) is an absolutely irreducible \(g^* \)-module, and we have \(L(\Lambda) = \pi_\Lambda(U(h))v_\Lambda \), \(\text{End}(L(\Lambda)) = F \Lambda(\Lambda) \). The module \(L(\Lambda) \) is called an **irreducible module with highest weight** \(\Lambda \) [11]. Recall that \(\bigoplus_{\Lambda \in \Pi} L(\Lambda) \) is a faithful \(G \)-module [13].

We have the weight space decomposition \(L(\Lambda) = \bigoplus_{\Lambda \in \Pi} \Lambda L(\Lambda) \), where \(L(\Lambda)_{\Lambda} = \{ v \in L(\Lambda) : h(v) = \Lambda(h)v \text{ for all } h \in h \} \). Elements of \(P(\Lambda) = \{ \lambda \in h^* : L(\Lambda)_\Lambda \neq 0 \} \) are called weights of \(L(\Lambda) \). We have \(P_+(\Lambda) = L(\Lambda)_\Lambda = \{ v \in L(\Lambda) : \pi_\Lambda(v) = 0 \} \); elements of \(P_+ \) are called highest weight vectors. We have \(L(\Lambda) \subset A \subset Q^+, \) and \(\dim L(\Lambda)(\omega_\Lambda) = \dim L(\Lambda)_\Lambda \). In particular, \(\dim L(\Lambda)(\omega_\Lambda) = 1 \).

Regarded as a \(g \)-module under \(\varphi_\Lambda := \pi_\Lambda \circ \omega, L(\Lambda) \) is denoted \(L^*(\Lambda) \) and \(v_\Lambda \) is denoted \(v_\Lambda^* \). There exists a unique \(g \)-invariant bilinear form on \(L(\Lambda) \times L^*(\Lambda) \) satisfying \((v_\Lambda, v_\Lambda^*) = 1 \); it is nondegenerate. Using \((,) \) we regard \(L^*(\Lambda) \) as a subspace of \(L(\Lambda)_* \), the algebraic dual of \(L(\Lambda) \).

Note that if a statement holds for \(\pi_\Lambda, U_+ \) or \(L(\Lambda) \), then a similar statement holds for \(\pi_- U_\ast \) or \(L^*(\Lambda) \) using \(\omega \). We keep this observation in mind in the sequel.

§2. A Peter-Weyl-Type Theorem

2A) For every real root \(\alpha \), we fix a non-zero element \(e_\alpha \) of \(g_\alpha \), and coordinateize \(U_\alpha \) by putting \(x_\alpha(t) = \exp te_\alpha(t) \in \mathbb{F} \). Furthermore, for \(\beta = (\beta_1, \ldots, \beta_k) \in (\Delta^{*r})^k \), define a map \(x_\beta: \mathbb{F}^k \to G \) by

\[
x_\beta(t_1, \ldots, t_k) = x_{\beta_1}(t_1) \cdots x_{\beta_k}(t_k),
\]

and denote by \(U_\beta \) the image of \(x_\beta \).

We call a function \(f: G \to F \) **weakly regular** if \(f \circ x_\beta: \mathbb{F}^k \to F \) is a polynomial function for all \(\beta \in (\Delta^{*r})^k \) and \(k \in Z_+ \). \(\beta \in (-\Pi \cup \Pi)^k \) suffices. Denote by \(F[G]_{w.r} \) the algebra of all weakly regular functions.
Let V be a g'-module; given $v^* \in V^*$ and $v \in V_{fin}$, we get a weakly regular function $f_{\gamma^*,v}$ on G, called a matrix coefficient: $f_{\gamma^*,v}(g) = (g(v), v^*)$. The matrix coefficients $\theta_\Lambda := f_{\gamma^*,\nu_\Lambda}$ are especially important.

Lemma 2.1. a) The ring $F[G]_{I,\omega,r}$ is an integral domain.

b) If $f \in F[G]_{I,\omega,r}$, such that $\bigcap_{k \geq 0} f^kF[G]_{I,\omega,r} \neq \{0\}$, then $f \in F^*$.

c) Every unit of $F[G]_{I,\omega,r}$ lies in F^*.

d) Any $f \in F[G]_{I,\omega,r}$ is determined by its restriction to $U_{-}H_{U_{+}}$.

Proof. a) holds since any $g_1, g_2 \in G$ lie in some U_{β}. b) and c) hold by considering pullbacks under x_{β}. d) holds, using a), since for $\Lambda \in P_{++}$ the Birkhoff decomposition [18] gives:

$$U_{-}H_{U_{+}} = \{ g \in G \mid \theta_\Lambda(g) \neq 0 \}.$$ Q.E.D.

2B) Put $\tilde{H} = \text{Hom}(Q, F^*)$, and define a homomorphism $Ad: H \rightarrow \text{Aut}_F(g)$ by $Ad(h) = h(a)x$ if $x \in g_\alpha$. Ad induces an action of \tilde{H} on G, defining $\tilde{H} \times G$, to which Ad extends in the obvious way. We extend the action of G on $I(A)$ to $\tilde{H} \times G$ by requiring \tilde{H} to fix g_{α}.

Subgroups U_{+}' of U_{+} and U_{-}' of U_{-} are called large if there exist $g_1, \ldots, g_m \in G$ such that $\bigcap_{i=1}^m g_i U_{+} g_i^{-1} \subset U_{+}$.

Lemma 2.2. a) A subgroup U_{+}' of U_{+} is large if and only if it contains the stabilizer in G of some finite-dimensional subspace of $\bigoplus_{\Lambda \in P_{+}} I(\Lambda)$.

b) Let U' be a large subgroup of U_{+}. Then:

(i) for every $\alpha \in \Delta^+$, the subgroup $\bigcap_{\Lambda \in P_{+}} U_{+} U_{-}^{-1}$ of U_{+} is large;

(ii) the subgroup $\bigcap_{\Lambda \in P_{+}} hU_{+} h^{-1}$ of U_{+} is large;

(iii) there exists $\tilde{\beta}$ such that $U_{\tilde{\beta}} U_{+}' = U_{+}$.

Proof. a) holds since $U_{+}' = \{ (g \in G \mid g(\nu_{\Lambda}) = \nu_{\Lambda} \mid \text{all } \Lambda \in P_{+} \}$, and since $I(\Lambda)$, $\Lambda \in P_{+}$, is spanned by $G(\nu_{\Lambda})$. b (i) and (ii) hold by a).

To prove (iii), we may assume that U_{+}' is the stabilizer in U_{+} of a U_{+}-invariant finite-dimensional subspace V of $\bigoplus I(\Lambda)$. Let π_{γ} be the restriction of the action of U_{+} to V. U_{+} acts as a finite-dimensional unipotent group $U_{+} = \pi_{\gamma}(U_{+})$ on V. The one-parameter subgroups $\pi_{\gamma}(U_{+}) (\alpha \in \Delta^+)$ generate U_{+}, hence $\pi_{\gamma}(U_{+}) = U_{+}$ for some $\tilde{\alpha} \in \Delta^+$. Hence $U_{+} = U_{\tilde{\beta}} U_{+}'$. Q.E.D.

2C) We call a weakly regular function f strongly regular if there exist large subgroups U_{+}' of U_{+} such that $f(u_{-} g_{-} u_{+}') = f(g)$ for all $g \in G$ and $u_{+} \in U_{+}'$. Note that the matrix coefficients f_{γ^*,ν_Λ}, where $v^* \in L^*(A)$ and $\nu \in I(A)$, are strongly regular functions. We denote by $F[G]_{I,\omega,r}$, or $F[G]$ for short, the algebra of all strongly regular functions on G. $F[G]$ is a $G \times G$-module under π_{γ}, where $(\pi_{\gamma}(A) g_1, g_2)(f)(g) = f(g_{1^{-1}}g_{2^{-1}})$.

Now we can prove the following analogue of the Peter-Weyl theorem.

Theorem 1. The linear map $\phi: \bigoplus_{\Lambda \in P_{+}} I^*(\Lambda) \otimes I(\Lambda) \rightarrow F[G]$ defined by $\phi(v^* \otimes v) = f_{\gamma^*,\nu_\Lambda}$ is an isomorphism of $G \times G$-modules.

Proof. From Lemmas 2.1d and 2.2b (ii and iii) it follows that every $U_{\alpha} \times U_{\beta} (\alpha, \beta \in \Delta^+)$ acts locally unipotently on $F[G]$. Hence there exist unique locally nilpotent elements of $End_F F[G]$, which we denote by $\pi(e_i, 0), \pi(0, e_i), \pi(f_i, 0), \pi(0, f_i)$, such that $\pi_{\gamma}(b) \pi_{\gamma}(e_i, 1) = \pi_{\gamma}(f_i, e_i), \pi_{\gamma}(0, 1) = \pi_{\gamma}(e_i, 0)$, etc. Then Corollary 1.1 shows that there exists such an unique homomorphism $\pi: g' \times g' \rightarrow End_F F[G]$ with the given values on $(e_i, 0)$, etc. Using Lemmas 2.1d and 2.2b (ii and iii), there exists a G-gradation $F[G] = \bigoplus R_\alpha$, where $R_\alpha = \{ f \in F[G] \mid f(h^{-1} g) = h(\alpha)(f)(g) \text{ for all } h \in \tilde{H} \}$.

Thus, $(F[G], \pi)$ is an integrable $g' \times g' \mod$ and $(F[G], \pi_{\gamma})$ is the associated $G \times G$-mod. Using Lemma 2.2b (iii), $U_{-} \times U_{+}$ acts locally-finitely on $F[G]$. Hence, $U_{-} \times U_{+}$ acts locally-finitely, and therefore, using the G-gradation, locally-nilpotently. Using the complete reducibility theorem [14, Proposition 2.9], we deduce that the $G \times G$-module $F[G]$ is isomorphic to a direct sum of modules of the form $L^*(\Lambda) \otimes I(\mu)$ $(\Lambda, \mu \in P_{+})$.

Now, regarding $v^* \otimes v$ as an operator on $I(\Lambda)$, we have: $f_{\gamma^*,\nu_\Lambda}(g) = tr(v^* \otimes v)(\pi_{\gamma}(g))$, so that ϕ is a well-defined $G \times G$-module homomorphism. ϕ is injective since the $L^*(\Lambda) \otimes I(\mu)$ are irreducible and inequivalent $G \times G$-modules, and $\phi(v^* \otimes v) = \theta_\Lambda \neq 0$. On the other hand, let $\psi: L^*(\Lambda) \otimes I(\mu) \rightarrow F[G]$ be a $G \times G$-module homomorphism. Considering the action of $B_{-} \times U_{+}$ on $\psi(v^* \otimes v_\Lambda)$ and using Lemma 2.1d, we obtain that $\psi(v^* \otimes v_\Lambda) \in F \theta_\Lambda$. Hence, ϕ is surjective. Q.E.D.
Corollary 2.1. Let \(f_1, f_2 \in F[G], f_1 \neq 0 \), and suppose that for each \(k \in \mathbb{Z}_+ \) and \(\beta \in (\Delta^\ast)^k \) there exists a polynomial function \(q_\beta : F^k \to F \) such that \(q_\beta(f_1 \circ x_\beta) = f_2 \circ x_\beta \). Then \(f_1^{-1} f_2 \in \text{Fract} \ F[G] \) lies in \(F[G] \).

Proof. is that of Theorem 1, replacing \(F[G] \) by the subalgebra of Fract \(F[G] \) consisting of all \(f_1^{-1} f_2 \), where \(f_1, f_2 \) satisfy the hypothesis of the corollary.

For a subgroup \(P \) of \(G \), let \(F[G]^P = \{ f \in F[G] \mid f(gp) = f(g) \) for all \(g \in G \) and \(p \in P \}. This is a subalgebra of \(F[G] \), and \(G \) acts on it by left multiplication: \((g : f)(g') = f(g^{-1} g') \). For \(\Lambda \in P_+ \), put:

\[S_\Lambda = \{ f \in F[G] \mid f(gb) = \theta_\Lambda(b) f(g) \) for all \(g \in G \) and \(b \in B_+ \}. \]

This is a \(G \)-submodule of \(F[G]^{U_+} \).

Corollary 2.2. a) \(F[G]^{U_+} = \bigoplus_{\Lambda \in P_+} S_\Lambda \).

b) The map \(L^*(\Lambda) \to S_\Lambda \) defined by \(v \mapsto f_{v, v_\Lambda} \) is a \(G \)-module isomorphism.

c) \(S_\Lambda S_M = S_{\Lambda + M} \).

Proof is immediate by Theorem 1 and the following facts:

\(L(\Lambda)^{U_+} = F[\theta_\Lambda] ; \theta_\Lambda \theta_M = \theta_{\Lambda + M} \); multiplication is \(G \)-equivariant.

Remark 2.1. a) The algebra \(F[G]^{U_+} \) can be constructed without reference to the group \(G \). Indeed, for \(\Lambda, M \in P_+ \), we have the Cartan product \(L(\Lambda) \otimes L^*(M) \), defined by the properties that \(\phi \) is a \(g \)-module homomorphism and \((v_\Lambda \otimes v_M) \) becomes an algebra, isomorphic to \(F[G]^{U_+} \) by Corollary 2.2.

b) Corollary 2.2 can be viewed as a Borel-Weil-type theorem. (A special case of this is considered in [13].) It should not be difficult, using the method of [5], to extend it to a Borel-Weil-Bott-type theorem.

Corollary 2.3. Let \(\Lambda \in P_+ \setminus \{ 0 \} \) and let \(B_\Lambda = \{ b \in B_+ \mid \theta_\Lambda(b) = 1 \}. Then, provided that \(F \) is algebraically closed, one has:

\[F[G]^{B_\Lambda} \cong \bigoplus_{n \geq 0} L^*(n\Lambda), \]

where \(L^*(n\Lambda) L^*(m\Lambda) = L^*((n + m)\Lambda) \) under the Cartan product.

Example 2.1. a) If \(G \) is of finite type, then \(F[G] = F[G]_{w,r} \) is the coordinate ring of the finite-dimensional affine variety \(G \).

b) Let \(G \) be of affine type as in Example 1.1b. Then the only strongly regular functions \(f \) such that \(f(cg) = f(g) \) for all \(c \in F^* \subset G \) and \(g \in G \) are constants (by Theorem 1). On the other hand, given a rational \(N \)-dimensional representation \(\pi \) of \(G \), let \(g \mapsto (g, g^{N}) \) for \(g \in G \). Then the pullback of each function \(g \mapsto a_k(g) \) is a weakly regular function on \(G \).

2b) We introduce the Zariski topology on \(G \) defined by strongly regular functions, i.e., a closed subset is the set of zeros of an ideal of \(F[G] \).

Note that the stabilizer or normalizer of a finite-dimensional subspace of \(\bigoplus_{\Lambda \in P_+} L(\Lambda) \) is a closed subgroup of \(G \). It follows that \(U_\pm \) and \(B_\pm \) are closed subgroups and hence \(H = B_+ \cap B_- \) is a closed subgroup. Similarly, the \(G_i \) are closed subgroups and hence the subgroups \(G_i \) are closed subgroups. It is easy to show that \(\phi_i = S_{\Lambda}(F) \to G_i \) is a Zariski homeomorphism. One can also show that \(H \) is homeomorphic to \((F^*)^I \) and \(U_+ \cap (wU_+ w^{-1}) \) to \(F^w \).

For \(\beta \in (\Delta^\ast)^k \), let \(F[G]^{\beta_{w,r}} = \{ f \in F[G]_{w,r} \mid f \text{ vanishes on } U_\beta \} \).

Taking the \(F[G]^{\beta_{w,r}} \) for a basis of neighborhoods of 0 makes \(F[G]_{w,r} \) into a Hausdorff complete topological ring.

Remark 2.2. We have the canonical inclusion \(G \to \text{Specm} \ F[G] \) (= set of all closed ideals of codimension 1). Let \(G \) be of infinite type (i.e., \(\dim G = \infty \)). Then \(\mathfrak{m} := \mathfrak{m} = (\bigoplus_{\Lambda \in P_+ \setminus \{ 0 \}} L(\Lambda))^n \) is a closed ideal of codimension 1 in \(F[G] \) (this follows from the well-known fact that \((Q_+)^p \cap (P_+)^p = \{ 0 \} \) in the infinite type case). Since \(\mathfrak{m} \) is \(G \times G \)-invariant, we deduce that \(\mathfrak{m} \in \text{Specm} \ F[G] \).
§3. The Varieties \(\mathcal{V}_A \)

3A) Given a decomposition of a vector space \(V \) into a direct sum of finite-dimensional subspaces, \(V = \bigoplus \alpha V_\alpha \), we denote by \(F[V] \) the symmetric algebra over \(\bigoplus \alpha V_\alpha \subset V^* \). We call elements of \(F[V] \) strongly regular functions on \(V \). The algebra \(F[V] \) is a polynomial algebra on a basis of \(\bigoplus \alpha V_\alpha \) (it may be viewed as the coordinate ring of \(\bigcap \alpha V_\alpha \)). It is a subalgebra of the algebra \(F[V] \), of regular functions, i.e., \(F \)-valued functions on \(V \) whose restriction to any finite-dimensional subspace is a polynomial function. Taking the ideals of finite-dimensional subspaces of \(V \) for a basis of neighborhoods of zero makes \(F[V] \) into a complete topological ring.

We introduce the Zariski topology on \(V \) defined by strongly regular functions. For a closed subset \(\mathcal{V} \) of \(V \) (resp. the zero set \(\mathcal{V} \) of an ideal of \(F[V] \)), we denote by \(F[\mathcal{V}] \), resp. \(F[\mathcal{V}]_\alpha \), the restriction of \(F[V] \) to \(\mathcal{V} \).

These definitions will be applied in this section to the vector spaces \(L(\Lambda) \) and \(L^*(\Lambda) \) with the weight space decompositions and \(\mathfrak{g} \) with the root space decomposition. Here \(F[L(\Lambda)] = \text{Sym} L^*(\Lambda) \) and \(F[L^*(\Lambda)] = \text{Sym} L(\Lambda) \).

Remark 3.1. It is easy to see that the canonical map \(V \to \text{Spec} \mathfrak{g}_V \) is a bijection (cf. Remark 2.2); more generally, we have a bijection \(\mathcal{V} \to \text{Spec} F[\mathcal{V}] \) for every closed subset \(\mathcal{V} \) of \(V \).

3B) For each \(\alpha \in \Delta \cup \{0\} \), choose dual bases \(\{ e_\alpha^{(i)} \} \) of \(\mathfrak{g}_\alpha \) and \(\{ f_\alpha^{(i)} \} \) of \(\mathfrak{g}_-\alpha \). Let \(\Lambda \in P_+ \). Denote by \(\mathcal{V}_\lambda \) the set of all \(v \in L(\Lambda) \) which satisfy the following equation in \(L(\Lambda) \otimes L(\Lambda) \):

\[
(\Lambda | \Lambda) v \otimes v = \sum_{\alpha \in \Delta_+ \cup \{0\}} \sum_i f_\alpha^{(i)}(v) \otimes e_\alpha^{(i)}(v).
\]

Note that the sum on the right-hand side is finite. (3.1) is equivalent to a (possibly infinite) system of equations of the form \(P = 0 \), where \(P \in \text{Sym}^2 L^*(\Lambda) \). We call these polynomials \(P \) (and their analogues in \(\text{Sym}^2 L(\Lambda) \)) Plücker polynomials.

We have shown in [18] that:

\[
(3.2) \quad \mathcal{V}_\lambda = G(F[V_\lambda]).
\]

Here and further on, \(\text{Sym} V = \bigoplus_{k \geq 0} \text{Sym}^k V \) denotes the symmetric algebra over a vector space \(V \).

2By the complete reducibility theorem ([12], [14]), we have: \(\text{Sym}^k L(\Lambda) = L(k\Lambda) \oplus J_k \), \(\text{Sym}^k L^*(\Lambda) = L^*(k\Lambda) \oplus J^*_k \), where \(L(k\Lambda) \) (resp. \(L^*(k\Lambda) \)) is the \(U(\mathfrak{g}) \)-submodule generated by \(\psi^\lambda \) (resp. \(\psi^{\Lambda^*} \)) and \(J_k \) (resp. \(J^*_k \)) is the (unique) complementary submodule. Set \(J = \bigoplus_{k \geq 2} J_k \), \(J^* = \bigoplus_{k \geq 2} J^*_k \).

Note that the restriction map \(\phi: F[L(\Lambda)] \to F[\mathcal{V}_\lambda] \) is a \(G \)-module homomorphism by (3.2); it is surjective by definition. Note also that: \((\psi^\lambda)^{\Phi}(tv^\lambda) = t^k \) and \(J^*_k(tv^\lambda) = 0 \). Hence, \(J^* \) is the ideal of \(G(F[V_\lambda]) \) in \(F[L(\Lambda)] \), so that by (3.2) and Remark 2.1a we have:

Lemma 3.1. \(F[\mathcal{V}_\lambda] \cong F[L(\Lambda)]/J^* \) is isomorphic to \(\bigoplus_{k \geq 0} L^*(k\Lambda) \) with the Cartan product.

Theorem 2. a) The ideals \(J \) and \(J^* \) are generated by the Plücker polynomials.

b) The algebra \(F[G]^+ \) is the associative commutative \(F \)-algebra with unity on generators \(\bigoplus_i L^*(\Lambda_i) \) with defining relations

\[
(A_i | A_j)uv = \sum_{\alpha \in \Delta_+(0)} \sum_i f^{(i)}(u) e^{(i)}(v),
\]

where \(i, j \in I, u \in L^*(\Lambda_i), v \in L^*(\Lambda_j) \).

The proof of Theorem 2 uses the Casimir operator introduced in [11] (cf. [14]):

\[
\Omega = 2\nu^{-1}(\rho) + \sum_i f^{(i)}(e^{(i)}) + \sum_{\alpha \in \Delta_+} \sum_i f^{(i)}(e^{(i)}),
\]

where \(\rho = \sum_i A_i \). Recall that \(\Omega \) acts on \(L(\Lambda) \) as a scalar \(c_\Lambda := (\Lambda + 2\rho | \Lambda) \) ([11], [12]).

Lemma 3.2. Let \(A, A' \in \mathfrak{g}^* \) satisfy \(A(h_i), A'(h_i) \in \mathbb{Z}_+ \) for all \(i \in I \). If \(A > A' \), then \(c_A - c_{A'} > 0 \).

Proof. \(c_A - c_{A'} = (A + A' + 2\rho | A - A') > 0 \). Q.E.D.

Proof of Theorem 2. To prove a), it suffices to consider \(J \). Using Lemma 3.2 and the complete reducibility theorem applied to \(\text{Sym}^k L(\Lambda) \) we have:

\[
(3.3) \quad J_k = (\Omega - c_{k\Lambda}) \text{Sym}^k L(\Lambda).
\]
It follows from (3.1) and (3.3) that J_2 is the space of Plücker polynomials. Furthermore, we have by an easy calculation in $\text{Sym}^k L(A)$, $k \geq 2$:

$$(\Omega - c_L b) b^k = \frac{1}{2} k(k - 1)(\Omega - c_L b^2) b^{k-2},$$

which shows that J_2 generates the ideal J.

The proof of b) is similar, using the identity

$$\Omega(xyz) = \Omega(xy)z + \Omega(yz)x + \Omega(zx)y - \Omega(x)yz - \Omega(y)zx - \Omega(z)xy.$$

Q.E.D.

Example 3.1. a) Let $G = SL_n(F)$; then $L(A_1)$ is the G-module $\Lambda^k F^n$ and \mathcal{V}_{A_1} is the set of all decomposable k-vectors, so that P_{A_1} is the Grassmann variety of k-dimensional subspaces of F^n. The ideal of \mathcal{V}_{A_1} is generated by the classical Plücker relations; this result is due to Plücker. Theorem 2 in the finite-dimensional case is due to Kostant. Our proof is essentially the same as Kostant's (presented in [18]).

b) Let G be a group of affine type and $I(A_0)$ its basic representation (see [12], [15]). Then the Plücker relations are equivalent to the hierarchy of Hirota bilinear equations studied in [4], the simplest case $A_1^{(1)}$ being equivalent to the celebrated KdV hierarchy. Theorem 2a shows that the ideal of equations satisfied by all polynomial solutions of these hierarchies is generated by Hirota bilinear equations.

c) Let K be a connected compact Lie group of type $X_n := (A_n, B_n, \ldots, E_6)$. Let σ be an automorphism of K of finite order m. Let k be the minimal positive integer such that σ^k is an inner automorphism of K and let K_0 be the fixed point set of σ. Let $S^1 = \{ z \in C \mid |z| = 1 \}$ be the unit circle; denote by $\Omega_\sigma(K)$ the space of all σ-equivariant polynomial loops on K, i.e., polynomial maps $g: S^1 \to K$ such that $\sigma(g(z)) = g(z \exp 2\pi i / m)$. Then K_0 operates by right multiplication on $\Omega_\sigma(K)$ and we may consider the space $\Omega_\sigma(K)/K_0$. Let Λ be the generalized Cartan matrix of type $X^{(k)}$ [12] and G the associated group. Then we have a homeomorphism of topological spaces $\Omega_\sigma(K)/K_0 \cong P \mathcal{V}_{A_1}$ for a suitable Λ (cf. [18]). Note that $\Omega_\sigma(K)/K$ is the space of based loops; in this case A is of type $X^{(1)}$ and we have: $\Omega_\sigma(K)/K \cong P \mathcal{V}_{A_1}$. This allows one to compute the homology of certain loop spaces (cf. [2] and Theorem 4e in §4).

3C) In this subsection we use some elements of the theory of Coxeter groups, which can be found e.g. in [3]. Let $\Lambda \in P_+$; consider the orbit $W(A)$. Recall the definition of the Bruhat order \geq on the set $W(A)$ [18]. This is the partial order generated by: $r_\mu(\lambda) \geq \lambda$ if $\alpha \in \Delta^{+}$ and $r_\mu(\lambda) \geq \lambda$.

If $A \in P_{++}$, we may identify W with the set $W(A)$ by $w \mapsto w(A)$. We write $w' \leq w$ if $w(A') \leq w(A)$. It is easy to see that this definition is independent of the choice of $A \in P_{++}$ and coincides with the usual definition of the Bruhat order on W as the partial order generated by:

$$r_{i_1} \cdots r_{i_{s-1}} r_{i_s+1} \cdots r_{i_k} \leq w \quad (1 \leq s \leq k),$$

where $w = r_{i_1} \cdots r_{i_k}$ is a reduced expression; or, equivalently, generated by: $w_1 w_2 < w_1 r_{i} w_2$ if $w_1(\alpha_1) > 0$ and $w_2^{-1}(\alpha_1) > 0$.

Note that $w(A_i) < A_i$ if and only if w contains r_i in one (and hence every) reduced expression. Therefore, we have:

$$(3.4) \quad w(A_i) < A_i \quad \text{iff} \quad r_i \leq w.$$

The following lemma summarizes some of the results of [18, Theorem 1 and Corollaries 2 and 5].

Lemma 3.3. a) For $\Lambda \in P_+$ and $\lambda \in W(A)$ let

$$\mathcal{V}_\Lambda(\lambda)_{\pm} = U_{\pm}(L(A)_\lambda \setminus \{0\}).$$

Then

(i) $\mathcal{V}_\Lambda \setminus \{0\} = \bigsqcup_{\lambda \in W(A)} \mathcal{V}_\lambda(\lambda)_{\pm};$

(ii) $\mathcal{V}_\Lambda(\lambda)^+ \setminus \{0\} = \bigsqcup_{\mu \geq \lambda} \mathcal{V}_\mu(\mu)_+;$

(iii) $\mathcal{V}_\Lambda(\lambda)^- \setminus \{0\} = \bigsqcup_{\lambda \geq \mu} \mathcal{V}_\lambda(\mu)_-.$

b) Given a subset X of I, let $W_X = \langle r_i \mid i \in X \rangle \subset W$ and $P_X = B_+ W_X B_+ \subset G$. Then:

(i) $G = \bigsqcup_{w \in W / W_X} B_+ w P_X$ (Bruhat decomposition);

\footnote{Here and further on, \overline{M} denotes the Zariski closure of M unless otherwise specified.}

"
(ii) \(G = \coprod_{w \in W/W_X} B_-wP_X \) (Birkhoff decomposition);

(iii) \(G = \bigcup_{w \in W} wB_-B_+ \).

Remark 3.2. a) If \(G \) is of finite type, then Lemma 3.3(b) (i) and (ii) give equivalent decompositions of \(G \). This decomposition is due to Gauss, Gelfand-Naimark, Bruhat and Harish-Chandra.

b) Let \(G \) be a group of affine type from Example 1.1b, so that \(G/F^* = \mathbb{G}(F[z, z^{-1}]) \). Let \(H = \text{Cartan subgroup of } G \). Then \(W = W_X \rtimes T \) is the affine Weyl group of \(G \), where \(W_X \) is the Weyl group of \(G \) and \(T \) is the group of "translations", which is isomorphic to \(H(F[z, z^{-1}])/H(F) \). Furthermore, \(P_X/F^* = \mathbb{G}(F[z]) \) and \(B_-/F^* \subset \mathbb{G}(F[z^{-1}]) \). Then Lemma 3.3(b) (ii) gives:

\[\mathbb{G}(F[z, z^{-1}]) = \mathbb{G}(F[z^{-1}])/\mathbb{G}(F[z]) \mathbb{G}(F[z]), \]

a result usually attributed to Grothendieck [8]. A special case of this is the decomposition:

\[SL_n(F[z, z^{-1}]) = \prod_{k_1 \leq \cdots \leq k_n} SL_n(F[z^{-1}]) \text{diag}(z^{k_1}, \ldots, z^{k_n}) SL_n(F[z]). \]

This is due to Dedekind-Weber and Birkhoff [1].

Lemma 3.4. Let \(\tau \) be a \(G \)-biinvariant topology on \(G \) such that

(i) Zariski-closed subsets are \(\tau \)-closed, and

(ii) \(G_i \) lies in the \(\tau \)-closure of \(U_{-\alpha_i}H_iU_{\alpha_i} \), for all \(i \in I \).

Then for all \(w \in W \), we have:

(a) \(\coprod_{w' \leq w} B_+w'B_+ \) is the \(\tau \)-closure of \(B_+wB_+ \)

(b) \(\coprod_{w' \geq w} B_-w'B_+ \) is the \(\tau \)-closure of \(B_-wB_+ \).

Proof. Fix \(\Lambda \in P_+ \) and consider the map \(\phi : G \to \mathcal{V}_\Lambda \) defined by \(g \mapsto g(u_\Lambda) \). The map \(\phi \) is Zariski-continuous and [18]:

\[\phi^{-1}(U_{\pm}(I(\Lambda)w(\Lambda))) = B_{\pm}wB_+. \]

Hence, by (i) and Lemma 3.3 a, the \(\tau \)-closure of \(B_+wB_+ \) is contained in the union in question.

In order to prove the reverse inclusion in a), suppose that \(w = w_1r_1w_2 \), where \(w_1(\alpha_i) > 0, w_2(\alpha_i) > 0 \). Then we have:

\[B_+w_1w_2B_+ = B_+w_1r_1w_2B_+ = B_+(w_1r_1U_{-\alpha_1}r_1w_2^{-1}w_1r_1w_2U_{\alpha_1}w_2)B_+ = B_+w_1r_1U_{-\alpha_1}H_iU_{\alpha_1}w_2B_+. \]

Since \(\tau \) is biinvariant we get (here \(\mathcal{M} \) denotes the \(\tau \)-closure of \(M \)):

\[\mathcal{M} \subseteq B_+w_1w_2B_+ \]

Since, by (ii), \(N_i \subseteq U_{-\alpha_i}H_iU_{\alpha_i} \), we deduce that \(B_+w_1w_2B_+ \subseteq B_+w_1w_2B_+ \).

Similarly, we have:

\[B_-w_1w_2B_+ = B_-(w_1U_{-\alpha_1}w_2^{-1}w_1U_{\alpha_1}w_2)B_+ = B_-w_1U_{-\alpha_1}H_iU_{\alpha_1}w_2B_+ \]

and hence

\[B_-w_1w_2B_+ \subseteq B_-w_1U_{-\alpha_1}H_iU_{\alpha_1}w_2B_+ \subseteq B_-w_1r_1w_2B_+ = B_-wB_+, \]

proving the reverse inclusion in b). Q.E.D.

Remark 3.3. The Zariski topology on \(G \) satisfies the hypothesis of Lemma 3.4.

Let \(\Gamma_i = \{g \in G \mid \theta_{\alpha_i}(g) = 0\} \). We deduce from (3.4) and Remark 3.3:

Corollary 3.1. a) \(\Gamma_i = B_+r_iB_+ \) (i \(\in I \)).

b) \(U_-H_iU_+ = G \setminus \bigcup_i \Gamma_i \) is open in \(G \), and therefore \(G = \bigcup_{w \in W} wU_-H_iU_+ \) is a covering of \(G \) by open sets.

Remark 3.4. One can show that \(w' \leq w \) if and only if

\[B_+wB_+ \cap B_-w'B_+ \neq \emptyset. \]
§4. The Structure of the Algebra $F[G]$

4A) Recall that the Lie algebra \mathfrak{g} carries the principal gradation $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ defined by $\deg e_i = -\deg f_i = 1$, $\deg h = 0$; let $\mathfrak{g}(j) = \bigoplus_{i \geq j} \mathfrak{g}_i$ be the associated filtration. Let $U_j(j \geq 1)$ be the descending central series of $U_+: U_1 = U_+, U_{j+1} = (U_+, U_j)$ for $j \geq 1$.

Lemma 4.1. For any $u \in U_j(j \geq 1)$ there exists a unique element $\phi_j(u)$ of \mathfrak{g}_j such that

1. $Ad(u)x - x \equiv [\phi_j(u), x] \mod \mathfrak{g}_{j+k+1}$ for all $x \in \mathfrak{g}(k)$, $k \in \mathbb{Z}$; moreover, we have:
 a) $\phi_1(\exp t e_i) = t e_i$ (i.e., $\phi_1(\exp t e_i) = 0$ if $\alpha \in \Delta^*_+ \setminus \Pi$);
 b) $\phi_2(u) = \phi_2(u) + \phi_2(u')$;
 c) $\phi_{j+1}(x(u, u')) = [\phi_j(u), \phi_j(u')]$;
 d) $\phi_j(j \geq 1)$ is surjective.

Proof. (i) for $k = 0$ gives uniqueness of $\phi_j(u)$. It is easy to check that (i) implies (ii), (iii), (iv). We construct $\phi_j(u)$ satisfying (i) by induction on $j \geq 1$ using (ii), (iii), (iv). Finally, (v) follows from (ii), (iii) and (iv). Q.E.D.

Corollary 4.1. Let $h \in \mathfrak{h}$ be such that $\alpha(h) \neq 0$ for all $\alpha \in \Delta$. Then for all $k \geq 1$, $Ad(U_+)$ acts transitively on $(h + \mathfrak{h}_+ + \mathfrak{n}_+)$.

4B) Given two sets B_1 and B_2, we have the canonical inclusion

$F^{B_1} \otimes F^{B_2} \rightarrow F^{B_1 \times B_2}$

given by $(\phi_1 \otimes \phi_2)(b_1, b_2) = \phi_1(b_1)\phi_2(b_2)$. Let P be a group, $F[P]$ an algebra of F-valued functions on P containing F. We say that $F[P]$ is naturally a Hopf algebra if for the multiplication map $\mu: P \times P \rightarrow P$, we have $\mu(F[P]) \subseteq F[P] \otimes F[P]$, and for the inversion map $\iota: P \rightarrow P$, we have $\iota^*(F[P]) = F[P]$.

For any subgroup U of U_+ or U_- considered in the sequel, we denote by $F[U]$ the restriction of $F[G]$ to U.

Lemma 4.2. $F[U_+]$ and $F[U_-]$ are naturally Hopf algebras.

Proof. We prove the lemma for U_+. By Theorem 1, every $f \in F[U_+]$ is a linear combination of functions $f_{\nu, \alpha}$, where $\nu \in I(\lambda), \nu^* \in L^*(\lambda)$ (a $\nu \in F^+ \setminus F^0$).

Since U_+ acts locally unipotently on $I(\lambda)$, and $\pi_\lambda(u^{-1}) = (-\log \pi_\lambda(u))$, the lemma is clear. Q.E.D.

Remark 4.1. If $F[G]$ is naturally a Hopf algebra if and only if $\dim \mathfrak{g} < \infty$. If $\dim \mathfrak{g} = \infty$, then $\mu^*(F[G]) \not\subseteq F[G] \otimes F[G]$ and $\iota^*(F[G]) \not\subseteq F[G]$. Note that $\iota^*(F[G]) = \omega^*(F[G])$.

4C) Lemma 4.3. a) Let $h \in \mathfrak{h}$ such that $\alpha(h) \neq 0$ for all $\alpha \in \Delta$. Then the map $\psi: U_+ \rightarrow \mathfrak{n}_+$ defined by $\psi(u) = Ad(u)h - h$ induces an isomorphism $\psi^*: F[\mathfrak{n}_+] \rightarrow F[U_+]$.

b) Fix $\Lambda \in P_{++}$; $F[U_+]$ is a polynomial algebra on generators $f_{\alpha, \nu}(\nu)$ (restricted to U_+), where $\{\nu_\alpha\}$ is a basis of \mathfrak{n}_+.

Proof. a) follows from a) and the formula:

$\langle a(v_\alpha), v_\alpha^* \rangle = (a | \nu^{-1}(\Lambda))$ for $a \in \mathfrak{g}$.

Indeed, by this formula, $(Ad(u)\nu^{-1}(\Lambda) | a) = f_{\nu, \alpha}(u)(\nu^{-1}(\Lambda))$, and we apply Lemma 4.2.

To prove a), fix $\lambda \in P_{++}$; by [18, Lemma 5b], the map $\phi: \mathfrak{n}_+ \rightarrow L^*(\lambda)$ defined by $\phi(n) = n(v_\nu^*)$ is injective. Hence, we may identify \mathfrak{n}_+ with its image in $L^*(\lambda)$ and $F[\mathfrak{n}_+]$ with the restriction of $F[L^*(\lambda)]$ to $F[\mathfrak{n}_+]$. Take $v \in L(\lambda)$. By Lemma 4.2, we may write $\psi^*(u) = \sum_i f_i(u)\nu_i$ (finite sum) for $u \in U_+$, where $f_i \in F[U_+]$ and $\nu_i \in \mathfrak{n}_+$. Hence, the function $u \mapsto (v, Ad(u)h)\nu_i = -\sum_i f_i(u)(h(u_i))\nu_i$ lies in $F[U_+]$, showing that $\psi^*: F[\mathfrak{n}_+] \rightarrow F[U_+]$. ψ^* is injective by Corollary 4.1.

To show that ψ^* is surjective, choose a basis $e^{(1)}(a)$ for $a \in \Delta_+$, such that $e^{(1)}(a) = e_i$. Then we have $Ad(u)h = h + \sum_{\alpha \in \Delta_+} \sum_j \varphi_0^{(j)}(u)e^{(1)}(a)$, where $\varphi_0^{(j)} \in B \setminus \psi^*(F[\mathfrak{n}_+])$. Choose $h' \in \mathfrak{h}$ such that $\alpha(h') \neq 0$ for all non-zero $\alpha \in Q_+$. Then from $\psi^*(Ad(u)h) = 0$ we deduce that $\psi^*(Ad(u)h') = 0$ and $\psi^*(Ad(u)h') = 0$ deduce that $\psi^*(Ad(u)h') = 0$ and $\psi^*(Ad(u)h') = 0$.

To show that ψ^* is surjective, choose a basis $e^{(1)}(a)$ for $a \in \Delta_+$, such that $e^{(1)}(a) = e_i$. Then we have $Ad(u)h = h + \sum_{\alpha \in \Delta_+} \sum_j \varphi_0^{(j)}(u)e^{(1)}(a)$, where $\varphi_0^{(j)} \in B \setminus \psi^*(F[\mathfrak{n}_+])$. Choose $h' \in \mathfrak{h}$ such that $\alpha(h') \neq 0$ for all non-zero $\alpha \in Q_+$. Then from $\psi^*(Ad(u)h) = 0$ we deduce that $\psi^*(Ad(u)h') = 0$.

Using this, the equation $[Ad(u)h'] = -\alpha(h')^{-1}\varphi^{(1)}(u)h_i + \sum_{\alpha \in \Delta_+} \sum_j \varphi_\alpha^{(j)}(u)e^{(1)}(a)$ gives:

$Ad(u)f_i = f_i - \alpha(h')^{-1}\varphi^{(1)}(u)h_i + \sum_{\alpha \in \Delta_+} \sum_j \varphi^{(j)}_\alpha(u)e^{(1)}(a)$.

where $\varphi^{(j)}_\alpha \in B$, again by induction on $ht\alpha$.
Now, functions of the form $f_{v_{i_1 \cdots i_k}}$, where $v = f_{i_1 \cdots i_k}(v_{i_k})$, $\mu \in P_+$, $i_1, \ldots, i_k \in I$ and $v' \in L'(\mu)$, generate $F[U_+]$. But

$$f_{v_{i_1 \cdots i_k}}(u) = \langle (Ad(u)f_{i_1}) \cdots (Ad(u)f_{i_k}) \rangle v_{i_k}, v'$$

so that $f_{v_{i_1 \cdots i_k}}(u) \in B$ since the $\varphi^{(i)}_{\alpha, i} \in B$.

Q.E.D.

Remark 4.2. The map $\psi: U_+ \to U_+$ is injective; however, ψ is surjective only if $\dim \mathfrak{g} < \infty$.

4D) Put $S = \{\theta_{\lambda}'|\lambda \in P_+\} \subset F[G]$. This is a multiplicative set since $\theta_\lambda \theta_{\mu} = \theta_{\lambda + \mu}$. We put $\theta_i = \theta_{\lambda_i}$ for short. Denote by $F[H]$ the algebra of functions on H generated by S and S^{-1}. We have: $F[H] = F[\theta_i, \theta_i^{-1}]$; $i \in I$, the coordinate ring of $(F^*)^I$.

Lemma 4.4. The map $\phi: U_- \otimes H \otimes U_+ \to G$ defined by

$$\phi(u_- h u_+) = u_- h u_+$$

induces an isomorphism $\phi^*: S^{-1}F[G] \cong F[U_-] \otimes F[H] \otimes F[U_+]$. In particular, (by Lemma 4.3b), $S^{-1}F[G]$ is a unique factorization domain.

Proof. Using Theorem 1, one can easily check that

$$\phi^*(S^{-1}F[G]) \subset F[U_-] \otimes F[H] \otimes F[U_+]$$

ϕ^* is injective by Lemma 2.1d.

To prove surjectivity of ϕ^* we use the formulas:

$$\phi^*(\theta_{\lambda}) = 1 \otimes \theta_{\lambda}' \otimes 1$$
$$\phi^*(\theta_{\lambda}^{-1} f_{v_{i_1 \cdots i_k}}) = 1 \otimes (Ad(u_+)f_{v_{i_1 \cdots i_k}})$$
$$\phi^*(\theta_{\lambda}^{-1} f_{v_{i_1 \cdots i_k}, v'}) = f_{v_{i_1 \cdots i_k}, v'} \otimes 1 \otimes 1$$

and apply Lemma 4.3b.

Q.E.D.

Corollary 4.2. Let F be algebraically closed. If α is a finitely generated ideal of $S^{-1}F[G]$ and $f \in S^{-1}F[G]$ vanishes on the zero set of α in $U_- \otimes U_+$, then $f \in \sqrt{\alpha}$.

Proof. Recall the map $\psi: U_+ \to U_+$ defined in Lemma 4.3; similarly, we define the map $\psi: U_- \to U_-$. Define a map $\sigma: U_- \otimes U_+ \to \mathfrak{u}_- \otimes H \otimes \mathfrak{u}_+$ by $\sigma(u_- u_+) = (\psi(u_-), h, \psi(u_+))$. Then, by Lemmas 4.3 and 4.4, σ induces an isomorphism $\sigma^*: F[\mathfrak{u}_-] \otimes F[H] \otimes F[\mathfrak{u}_+] \cong S^{-1}F[G]$. By Corollary 4.1, given $q_1, \ldots, q_n \in F[\mathfrak{u}_-] \otimes F[H] \otimes F[\mathfrak{u}_+]$ and $x \in \mathfrak{u}_- \otimes H \otimes \mathfrak{u}_+$, there exists $x' \in \sigma(U_- \otimes U_+)$ such that $q_i(x) = q_i(x')(1 \leq i \leq n)$. Now we apply Hilbert's Nullstellensatz to $(\sigma^*)^{-1}f$ and $(\sigma^*)^{-1}a$.

Q.E.D.

Lemma 4.5. a) Let $w \in W$ and let $U_1 = U_+ \cap wU_- w^{-1}$, $U_2 = U_+ \cap wU_+ w^{-1}$. Then the map $\psi: U_1 \times U_2 \to U_+$ defined by $\psi(u_1 u_2) = u_1 u_2$ induces an isomorphism $\psi^*: F[U_+] \cong F[U_1] \otimes F[U_2]$.

b) Moreover, let $\alpha \in \Pi$ be such that $w(\alpha) \in \Delta_+$. Let $U_3 = U_+ \cap (w(\alpha) U_- w(\alpha))^{-1}$. Then the map $\phi: U_1 \times U_2 \to U_3$ defined by $\phi(u_1, w') = uu'$ induces an isomorphism $\phi^*: F[U_3] \cong F[U_1] \otimes F[U_2]$.

c) Let $\beta \in \Delta_+$. Then $F[U_\beta]$ is a polynomial algebra over F in one variable x, where $x(\exp_{t, 2}) = t$.

Proof. By Lemma 4.2, $\psi^*(F[U_+]) \subset F[U_1] \otimes F[U_2]$. ψ^* is injective since ψ is onto by [18, Corollary 5b]. To see that $\psi^*(F[U_+]) \supset F[U_1] \otimes F[U_2]$, fix $\lambda \in P_+$ and choose $n \in wH$. Then, for $v \in U(\lambda)$ and $v' \in L'(\lambda)$, we have:

$$\psi^*(f_{v, n(v)}) = f_{v, n(v)}$$
$$\psi^*(f_{n(v), v'}) = 1 \otimes f_{n(v), v'}$$

But the $f_{v, n(v)}|_{U_1}$ (resp. $f_{n(v), v'}|_{U_2}$) are clear from a) by restriction. c) for $\beta \in \Pi$ follows from the proof of a) in the case $w = t$, the general case then follows by conjugating by elements of N.

Q.E.D.

4E) We proceed to prove the main result of this section:

Theorem 3. The ring $F[G]$ is a unique factorization domain (UF).
The proof is based on the following simple fact. (Its proof can be easily extracted from [17, p. 43].)

Lemma 4.6. Let R be an integral domain and p_1, \ldots, p_m prime elements of R (p is called prime if $p \neq 0$ and (p) is a prime ideal). Suppose that:

(i) $\bigcap_{i=1}^m (p_i^k) = 0$ for all k.
(ii) $S^{-1}R$ is a UFD, where S is the multiplicative system generated by p_1, \ldots, p_m.

Then R is a UFD.

We apply this lemma to $R = F[G]$ and $p_i = \theta_i(i \in I)$. Using Lemmas 2.1, 4.4 and 4.4, it suffices to show that the elements θ_i are prime.

For $f \in F[G]$ and $n \in G$, we denote by ^{n}f the strongly regular function $^{n}f(g) = f(n g)$, $g \in G$. We will deduce that θ_i is prime from the following lemma.

Lemma 4.7. For $i \in I$ and $n \in N$, $^{n} \theta_i$ is either a prime element or a unit in $S^{-1}F[G]$.

We may (and will) assume in the proof of Lemma 4.7 and the following deduction from it that θ_i is prime if F is algebraically closed.

Assume that Lemma 4.7 holds. Suppose that θ_i divides $f_1 f_2$, where $f_1, f_2 \in F[G]$; we must show that θ_i divides one of f_1, f_2. By Corollary 3.1a, the set Γ_i of zeros of θ_i on G is the closure of $U_{-r_i} B_4$, where $U_{-r_i} = U_{-r_i} U_{-r_i}^{-1}$ (cf. [18]). By Lemmas 4.4 and 4.5a, the restriction of $F[G]$ to $U_{-r_i} B_4$ is an integral domain. Hence, one of the f_k, say f_1, vanishes on Γ_i. Lemma 4.7 and Corollary 4.2 now imply that $(^{n} \theta_i)^{-1} (^{n} f_1) \in S^{-1}F[G]$ for all $n \in N$. Corollaries 3.1b and 2.1 now force $^{n} \theta_i f_1 \in F[G]$, proving Theorem 3. Q.E.D.

Proof of Lemma 4.7. We proceed by induction on $l(w)$, where $n \in w, w \in W$. If $l(w) = 0$, i.e. $n \in H$, then $^{n} \theta_i \in F^{*}S$ is a unit in $S^{-1}F[G]$. Otherwise, choose $j \in I$ such that $l(w_j) < l(w)$. Put $w' = r_j w$, choose $n_j \in r_j H$ and put $n' = n_j^{-1} n$. If $j \neq i$, then $^{n} \theta_i = \theta_j(n_j)(^{n'} \theta_i) \in F^{*}(^{n'} \theta_i)$ is prime or a unit in $S^{-1}F[G]$ by the inductive assumption. If $j = i$, put $U_0 = U_{-} \cap w^{-1} U_{-} w$, $U_1 = U_{-a_i}$, $U_2 = U_{-} \cap (w^{-1} U_{+} w)$, and define the map

$$\psi: (U_0 \times U_1 \times U_2) \times H \times U_+ \to G$$

by $\psi(u_0, u_1, u_2, h, u_+) = u_0 (n' u_1 n') u_2 h u_+$. Then Lemmas 4.2, 4.4 and 4.5 a,b show that ψ induces an isomorphism

$$\psi*: S^{-1}F[G] \to F[U_0] \otimes F[U_1] \otimes F[U_2] \otimes F[H] \otimes F[U_+]$$

Put $f = \theta_i^{-1}(^{n} \theta_i), f' = \theta_i^{-1}(^{n'} \theta_i), z = \theta_i(^{n} \theta_i)$. Then z generates the polynomial algebra $F[U_i]$ by Lemma 4.5c and we compute, using $n_i^{-1} n_i (v_i^*) = v_i^* + z u_i n_i (v_i^*)$, that:

(4.1) $\psi(f') = 1 \otimes 1 \otimes f' \otimes 1 \otimes 1$.

(4.2) $\psi(f) = 1 \otimes x \otimes f' \otimes 1 \otimes 1 \otimes 1 \otimes 1 \otimes 1$.

Suppose that $^{n} \theta_i$ is not prime or a unit in $S^{-1}F[G]$, so that $\psi(f)$ is not prime or a unit. Since $S^{-1}F[G]$ is a UFD, (4.1) and (4.2) show that $\psi(f)$ and $\psi(f')$ have a nontrivial common factor. Hence, by the inductive assumption, $\psi(f')$ is prime. Now, the set $P := (w)^{-1} U_{-} U_{+} U_{+}$ is a non-empty by Corollary 4.2, since $(w)^{-1} H_{-} B_4$ is the set of zeros of $^{n} \theta_i$ on G and $U_{-} U_{+} U_{+}$ is open (see Corollary 3.1). But $^{n} \theta_i$ vanishes nowhere on P, since $n P \subset U_{+} B_4$. Hence, $\psi(f')$ does not divide $\psi(f)$. This contradiction completes the proof of the lemma and of Theorem 3. Q.E.D.

Remark 4.3. It is easy to see that if $f \in F[G]$ is divisible by θ_i, then if f vanishes on Γ_i, even if F is not algebraically closed.

Corollary 4.3. a) $F[G]^{U_{+}}$ is a UFD.

b) $F[G], F[G]^{U_{+}}$, and $F[V_{i}^*], A \in P_{+}$, are integrally closed.

c) $F[V_{i}^*], A \in P_{+}$, is a UFD if only if $A = \Lambda_i$ for some $i \in I$ or $\Lambda = 0$.

Proof. The group U_{+} acts by automorphisms locally unipotently on the UFD $F[G]$ with unit group F^{*}; a) follows. Since a UFD is integrally closed, and since the ring of invariants of a group acting by automorphisms on an integrally closed domain is integrally closed, b) follows from Theorem 3, using Corollary 2.3 and Lemma 3.1. c) is proved using the P_{+}-gradation $F[G]^{U_{+}} \cong \bigoplus_{i} L^{*}(A)$ (see Corollary 2.2) and Lemma 3.1. Q.E.D.
Remark 4.4. a) The fact that the coordinate ring of a connected simply-connected simple algebraic group is a UFD is well-known. The earliest reference that we know is Voskrezenskii [22] (see also [19]).
b) It is not difficult to see that the results of [21] can be extended to our setup.

Remark 4.5. Assume that F is algebraically closed. Let M be a subset of G. A function f on M is called strongly regular if for every $x \in M$ there exist a neighborhood U of x and functions $f_1, f_2 \in F[G]_F$, such that f_2 does not vanish on $M \cap U$, for which $f = f_1/f_2$ on $M \cap U$. Denote by $F[M]$ the ring of strongly regular functions on M. This definition coincides with the original one when $M = G, U_+ \cap wU_+w^{-1}(w \in W)$ or H.

Remark 4.6. It is clear that $F[G]_H$ is spanned by the characters of $H = (F^*)^I$ which appear as weights of the G-modules $L(A)(A \in P_+)$.

Now we construct an injection

$$\phi: G \to A := \bigoplus_{i \in I} L(A_i) \oplus \bigoplus_{i \in I} L^*(A_i).$$

Let $v = \sum_i v_{A_i}$, $w = \sum_i v_{A_i}$, and define $\phi(g) = g(v + w^*)$; this is injective by [18, Corollary 3a]. Furthermore, $\phi(G) \subseteq A$ is defined by the following system of equations: $x = \sum x_i + \sum x_i^*$, where $x_i \in L(A_i)$, $x_i^* \in L^*(A_i)$, lies in $\phi(G)$ if and only if

$$x_i \otimes x_j \in L(A_i + A_j) \subset L(A_i) \otimes L(A_j),$$

$$x_i^* \otimes x_j^* \in L^*(A_i + A_j) \subset L^*(A_i) \otimes L^*(A_j),$$

and $(x_i, x_i^*) = 1$ for all $i, j \in I$. This follows easily from [18, Theorem 1b], using the idea of the proof of Theorem 2.

Furthermore, one can show that ϕ induces an isomorphism

$$\phi^*: F[\phi(G)] \to F[G],$$

and that $\phi(G)$ is an affine group with Lie algebra g'. One can show that G operates morphically on $L(A)(A \in P_+)$ and g'; in particular, the matrix coefficients of G on $L(A_i), L^*(A_i)$, and g' are regular.

4) Let F be a non-discrete locally-compact topological field. We call a subset U of G open if $x^{-1}(U) \subset F^k$ is open for all $\beta \in (\Delta^*)^k$, $k \in \mathbb{Z}_+$. G is a Hausdorff σ-compact topological group (and hence paracompact) in this topology. Similarly, we call a subset U of $L(A)$ open if $x^{-1}(U) \subset \mathbb{F}^k$ is open for all $x \in \text{Hom}_F(\mathbb{F}^k, L(A))$, $k \in \mathbb{Z}_+$. The following results will be proved in a subsequent paper. (See [18] for definitions.)

Theorem 4. Let $A \in P_+$ and let $X = \{i \in I | A(k_i) = 0\}$. Then:

a) The multiplication map $U_- \times H \times U_+ \to U_+HU_+$ is a homeomorphism and U_-HU_+ is open in G.

b) The canonical map $G \to G/P_X$ is a fibration, and the map $gP_X \to g(F^*v_A)$ of G/P_X onto P^*v_A is a homeomorphism.

c) If $F = C$, then G is a connected simply-connected topological group.

d) If $F = C$, then $H_+ \times U_+$ is contractible and the multiplication map $K \times H_+ \times U_+ \to G$ is a homeomorphism.
c) If $F = C$, then G/P_X is a CW-complex with cells $B_\ast wP_X/P_X$, where $w \in W/W_X$, of dimension $2d_X(w)$, where $d_X(w)$ is the length of the shortest element of wW_X.

4H) Open problems.

a) Is it true that the rings $F[\mathcal{V}_X(\lambda)_{\pm}]$ are integrally closed? (This would imply that the closures of finite Schubert cells are normal (see [18, Remark (iii)]), as is known for finite type groups [6].)

b) Compute Specm $F[G]$. (Recall that Specm $F[G]$ is larger than G if G is of infinite type, by Remark 2.2.)

c) Is it true that the sum of two closed ideals of $F[G]$ (or $F[G]_{w,r}$) is closed? In particular, is it true that every finitely-generated ideal of $F[G]$ is closed?

d) Let F be algebraically closed. Is it true that every proper finitely-generated ideal of $F[G]$ vanishes at some point of G? (It is obviously true for principal ideals.)

e) Is it true that $F[G]_{w,r} = F[G]_r$?

References

Examples of Surfaces of General Type with Vector Fields

William E. Lang

To I.R. Shafarevich

The purpose of this paper is to introduce some new surfaces of general type, called generalized Raynaud surfaces, and to prove that in many cases these surfaces possess global vector fields, contradicting a guess of Rudakov-Shafarevich [3].

In a lecture at M.I.T. in October 1981, H. Kurke announced that he and P. Russell had found surfaces of general type with vector fields. These surfaces were of the form Y^D, where Y is a ruled surface, and D is a p-closed vector field with divisors of singularities. While all details were not given, the calculations seemed rather involved. The structure of the resulting surface, however, was quite simple. Inspired by Kurke's talk (and by conversations with M. Artin), I tried to generalize the elementary construction of Raynaud surfaces in characteristic three studied in [1] to higher characteristic, and finished the construction given here in November 1981. These surfaces are also of the form Y^D, and I suspect that they are deformations of the Kurke-Russell examples; however, both the construction of the surfaces and the method used to prove that some of the surfaces have vector fields are quite different from those of Kurke and Russell, and I hope more transparent.

1. Construction of Generalized Raynaud Surfaces

Let p be a prime number, and let n and d be positive integers, such that if $p
eq 2$, and d is odd, n is also odd. Let k be an algebraically closed field of characteristic p.

Definition. A generalized Tango curve over k of type (p, n, d) is a triple (C, L, dt), where C is a smooth curve over k, L is a line bundle on C of degree d, and dt is a nowhere vanishing section of $K_C \otimes L^{\otimes (1-mp)}$ which is locally exact.