18.781 Problem Set 9: Due Friday, May 5

1. Let α be a quadratic integer of discriminant d. Its isotropy group is the group

$$
G_{\alpha}=\left\{\gamma \in \mathrm{GL}_{2}(\mathbb{Z}): \gamma \alpha=\alpha\right\}
$$

Define $\psi: G_{\alpha} \rightarrow A(d)$ by sending the matrix $\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ to $r \alpha+s$.
(a) Show that ψ is an antihomomorphism from G_{α} to the group of units $A(d)^{*}$. (That is, it satisfies $\psi(1)=1, \psi(\gamma \delta)=\psi(\delta) \psi(\gamma)$.)
(b) Show that $\psi: G_{\alpha} \rightarrow A(d)^{*}$ is bijective.
2. Use the continued fraction algorithm to find, for the two discriminants listed, (i) the smallest positive solution to $t^{2}-d u^{2}= \pm 4$; (ii) the fundamental unit of $A(d)$; (iii) a generator for G_{α}, where α is the unique reduced quadratic integer of discriminant d; (iv) a generator for the group of signed automorphisms of the quadratic form f corresponding to α.
(a) $d=41$;
(b) $d=52$.
3. What is the group-structure of $C l(-164)$? (In principal, you have to determine the ideals corresponding to quadratic irrationals in $R(-164)$, work out what their products are, and find out which ideals the products are equivalent to. But with care you should not have to do this with many elements.)

