18.781 Final Exam: Monday, May 22, 1995

This is an "open-book" exam. You may use Davenport's Higher Arithmetic, class notes and handouts, homework assignments, and a hand calculator if you wish.

Do all four problems. Explain your reasoning and show your calculations; I don't expect you to just quote a table of class-numbers, for example.

1. Is $x^{2}+23 x+40$ divisible by 67 for some $x \in \mathbb{Z}$?
2. Assume that p is a prime larger than 3 such that $\frac{p-1}{2}$ is also prime. Show that that 5 is a primitive root $\bmod p$ if and only if the last decimal digit of p is 3 or 7 .
3. Let $d=205$ and $\alpha=\frac{11+\sqrt{d}}{2}$.
(a) Show that α is a reduced quadratic integer of discriminant d.
(b) What is the continued fraction for α ?
(c) What is the rational number $\frac{a}{b}$ with $a, b \in \mathbb{Z}, 0<b \leq 150$, which best approximates α ?
(d) List the reduced quadratic irrationals of discriminant d.
(e) What is the class-number $h(d)$? What is the strict class number $h_{s}(d)$? Explain briefly why.
(f) How many equivalence classes of primitive quadratic forms of discriminant d are there? Give representatives.
(g) Write down the fundamental unit for $A(d)$.
(h) Write down the smallest solution to $t^{2}-d u^{2}=4$ other than $(\pm 2,0)$, and write down the smallest solution to $t^{2}-d u^{2}=-4$ or explain why there are no solutions.
(i) The primitive quadratic form f corresponding to α is $f(x, y)=x^{2}-11 x y-11 y^{2}$. Write down an automorphism of f (i.e., $\gamma \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $f \circ \gamma=f$) other than $\pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(j) What is the group-structure of the strict class group $\mathrm{Cl}_{s}(d)$?
4. Let $A=A(-39)$, the maximal order in the field $\mathbb{Q}(\sqrt{-39})$.
(a) Determine the set of reduced quadratic irrationals of discriminant -39 . What is $h(-39)$? Is A a principal ideal domain? Write down a list of representatives of the ideal classes of A.
(b) What do you know about the splitting of rational primes p in A ? Explain why the answer to the question "Is p split, ramified, or inert in A ?" depends only upon the value of p modulo some number D. What is this this number? For example, what happens to 2? To 41?
(c) What is the group structure of the class group $\mathrm{Cl}(-39)$? Give the multiplication table in terms of the representatives you wrote down in (a).
