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SIGURDUR HELGASON

The purpose of these lectures is to give an account of the theory of those
Lie groups which have played a particular role in geometry and in physies—
the so-called semisimple Lie groups. Associated with these groups are the
symmetric spaces, whose theory is a kind of an intersection of Riemannian
geometry and Lie group theory.

The primary prerequisites for reading these notes are some familiarity
with the elements of the theory of topological groups and differentiable mani-
folds. The emphasis is on noncompact semisimple Lie groups and the asso-
ciated (noncompact) symmetric spaces. The function theory on these spaces
is treated in a relatively detailed manner; however the holomorphic function
theory is omitted altogether.

Although the definitions and theorems are usually stated in full gener-
ality, complete proofs are given only if they are either very short or particu-
larly instructive. Verification for a special case is a frequent substitute for a
proof. A study of special cases is in fact very important for understanding of
Lie theory. With this in mind, Chapter 1 is devoted to the special group
G = SU(, 1) and the associated symmetric space, the non-Euclidean disk.
Chapters 2 and 3 deal with selected topics from the classical theory of Lie
groups and symmetric spaces. The results in Chapter 4 are of more recent
vintage but almost all of them have been published elsewhere. The only
exceptions are the integral representation of the eigenfunctions of the Lapla-
cian on the non-Euclidean disk (Theorem 5.1, Ch. 1) and the extension of
Fatou’s theorem to harmonic functions on symmetric spaces (Theorem 2.12,
Ch. 4) proved by A. Kordnyi and the author.

I am indebted to members of the Summer Rencontre for helpful discus-
sions during the writing of these notes, particularly B. Carter, Y. Choquet-
Bruhat, and L. Ehrenpreis.

GENERAL NOTATION

We list here some standard notation which will be utilized throughout
the lectures. The symbols R, C, and Z refer to the real numbers, the complex
numbers, and the integers, respectively. The nonnegative reals are denoted
by R* and the nonnegative integers by Z*. The conjugate of a complex
number ¢ is denoted by . The empty set is denoted by . 1f X'is a set and
x € X then the subset of X consisting of x alone is denoted by {x}.

If M is a manifold, the set of complex-valued indefinitely differentiable
functions on M is denoted C*(M). The set of functions fe C*(M) of com-
pact support is denoted C.*(M). If pe M the tangent space to M at p is
denoted by M,. Let M and N be manifolds and ¢ : M — N a differentiable
mapping. The differential of ¢ at a point p € M, denoted d¢,, or just ¢, is
a mapping of M, into N, defined by dop(X)(f) = X(f o ¢)if X is any vector
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in M, and f any function in C*(N). If t - y(¢) is any curve in M with tangent
vector X at the point p then d¢,(X) is the tangent vector to the curve
t— ¢(y(1)) at ¢(p). The differentiable map ¢ : M - N is called a diffeo-
morphism if it is a one-to-one map of M onto N and if the inverse map
¢~1':N— M is differentiable.

CHAPTER 1: INTRODUCTION

1-1 Lie Groups

A Lie group is a group G which is also an analytic manifold such that
the mapping (g, ) — gh™" of the product manifold G x G— G is analytic,

Roughly speaking, this means that, at least locally, a Lie group is
parametrized by an n-tuple of real numbers such that the group operations
are expressed by analytic functions in these parameters. This makes it
possible to study these groups by analytical methods.

Lie group theory can be traced back to Sophus Lie’s applications of
group theory to geometric situations as well as to his desire to obtain a
theory of differential equations which paralleled Galois’ theory for algebraic
equations. Since groups at that time were usually viewed as permutation
groups, the geometric problems led naturally to the consideration of trans-
formation groups with certain invariance properties. These invariance
properties often give rise to a parametrization of the group, turning it into a
Lie group.

Example

Let G denote the group of transformations of the plane R* preserving
distance as well as orientation. If g € G let (x(g), ¥(g)) denote the coordinates
of g+ 0 (0 is the origin in R?) and 6(g) the angle from the x axis / to the line
g+ 1. The parametrization

g = (x(g), y(g), 0(g))

turns G into a Lie group.

1-2 Symmetric Spaces

Let M be a C* manifold. A Riemannian structure on M is a positive
definite inner product ¢ , » on the tangent space M, at an arbitrary point
pe M. Itisassumed thatif X, ¥ are C* vector fields on M then the function
p—<{X,,Y,> is a C* function on M. A manifold with a Riemannian
structure is called a Riemannian manifold.




SIGURDUR HELGASON
Example
i ic i ill ¢ ny us
The following example is of basic importance and will accompany

throughout these lectures.

Let D be the open unit disk |z| < 1 in R? with the usual manifold struc-

; Tt . /ectors
ture but given the following Riemannian structure: If u, v are tangent vect
at the point z € D, put

(u, v) (1)
<li, U> = m

() denoting the usual inner product on R?. Since
{u, vd? WA v)”
Cu, up{v, vy (u, u)(v, v)

the angle between » and v in the new Riemannian structure coincides with the
Euclidean angle.

The length of a curve 7(#) (x <t < B) on a Riemannian manifold is
defined by

[
L) = [ <y, ym)»'? dt
and the distance between two points p, g € M is defined by

d(p, q) = inf L(y)

the infimum taken over

all curves joining p and ¢. In our case if (1) =
(x(1), »(1)) and s(

1) is the arc-length of the segment (1) (0 < 7 < 1), we get
'dS)z_ 1 [(d’c)z_l_(d;_})l]
dt) {1 - () + 0 [\ dr

In classical terminology this is written
2 )2
it @
[1 - (x*+ y?)]
In particular, if Pa) =

: 0, () = x (point on the x axis) and we denote by y,
the line segment fI'Om

0 to x, we get from

L I Ol
[ =) = (1 = [x(0)* + y(0)°1)

the inequality

L(yo) < L(y)
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Thus

1+ |z|
1—|z|

1
d(0, 2) = 5 log 3)
and the straight lines through the origin are geodesics.
Let us now determine the group /(D) of all isometrics on D. Ifa, b€ &
then the transformation

az+ b
bz+a

g:z— lal? — |B]* =1 )

maps D onto itself. Let us verify that g preserves the Riemannian structure
(1): Let z(¢) be a curve with z(0) = z, z'(0) = . Then

g u= {% g[z(t)}} = the vector Al

———atg-z
=0 (52'}‘5)2 g

and the relation
{g-u,g- uy=<u,u

follows immediately. Now if & € I(D) is arbitrary, there exists a g as in (4)
such that gh~! leaves the x axis pointwise fixed. But then gh™" is either the
identity or the conjugation z— 2. Thus (D) is generated by the transfor-
mation (4) and the conjugation ¢: z—Z. Denoting as usual

SU(],1)=[(Z. z)’|a|2—|b|2=1]

and by I the identity matrix, we have
I(D) = (SU(1, 1)/ £ Do (SUQ, 1)/ £ 1)

In particular, /(D) is a Lie group (a fact which was proved for all Riemann
manifolds in Myers and Steenrod [55]).

Since the group of transformations (4) is transitive on D we deduce that
the geodesics in D are the circular arcs perpendicular to the boundary |z| = 1.
Since the expression for d(0, z) can be written by means of the cross ratio

0=zflz] z— Z/'|Z|)
0+ z/lz| "z + z/)z|

1
d(0, z) = 3 log (

and since the cross ratio is invariant under fractional linear transformations
we obtain

zy—by 2za—by

1
d(znz?.)=ilog( ) zy,2,€D (5)

zl“"bl Zz—b]
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(b, b, being shown in Fig. 1). But the space D with this distance d is of course
the classical Poincaré model of non-Euclidean geometry.

Definition. A Riemannian manifold M is called .\'_I‘H'J.'m*.’."f(j (Or_g!'oha!l}
symmetric) in the sense of E. Cartan if for each p e M there is an isometry

‘ . . : X y is called the
5, of M onto itself which reverses the geodesics through p (s, 18 Bl ¢
geodesic symmetry with respect to p).

b,
b,
FIGURE 1
Since the symmetry s, : z — —z is of the form (4) it is an isometry of D.

If g € (D), then the isometry gs,g ' reverses the geodesics o
(D) being transitive, D is therefore symmetric. : M, let
Let () (—o0 < 1 < @) be a geodesic in a symmetric space :,- £ LU
t = Sy, and let 7, denote the Levi-Civita parallel transport along 7 i:mp
tor. IfLisa tangent vector to M at (1), then since s, preserves paralleh.sln:
and so(t_, L) = —1_,L we see that so(L) = —7_3,L- Cnnscqucnt]y, the
isometry T, = Si/2 5o realizes the parallelism from 0 to ¢ along 7. e

' ' ; * sransvections
etries T, actually form a one-parameter group—the group of #anst
along the geodesic Y.

Let M be a Riem
(9 = (x,, .

S

. ; ) s tem and
annian manifold, (U, ¢) a local coordinate sy
s X,) forge U, We put

9iA9) = <(c(r); (f%f))

g =det (g;j)~

g’ =(g)™*




Lie Groups and Symmetric Spaces )

Then we can define a measure p on U by

w(C) = ‘ Jgidxps s dx (6)

$(C)
(where we have written v/g for /g - ¢~ '). This definition is invariant under
coordinate changes and defines a measure on M, the Riemannian measure.
Somewhat imprecisely (M is not necessarily orientable) one refersto /g dx, ...
dx, as the volume element on M.
We also recall the Laplace-Beltrami operator defined for fe C*(U) by

A :j‘—--u 2

o X 0
Y—12 9"\ g — () (7)
\ g k OXyg i ox;
Again, the expression on the right can be shown to be invariant under coor-
dinate changes and so defines a differential operator on M.

In the case of D we find at once from (1),

g =1[1—121*1"%6;  (8;; = Kronecker delta)

g = [1 - |2I*2%0; g=(01-1z2""*
The volume element is therefore given by
[1—(x*+y>)] 2dxdy (8)

and the Laplace-Beltrami operator is

. S R AR
A=l -2+ 905 + 73) 9)
gxzlaidy=
1-3 Non-Euclidean Fourier Analysis
We shall now define a Fourier transform on the non-Euclidean disk D.
First we recall the Fourier inversion formula on R". For f€ L'(R") put
Flu) = I f(x)e ix, 1) dx (N
Jpn
(,) denoting the usual inner product on R". Then if /e C.*(R"),

F(x)=Cn) " l fw)e™ " du (2)
s

Let us introduce polar coordinates u = Aw, 4 =0, and w is a unit vector.
Then (1) and (2) become

Fhwy = fade 5 dx (3)

YR

J(x)=Q2n)""

[ f(}.n‘)e"-""' W Ar=t di dw (4)
- R* lsll_ 1
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where R* ={Ae R |4 >0} and dw is the volume element on the unit sphere
.

Because the functions e, : x — ¢'™*) are characters of the group R”", the
Fourier transform (1) can be generalized to locally compact Abelian groups.
Since D is not a group this viewpoint is not directly applicable here. How-
ever, the functions e, have the following properties:

(1) e, is an eigenfunction of the Laplace operator on R";

(ii) e, is constant on each hyperplane perpendicular to u (** plane wave”
with normal ).

These properties essentially characterize the exponentials and since they are
geometric properties we shall see that they have analogs for the space D.

FIGURE 2

Parallel geodesics in D are by definition geodesics corresponding to
the same point b on the boundary B of D. A horocycle with normal b is by
definition an orthogonal trajectory to the family of all parallel geodesics
corresponding to b. Thus a horocycle in D is the non-Euclidean analog of a
hyperplane in R". Since the inner product (x, w) in (3) is the distance from
the origin to the hyperplane with normal w passing through x we define
{z, b} for z e D, b € B, as the non-Euclidean distance from 0 to the horocycle
&(z, b) with normal b, passing through z. (Here <z, b) is taken negative in
case 0 falls inside the horocycle.)

For p e C, b € B we consider the function

e, ;o Z— BB zeD (5)

b
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These formal analogs of the exponential functions on R" are also conceptual
analogs for they satisfy the following non-Euclidean counterparts to (i) and

(i1):

(i)' e, » is an eigenfunction of the Laplace-Beltrami operator on D (for
example, use (9) in §1-2 and (11) below);

(i)’ e, , is constant on each horocycle with normal b.

Consequently, we define Fourier analysis on D to be decomposition of
*““arbitrary "’ functions into functions e, , in (3).

Theorem 3.1. For fe C.“(D) set
(4, b) = ] f(z)et~# T 4g AeR,beB
“D
where dz is the volume element on D. Then
f(z) = 2n)~2 ] [ F(4, b)eli+* V<025 tanh (3n2) di db (6)
“R"'B
where db is the usual angular measure on B.
We shall now indicate how (6) follows from classical facts. Denote the
measure (27) %A tanh (in4) d’. db by du(2, b) and define the operators T and

S by
(Tf)(4, b) = (4, b) feC.2(X)

(SF)(z) = [ F(4, b)eli#*+ D=8 gu(d. b)
“RxB
the function F restricted such that the integral converges absolutely. Then
I f(2)(SF)z) dz = ’ (Tf)A, b)F(4, b) du(A,b)
“D “RxB
and by iteration
| 1G)STy(z) dz = [ (STIN)9() dz £ g€ C(D) (7
“D b
because Tf and Tg satisfy the growth restrictions placed on F.

Lemma 3.2. Let t be an isometry of D and if g is a function on D, put g°(z) =
g(z= '+ z). Then

STf = (ST for f € C.*(D)

PrOOF. Since t preserves the volume element on D,

fr(i‘ b} J'Df(z)e(—iun«-:, b dz (8)
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But the isometry 7 extends in an obvious way to the boundary B (¢f. (4) §1-2),
and we have

(t-2z,7°b)={z,b)+<{1-0,7-b) )
This identity is easily seen by observing that the horocycles &(7- 0, - b) and
(- z, T+ b) cut segments of equal length off the parallel geodesics (0, - b)
and (-0, - b). Thus

(toz, )=z, 77 - b)+<{t-0,b)
so (8) becomes

fr()_, b) = e(-ii-rl}(r-o.b)f(;{, 171 4 b)
S0

(STfXz) = L Bj()_‘ 771 p)elm A+ CT0. B plid+ 140> gy (7, b)

Now we change variables; the Jacobian of the mapping b — 7 - b satisfies

d(t - b)
db

e eZ(t"'O,b) beB (10)

In order to verify this observe that t = x, 0k, , where k,, k., are rotations around
0, and ¢ maps the x axis onto itself. We can thus assume 7 of the form

(cosh )z + sinh ¢
I =
(sinh t)z + cosh ¢
s0 if b = ', the left-hand side of (10) equals (cosh 2t + sinh 21 cos ).

On the other hand, a simple computation using (3) §1-2 shows that if z =
|z| €', b = €' then

P 708 S e L
1 —2|z|cos (0 — @) + |2|*

(11)

so, in particular, (10) follows. Using also (e 0, b) =<3+ 0, 1:b)
[which follows from (9)], we obtain

(STfr)(Z) N J‘R B.f()" b)e(Ail— l)(t-O,r-b)e(r'2.+1)<z,t-b) d,u(l, b)

which again by (9) equals (STf)(t™' - z), proving the lemma.

In order to prove Theorem 3.1, that f = ST, it suffices, by (7), to prove
this for a sequence (f,) where f, — J., the delta function at an arbitrary point
ze D. By Lemma 3.2 we can assume that z is the origin in D. But then the
functions f, could be taken to be radial functions. But if f(2) = F(d(0, z)),

Fe C.(R) (F even), then f(4, b) is an even function F(4) of 4 alone. If
r = d(0, z) then

z = |z| ¢ = (tanh r)et?
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In the coordinates (r, 0) the volume element (8) §1-2 becomes
dz = % sinh 2r dr df

If we now consider the Legendre function

2

l n
P(coshr) = > [ (cosh r + sinh r cos 0)" df (ve C)
T

ol 1

the formulas in Theorem 3.1 become

Foy=n J‘:F(r)Pﬁ 4+ 312 Cosh (2r) sinh (2r) dr (12)

F(r) = ;—n J.:F()L)P,%_l.u cosh (2r) 4 tanh (3n4) dA (13)

After a harmless change of variables, (13) becomes simply the inversion form-
ula for the Mehler transform (Erdélyi [17], Vol. I, p. 175, Fok [18] and Gode-
ment [22a]). Assuming this inversion formula, Theorem 3.1 is proved (cf.
Helgason [35], [36]).

If we compare the formulas in Theorem 3.1 with (3) and (4) we note
a factor 2¢*® which has no analog in the Euclidean case. But according to
(11) this factor is just the classical Poisson kernel but expressed in non-Euclid-
ean terms. Consequently, the classical Poisson integral formula for a
harmonic function « on D with continuous boundary values f(b) on B,

2n ’,2

. 1 4
u(re) = — [ 5 f(e') do

2ndo 1—2rcos(6—¢@)+r

can be written
1 2n
u(z) = — j 2= Df(b) db (14)
2n 0

According to our stated conventions this is a formula in Fourier analysis
on D.

Note that the Fuclidean harmonic functions coincide with the non-
Euclidean harmonic functions according to (9) §1-2. Thus (14) is entirely
non-Euclidean. ;

1-4 Interpretation by Representation Theory

Let X be a space with a measure p and let G be a transformation group
of X leaving the measure y invariant. To each g € G we associate the opera-
tor T(g):f—/? on the space L*(X) of square-integrable functions on X
(As in Lemma 3.2, f? denotes the function x —» f(g~'* x) on X.) Then the
mapping g — T(g) is a unitary representation of G on the Hilbert space LX),
Now arises the natural problem of decomposing this unitary representation T’
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into irreducible representations T'; acting on Hilbert spaces $; such that for
a suitable measure v

EX)=[9,dv() T= JT dv(A) (1)

in the sense of direct integrals of Hilbert spaces (see, for example, Dixmier
[15]). In §1-3 we have some examples of (1):

a. First let G denote the group of translations of R". Then for each
u € R" the space $, = Ce, is invariant and irreducible under G; let 7, denote
the representation of G on $, given by

[T @) f1(x)= f(g"'x) for feH,,9€G,xeR"

Then (2) in §1-3 (together with the Plancherel formula

17 dx = @m)™" [ 17 w)l* du)

can be written

~

I(R" = liﬁ:’:u du* T=|T,du* (2)

where du* = (2n) " du.

b. Next let G denote the group of all transformations of R" preserving
orientation and distance. For each A € R* consider the Hilbert space of func-
tions on R" given by

D= {F,.‘(.\-) = | e F(w) dw | F e I*(S"™") (3)
Jgn- 1
(defining ||F,| as the L? norm of F)and let T, denote the representation of G
on $, given by
(Ty(g)F,)(x) = Fi(g~'x) F,€9,,9eG,xeR"
T, is in fact a unitary representation, because if g = tk (¢ is the translation,

k the rotation around 0), then

(TU@F ) = [ =@ a0 oF(|~10) do (4)
;sn*l
and T, is in fact irreducible (¢f. Itd [42] and Mackey [51, §14]) and different

4 in R™ give inequivalent 7;. Thus (4) in §1-3 together with the Plancherel
formula

Llf(x)lz dx = (@m)™" |

R*x$n

| f Q)4 dA do
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gives the direct integral decomposition

x) = | $pdi* T= [ Tydi* (5)

‘R “R

n—1

where di* = (2n) "4
¢. Finally, we consider the case when G is the group SU(1, 1) operating
on D. For each 4 R consider the Hilbert space

dA.

si:{hxm::[d“+“*wqucw|hetﬂaﬁ
L ]

(defining |4, as the L? norm of &) and let T; denote the representation of G
on %, given by

[T(@)h:1(z) = hy(g™'2)
Using formulas (9) and (10) in §1-3, we find

hg=!:z)= l A+ 1)z B (=124 1400, g =1 . by dp
vB

[compare with (4)]; so using (10) again we see that 7} is unitary; comparing
with Bargmann [1], Thm. 1, p. 613, we see that T, is irreducible. Finally (6)
in §1-3 and the Plancherel formula

[ 1f@)NPdz= [ |J( b du b)
=D “RxB
show that

0= $,dud T=| Tdu ©6)

“R/Z; “R/Z;

where du(2) = 2(2n) %4 tanh (4n/) and integration is taken over R/Z), since
T, and T, can be shown equivalent if and only if 2 = —pu.

1-5 The Eigenfunctions of the Laplacian on the Non-
Euclidean Disk

Let P(z, b) denote the Poisson kernel

1 =z
Plz, b) =
(z, b) 1 — 2]|z| cos (8 — @) + |z
z=|z|e® b=e?

If A€ C is any complex number it is clear from (i)’ and (11) in §1-3 that for
for each b € B the power P(z, b]* gives an eigenfunction of the non-Euclidean
Laplacian A. A direct computation gives

A(P(z, b)*) = 4A(A — 1)P(z, b)*
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which shows that the eigenvalue is independent of 5. Note that the eigen-
valueis > —1 (and real) ifand only if A € R. We shall now consider the prob-
lem of constructing the most general eigenfunctions of A.

Let A(B) denote the set of analytic function on the boundary B, considered
as an analytic manifold. The space A(B) carries an atural topology (see,
for example, Kothe [48]). The continuous linear functions A(B) —» C are
called analytic functionals on B; they constitute the dual space A4'(B) of
A(B). If Te A'(B), fe A(B) we write for T(f) also fﬂ f(b) dT(b), since the
elements of A are generalizations of measures. For the eigenfunctions of A
we have the following result (unpublished):

Theorem 5.1. The functions
F(z) = f P(z, b dT(b)
B

where 1€ R and T is an analytic functional on B constitute precisely the
eigenfunctions of A with eigenvalue > —1.

CHAPTER 2: LIE GROUPS AND LIE ALGEBRAS

2-1 The Lie Algebra of a Lie Group

Let M be a manifold, p a point in M, and M, the tangent space to M at
p; this is a vector space over R. In differential geometry one studies a mani-
fold by means of its family of tangent spaces to which numerous objects are
associated (vector fields, differential forms, arbitrary tensor fields).

If G is a Lie group, the tangent space G, at an arbitrary point g € G is
obtained from G, (e is the identity element) by the left translation EesX—
gx (x € G), that is, G, =dL,(G,). This circumstance makes it possible to
introduce an additional structure on G, as follows:

Let X, Ye G,. Then we obtain vector fields X, ¥ on G by left trans-
lations:

X, =dL(X) ¥, =dL(Y) geG

The bracket [X, ¥] = X ¥ — ¥X is another vector field on G which is invari-
ant under left translations so there exists a unique vector Z € G, such that

[X! }7],=Z

We write [X, Y] instead of Z. The vector space G, with the rule of compo-
sition (X, Y) - [X, Y] is called the Lie algebra of G and will be denoted by g.
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The bracket [, ] has the following properties:
(@) [X,Y]= —[Y, X]
(b) [X,[Y,Z]] + [V, [Z, X]1 + [£, [X, Y]] =0

A vector space a with a bilinear map (X, ¥) - [X, Y] of a x a into a satisfying
(a) and (b) above is called a Lie algebra. For Lie algebras one can in an
obvious manner define subalgebras, ideals, homomorphisms, isomorphisms,
and automorphisms.

If V' is a vector space let gl(¥) denote the vector space of all linear trans-
formations of V into V, with the bracket operation [4, B] = AB — BA.
Then gl(¥)is a Lie algebra. A homomorphism of a Lie algebra a into gl(})
is called a representation of a on V. In particular, if for a given X € a, the
mapping Y — [X] Y] is denoted ad X, the mapping ad : X —» ad X is a rep-
resentation of aon a. The kernel of ad is called the center of a: a is called
Abelian if its center is a; that is, if [X, Y] =0 for all X, Y e a.

2-2 The Exponential Mapping

Let G be a Lie group with Lie algebra g. Let X € g and let X be the
left invariant vector field on G such that X, = X. Let ¢(r) (€ R) be the
integral curve to X passing through e, that is,

i d i
(i) = d¢(;;) S (1)

For small t, ¢(1) exists and is unique because (1) is a first-order system of
ordinary differential equations. For the global statement one uses the group
property to continue the solution. The mapping exp : g — G is now defined
by
exp X = ¢(1)
and is called the exponential mapping. It sets up a very far-reaching rela-
tionship between g and G; some of the main results will be summarized below.
First we have

(i) expsXexptX=exp(s+6)X (s5,t€R)

that is, the curve 7 — exp tX is a one-parameter subgroup of G. In fact, if
se R, then L.,y maps X into itself so it maps the integral curve through e
into the integral curve through exp sX. Thus, L, x (¢(2)) = ¢(s + 1) which
is (1). 25

By the definition of X,

X~gf={%f(gexth)} , feC@rygec

1=
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Thus the value of the function X/ at g exp sX is
o d d
(Xf)(g exp sX) = Ef(g exp sX exp tX) T Ef(g exp sX)
t=

and by induction, if ne Z*,

< 1l exp sX) @

(X"f)(g exp sX) =

(ii) If a function f is analytic in a neighborhood of a point g € G, then

f(g exp X) = Z—(Xf)(g) (3)

for all X in some neighborhood of 0 in g.
This relation follows by using (2) in Taylor’s formula for the function

s — f(g exp s X).

(iii) The mapping X — exp X is a diffeomorphism of an open neigh-
borhood of 0 in g onto an open neighborhood of e in G.

This is a direct consequence of the fact that the mapping X — exp X
has Jacobian 50 at the origin X = 0.

(iv) If X, Y € g then
exp tX exp tY=exp {t(X + Y) + 1’[X, Y] + 0(¢*)} (4)

where 0(#*) denotes a vector such that 1~ 0(¢®) is bounded near ¢ = 0.
In fact, by (iii), we have for small ¢,

exp tX exp tY = exp Z(t) (5
where t — Z(¢) is a curve in g, analytic at = 0 and
ZO)=1Z, + 1’2, +0(t*) (Z,,Z,€g)
But by (2) and (3) we have for f analytic at e,

m+n

(& T)e)
ni

flexptXexptY)= Y

m,nz0

whereas

J(exp Z(1) = Z [(1Z, + *Z, + 0(%))"f 1(e)

Comparing coefficients we get Z, = X+ ¥, 422 + Z, =4X* + XV + 1¥2,
whence Z, = 1[X, Y], proving (4).
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From (4) we deduce that
exp (—tX) exp (—tY) exp tX exp tY = exp {{*[X, Y] + 0(*)}

which shows that [X, Y] is the tangent vector at e to the curve

t—»exp(——\/;X) exp(—\/;t Y)cxp(\/}X) exp(\/; Y)

(v) Two Lie groups are locally isomorphic if and only if their Lie alge-
bras are isomorphic.

The “only if” part is immediate from (4). On the other hand, it is
possible to carry further the computation above and express Z(f) in (5)
completely in terms of ¢, X, ¥ and their repeated brackets. (The resulting
formula is the so-called Campbell-Hausdorff formula, see for example,
Jacobson [43].) The “if"” part of (v) is an immediate consequence.

A Fundamental Example

Let GL(n, R) denote the group of real n x n matrices of determinant #0
and gl(n, R) the Lie algebra of all real n x n matrices, the bracket being
[4, B] = AB — BA. If o = (x;;(0)) is a matrix in GL(n, R) we consider the
matrix elements x;;(¢) as coordinates of ¢ whereby GL(n, R) is a manifold; if
we express x;(at"') (o, € GL(n, R)) in terms of x;(a), x,,(t) by ordinary
matrix multiplication we see that GL(n, R) is a Lie group. Let g denote its
Lie algebra and if X € g let X denote the left invariant vector field on GL(n, R)
satisfying X, = X. Let (X;;) denote the matrix (X,x;;) and consider the
mapping ¢ : X - (X)) of g into gl(n, R). The mapping ¢ is linear, one-to-
one and onto. Furthermore if L, denotes the left translation T — o7 we have
by the left invariance of X, ‘

(Xx;)(0) = X(x;5 0 L,)
But
(xij 0 L)(7) = x;5(07) = ; Xa(0)xy;(7)
$0
(Xxyy)(o) = ; Xu(0) Xy (6)
It follows that

(XY-¥X)x, = g(Xung = Yu Xyp) = [$(X), ¢(Y)];

so ¢ is a Lie algebra isomorphism. Thus the Lie algebra of GL(n, R) is
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identified with gl(n, R). In this statement one can replace the real field R by
the field C. In view of (2) and (6) we have

d
s Xijexp tX) = Y xulexp tX)Xy;
k
so the matrix function ¥(r) = exp tX satisfies
i
% Y(1) = Y()X Y(0)=1I )

But this equation is also satisfied by the matrix exponential function
eX=1+tX +3PX* -+

so exp X = e* for all Xe gl(n, R). Thus the exponential mapping for Lie
groups generalizes the exponential function for matrices.

Let G be any Lie group. A Lie group H is called a Lie subgroup of G
if it is a subgroup of G and a submanifold of G. If this is the case the Lie
algebra ) of H is a subalgebra of the Lie algebra g of G, and the exponential
maps for b and g coincide on b.

(vi) Let G be a Lie group with Lie algebrag. Leth < g be asubalgebra.
Then there exists exactly one connected Lie subgroup H of G with Lie alge-
bra b.

This important fact is proved along the following lines: Consider the
(abstract) subgroup H of G generated by the set exp h. Using (iii), one
introduces a topology in H (this is not necessarily the relative topology of G)
as well as a coordinate system near the identity of /. By left translations on
H this gives a coordinate system in some neighborhood of an arbitrary point
of H and one must finally prove that this manifold structure on H has the
required properties. A connected Lie subgroup is usually called analytic
subgroup.

(vii) Let G be a Lie group and H a subgroup of G which is closed as a
subset of G. Then there exists a unique manifold structure on H such that

H is a topological Lie subgroup of G.
If b and g are the respective Lie algebras of H and G then

h={Xeg|exptX eH forall t e R} (8)

Example

Let us use (8) to find the Lie algebra of the group SU(1, 1) considered
in Chapter 1.  First note that SU(1, 1) is the group of matrices of determinant
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I leaving invariant the Hermitian form —z,Z, + z,%,, that is, a matrix 4
belongs to SU(1, 1) if and only if

‘AJA=J, detA=1
where ‘4 is the transpose of 4 and
=70 1)
Since gl(2, C) is the Lie algebra of GL(2, C) we see that X belongs to the Lie
algebra su(l, 1) of SU(I, 1) if and only if
‘(expsX)J exp sX =J  det (exp sX i (seR)
But exp ("X) = '(exp X), so the first relation can be written
expsX =Jexp(—s'X)J!
=exps(—=I'XITY) (seR)

Thus X esu(l, 1) if and only if X = —J'XJ ™! and Trace X =0. This is
equivalent to

su(l, 1) = {X = (;; ﬁa)

aeR,ﬂeC}

Property (v) shows that local properties of a Lie group are completely
determined by the Lie algebra. This is of great consequence because all the
machinery of linear algebra (theory of linear transformations of a vector
space) can be applied to Lie algebras. In particular, let us see how the left
invariant Haar measure on a Lie group can be written in Lie algebra terms.

Consider a Lie group G with Lie algebra g. If X e g the differential
of the exponential map at X maps the tangent space gy onto the tangent
space G,,, x, Which is dL,,, x(g) (since g = G,). We identify gy with g via the
ordinary parallelism of vectors. Thus if ¥ € g there exists a unique vector
Z € g such that

d exp X(Y) -, (dLexp X)(Z)

Let us compute Z. By the definition of the differential of a map we have if
fis differentiable at exp X,

d exp x(Y)f = Yy(f o exp) )

where Yy is the vector ¥ viewed as a tangent vector to g at X. But

d
Vil exp) = [ flexp (X + 17)] (10)

t=0
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Now take fto be analytic at e. Then if X and ¢ are sufficiently small,

Slexp (X +1Y)) = Z = [(X +1¥)f1(e)
so by (9) and (10),

d exp (V) f = Z( T (T + X 1P8 + -+ TX)f1e)
Now consider the algebra generated by the left invariant vector fields on G
and the operators

LX):A-K%4 REX):A—-AX OHX):A->XA-4X

of this algebra. Then 0(X) = L(X) — R(X) and L(X) and 6(X) commute so
R(X)" = (LX) = 0(X)y" = Z (~1) ( )L(X)"' P0(X)”

and
S Son_ T 25 (_ 1 = P) pu-p-tp R34 §
XY 44 TR=5 XPY (=1) k XUTE RN (Y
0

p=0 k=

which by the elementary formula
"f‘ n—p\ _ [(n+1
LN R Ak +1

3 (5o i)e -0

k=0

equals

Hence,

g5 o n X‘n—k 0(_/?)# ~‘
dewxnf=3 |3 s iMoo an

For sufficiently small X one can use the analyticity of f to interchange the
two summations and use the formula

a0 n oo o0

A k=B
n=0k=0 Kk=0n=k
to equate the right-hand side with
2 [X' i 0(— X)*
r! =0 (k + 1)!

(Y’)f](e) (12)

which by (3) equals

o 10(— R)*
¥ |G (D | @ )
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But 0(—X)*(¥) is the left invariant vector field corresponding to the vector
ad(— X)*(Y) in g so we have proved
T e-ad X
4 exp 3(¥) = dLogy 3~
at least if X is sufficiently small. Because of the analyticity of both sides (13)
holds actually for all X € g.
Note that in the right-hand side of (13),
—ad X

Jon (13)

1—e
ad X

Now let exp : ¥, = V, be a diffeomorphism, ¥, and V, being open sets
in g and G, respectively. Let fe C.*(G) have support contained in V,. If
dx denotes a left invariant Haar measure on G we have

f f(x)dx = j fexp X)J(X) dX
G 8

dX being a Euclidean volume element on g and J the Jacobian of the expon-
ential map. In view of (13) we have

1
=f e—"’dxdt
0

fG f()dx=c L f(exp X) det (I_T;;-x) dx (14)

where ¢ is a constant. For a formulation of (13) for differential forms see
[11] p. 21 and [12] p. 157. For a generalization to Riemannian manifolds
see [30].

(ix) Given a Lie algebra g over R there exists a Lie group G with Lie
algebra g.

The local result is called the third fundamental theorem of Lie; the
global statement was later proved by E. Cartan. One proof of (ix) uses Ado’s
theorem that there exists an isomorphism of g into gl(n, R). Then the desired
G can by (vi) be taken as a suitable subgroup of GL(n, R). Another proof
will be indicated later.

CHAPTER 3: STRUCTURE THEORY OF LIE GROUPS

3-1 Solvable and Semisimple Lie Algebras

Let g be a Lie algebra and as before let ad X denote the linear transfor-
mation Y — [X, Y] of g. Lie algebra theory is concerned with this family of
linear transformations.
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The vector space spanned by all elements [X, Y] is an ideal in g, called
the derived algebra of g and denoted Dg. The nth derived algebra D"g of g
is defined inductively by D% = g, D"g = D(D" 'g). A Lie algebra is called
solvable if ©"g = {0} for some n > 0. A Lie group is called solvable if its
Lie algebra is solvable.

A Lie algebra is called nilpotent if for each X € g, ad X is nilpotent. It
can be proved that a Lie algebra is solvable if and only if its derived algebra
is nilpotent. In particular we see that a nilpotent Lie algebra is solvable.

Example

Let {(n) denote the Lie subalgebra of gl(n, R) formed by the upper
triangular matrices and let n(n) denote the subalgebra of matrices in t(n) with
diagonal 0. Then t(n) is solvable, n(n) nilpotent and coincides with the derived
algebra of t(n).

Let g be a Lie algebra. The Killing form of g is defined as the bilinear
form B(X, Y)=Tr (ad X ad Y) (Tr = trace); g is called semisimple if B is
nondegenerate and g is called simple if in addition it has no ideals except 0
and g.

Example

Let SL(n, R) denote the group of n x n real matrices of determinant 1.
It is a closed subgroup of GL(n, R), hence a Lie subgroup [¢f. (vii) §2-2] and
since the relation det (e*) = e # holds for any matrix 4, we see from (8)
§2-2 that the Lie algebra sl(n, R) of the subgroup SL(n, R) of GL(n, R) is the
subalgebra of gl(n, R) consisting of all n x n matrices of trace 0. This
statement holds also with R replaced with the complex field C. Let us
compute the Killing form of sl(n, C). Let d(n) denote the set of diagonal
matrices in sl(n, C). If H e d(n) each matrix E, ; with 1 at the ith row and the
jth column, 0 elsewhere,

(L0 v i)
(0 S 6
E,'j . 1
070 et
is an eigenvector for ad H and we find easily that
Tr (ad H ad H) = 2n Tr (HH) (N

The mapping X — gXg~' (g € GL(n, C)) is an automorphism of sl(n, C) and
any automorphism of a Lie algebra leaves the Killing form invariant. If
gXg~' € db(n) we have therefore

Tr(ad X ad X) = Tr (ad (9Xg~") ad (9Xg™ ") =2n Tr (¢ X Xg~ 1) )
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SO
Tr (ad X ad X) = 2n Tr (X X) 3)

The matrices which are conjugate to a diagonal matrix in d(n) form a dense
subset of sl(n, C) so (3) holds for all X e sl(n, C). Hence by * polarization”’

B(X,Y)=2nTr(XY) forX, Yesl(n, C) 4)

It is a trivial matter to verify that B in (4) is nondegenerate so sl(n, C) is
semisimple.

A fundamental result in Lie algebra theory (the Levi decomposition)
states that every Lie algebra g is the direct vector space sum

g=1+s (5)

where r is the maximal solvable ideal in g and s is a semisimple subalgebra.
To a large extent this result splits Lie group theory into two branches—one
for solvable Lie groups, the other for semisimple Lie groups. The latter
branch is further developed and has had more contact with physics and
geometry and is therefore emphasized in these lectures. (Of course the two
branches are related because semisimple Lie algebras always have solvable
subalgebras.)

The Levi decomposition can for example be used as a basis of an alterna-
tive proof of (ix) §2-2. Let Aut (s) denote the group of all automorphisms
of s. This is a closed subgroup of GL(s), hence a Lie subgroup, and by (8)
§2-2 its Lie algebra is given by the set of endomorphisms 4 of s for which
4 e Aut (s) for all re R. But the relation

e[X, Y] = [¢“X, Y]
implies (by differentiation)
A[X, Y] =[AX, Y] + [X, AY] (6)

and vice versa. A linear transformation A satisfying (6) for all X, Y es is
called a derivation of s so we see that the Lie algebra of Aut (s) is the set of
derivations of s. On the other hand, if X € s, ad X is obviously a derivation
of s. Using the semisimplicity, one can prove that all derivations of s are
of this form. Thus ad (s) is the Lie algebra of Aut (s); but the semisimplicity
of s shows that X — ad X is an isomorphism so we have verified that any
semisimple Lie algebra is the Lie algebra of a Lie group. For solvable Lie
algebras the statement can be proved by induction and by the Levi decompo-
sition (5) the theorem can be proved in general by taking appropriate semi-
direct products.

For any Lie algebra g, let Int (g) denote the connected Lie subgroup of
GL(g) with Lie algebra ad (g) < gl(g); Int (g) is called the adjoint group of g.
If g is semisimple then Int (g) is the identity component of Aut (g). If Gisa
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Lie group with Lie algebra g, and g € G, the inner automorphism x —gxg~!

of G induces an automorphism of g, denoted Ad (g). If G is connected,
Ad(G) = Int(g). In fact if X, ¥ € g we obtain by iterating (4) §2-2

exp (Ad (exp tX)tY) = exp tX exp tYexp (—tX) (7)
=exp (1Y + [ X, Y] + 0(1%)
SO
Ad (exp tX)Y = Y + 1[X, Y] + 0(t?) (8)

On the other hand, the mapping g — Ad (g) is a homomorphism of G into
GL(g). Hence t — Ad (exp tX) is a one-parameter subgroup of GL(g), thus
by the fundamental example in Ch. 2 of the form

Ad (exp tX) = &4
But then (8) shows 4 = ad X so
Ad (exp X) = e*¥ &)

and the relation Ad (G) = Int (g) follows.
The homomorphism g — Ad (g) is called the adjoint representation of

G. For clarity it is sometimes written Adg .

3-2 Structure of Semisimple Lie Algebras

Let g be a semisimple Lie algebra, B its Killing form. If O(B) denotes
the group of linear transformations of g leaving Binvariant, we have Aut (g) =
O(B); also

B(X, ad Y(Z)) = —B(ad Y(X), Z)

for X, Y, Z € g, so each ad Y is skew-symmetric with respect to B.

Definition. A Lie algebra g over R is called compact if its adjoint group
Int (g) is compact.

Proposition 2.1

(i) Let g be a semisimple Lie algebra over R. Then g is compact if
and only if the Killing form of g is negative definite.

(ii) Every compact Lie algebra is the direct sum g = 3 + [g, g] where 3
is the center of g and the ideal [g, g] is semisimple and compact.

Proofr oF (i). If the Killing form is negative definite O(B) is compact and
so are the groups Aut(g) and Int(g). On the other hand, if Int(g) is compact
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it leaves invariant a positive definite quadfatic formy.0 on g ilet: Ay oy X,
be a basis of g such that

Q(X)=$‘x,-2 ey .=§::xix,.

By means of this basis each o € Int (g) is given by an orthogonal matrix, so
if Xeq each ad X is skew-symmetric, that is, ‘(ad X)= —ad X, where ¢
denotes transpose. But then,

B(X, X)=Tr(ad X ad X) = —Tr(ad X '(ad X))
==yl | ad Xeix)
i

This proves (i); the second part is proved similarly.

Since the study of Lie algebras amounts to a study of the linear trans-
formations ad X (X € g), the first problem is, of course, diagonalization.
Here one gets further by working with C as the base field, so we make the
following definition.

Definition. Let g be a semisimple Lie algebra over C. A Cartan subalgebra
of g is a subalgebra b such that (1) h = g is a maximal abelian subalgebra; and
(2) for each Hely, ad H is a semisimple endomorphism of g (that is, it can
be put into diagonal form by means of a suitable basis).

The idea behind this definition is: If X, X, € g are such that ad X,
and ad X, have simultaneous diagonalization then [ad X}, ad X,] =0 so
[X,, X;]=0; thus the set ad (h) is a maximal family of simultaneously diag-
onalizable endomorphisms of g. Although our objective is the study of
semisimple Lie algebras a over R the definition above is useful because the
complexification g = a + /a is also semisimple. If g is any Lie algebra over
C a real form of g is a real linear subspace b of g(thatis,7re R, X, Yeb=rX,
X + Y eb) which is closed under the bracket operation and satisfies g =
b + ib (direct sum). The mapping X +iY—> X —iY(X, Yeb) is called
the conjugation of g with respect to b. A Lie algebra g over C may have
many real forms.

Examples

(i) sl(n, R) is a real form of sl(n, C). The diagonal matrices in sl(n, C)
form a Cartan subalgebra.
(ii) The Lie algebra su(l, 1) is a real form of sl(2, C). In fact, if

(z“ z”) esl(2, C)

Z21 Z22




26 SIGURDUR HELGASON

i) ) oty B -("xz ﬁz)
(321 522)7(/}[ _flp)+I,ﬁz — oy,
for oy, a, € R, Bi, B, eC.
(iii) The Lie algebra su(2) of skew-Hermitian matrices of trace 0,

X:('_E‘ _{i) xeR, feC

is obviously a real form of sl(2, C). Since the Killing form of a real form is
in general obtained by restriction we see from (4) §3-1 that

B(X, X) =4 Trace (XX) = —8(z2 + |?)

$0 su(2) is a compact real form of sl(2, C).
The following two results are of fundamental importance.

Theorem 2.2. Every semisimple Lie algebra g over C contains a Cartan sub-
algebra b.

Theorem 2.3. Every semisimple Lie algebra g over C has a real form u which is
compact.

Ordinarily Theorem 2.2 is proved first using theorems on solvable Lie
algebras (Lie’s theorem that a solvable Lie algebra of complex matrices has
a common eigenvector). The simultaneous diagonalization of the endomor-
phisms ad b leads to a detailed structure theory for g by which the compact
real form u is constructed. The details are as follows:

Assume b is a Cartan subalgebra of g. Given a linear form « # 0 on
b let

9" ={Xeglad H(X) = a(H)X for all H € b}

This linear form « is called a roor if g* #{0}. Let A denote the set of all
roots. Then

g=h+3> ¢ (direct sum) (1)

xe A
and it can be proved that
dim g* = 1 (xe A) 2)
Let b* denote the subset (real-linear subspace) of b, where all the roots have

real values. Then for a suitable choice of vectors X, € g* the set

u=i*+ Y} R(X,— X_)+ ¥ R(i(X.+ X_) 3)
axeA

aeA

is a compact real form of g.

f, ~ /{‘f
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Example

Consider again the Lie algebra g = sl(n, C) and its Cartan subalgebra
b of diagonal matrices of trace 0. Let again E;; denote the matrix

(dui 5bj)1 <a,bsn
and for each H el let ¢,(H) denote the ith diagonal element in H. Then
[H, E;] = (e(H) — e,(H))E;

for all H €} so the linear form «;(H) = e,(H) — e,(H) is a root for i # j and
by (1) this does give all the roots. The space b* consists of all real diagonal
matrices of trace 0. Let us put X, = E;;(i #j). Then it is easily seen that
the space (3) is the set su(n) of all skew-Hermitian #» x n matrices, which is
indeed a compact real form of sl (n, C) (¢f. example above).

It is tempting to try to prove Theorem 2.3 directly, because then
Theorem 2.2 would be an immediate corollary. In fact, for each X € u,
ad X can be diagonalized, so if t = u is any maximal Abelian subalgebra, the
space h = t + it is a Cartan subalgebra of g.

A direct and elementary proof of Theorem 2.3 (without the use of
Theorem 2.2) does not seem to be available. However, Cartan has proposed
an idea for this purpose (J. Math. Pures Appl. 8 (1929), p. 23), which I shall
describe here.

Since the Killing form of g is nondegenerate, there exists a basis ey, ...,
e, of g such that

n n
B(Z,Z)= -} z? if L=y 2.0 (4)
1

1

Let the structural constants ¢;;, € C be determined by

n
Le;s i’j] - Z Cijk €k
1

Then
B(Z,Z)=Tr(ad Zad 2) =} (Z ik (.'j,,k):-,:j
iL,J \h, k
so by (4)
fzk Cikh Cjnke = _‘Sfj (5)
Also, '
B([X;, X;], X,) + B(X,;,[X;, X,])=0
SO
Cijk + ;=0
and by (5)

Z Cl%lk bl L

ivh k
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The space

is a real form of g if and only if all the ¢ are real.
Consider now the set § of all bases (e;, ..., ¢,) of g such that (4) holds.
Consider the function f on § given by

s 2
Teil ey = Z ]C.‘M
i, j, k
Then we have seen that
& 2
Z J‘Ijkl 2'
iy Ty

and the equality sign holds if and only if all the ¢; are real, that is, if and only
if

:AZ f’fjk:rr (6)

iy tik

i

Z Cii
sibs

k

n
=Y " Re
i

1

is a real form. In this case it is a compact real form in view of (4) and
Prop. 2.1.

Thus Theorem 2.3 follows if one can prove: (I) The function f on § has
a minimum value; and (I1) this minimum value is attained at a pointiley i
e,’) € § for which the structural constants are real. Note that (II) is equiv-
alent to (1I'): The minimum of £ is n.

3-3 Cartan Decompositions

We now go back to considering a semisimple Lie algebra g over R and 1
as usual we denote by B the Killing form of g. There are of course many 5\
possible ways to find a direct vector space decomposition g = g + g~ such
that B is positive definite on g* and negative definite on g~. However, we

should like to find a decomposition which is directly related to the Lie
algebra structure of g.

Definition. A Cartan decomposition of q is a direct decomposition g = + p
such that (i) B<0onf, B> 0on p;and (ii) The mapping@: T+ X->T— X
(T'ef, Xep)is an automorphism of g.

In this case 0 is called a Cartan involution of g and the positive definite
bilinear form (X, ¥)— — B(X, 0Y) is denoted by B,. We shall now establish
the existence of Cartan decompositions, using compact real forms for semi-
simple Lie algebras over C.
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Theorem 3.1. Suppose 0 is a Cartan involution of a semisimple Lie algebra g
over R and ¢ an arbitrary involutive automorphism of g. There then exists
an automorphism ¢ of g such that the Cartan involution ¢f¢~' commutes
with .

ProoF. The product N = a0 is an automorphism of g and if X, Yeg,

—B,(NX, Y)= B(NX, 6Y) = B(X, N"'0Y) = B(X, 6NY)
SO
By(NX, Y) = B(X, NY)

that is, N is symmetric with respect to the positive definite bilinear form B, .
Let X,, ..., X, be a basis of g diagonalizing N. Then P = N? has a positive
diagonal, say, with elements 4, ..., 4,. Take P' (r € R) with diagonal ele-
ments 4,', ..., 4," and define the structural constants c;;, by

[X;, Xj] =AZ Ciijk
=y

Since P is an automorphism, we conclude
AidjCip = AyCipn
which implies
AA e = Ao (teR)
so P'is an automorphism. Put @, = P'OP~". Since ONO™' = N™!, we have

OGP0~ ' = P~', that is 6P = P '0. In matrix terms (using still the basis
X, ..., X,) this means (since 0 is symmetric with respect to By)
0,4, =476,
SO
Oij/\..jr o l{i_'()u
thatis,.0P'971 = P % Herce,
o0, = oP'OP™' = g0P % = NP™*
0,0 =(08) ! = P*N~1=N"'p*

so it suffices to put ¢ = PV* (=va0). (cf. [3], p. 100, [31], p. 156, [47],
p. 884). The following result is given in Mostow [54].

Corollary 3.2. Let g be a semisimple Lie algebra over R, g.=g +1ig its
complexification, u any compact real form of g., ¢ and 7 the conjugations of
g, with respect to g and u, respectively. Then there exists an automorphism ¢
of g, such that ¢ - u is invariant under o.
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Proor. Let g.® denote the Lie algebra g, considered as a Lie algebra over
R, B® the Killing form. Itisnot hard to show that BR(X, ¥) = 2Re (B(X, Y))
if B, is the Killing form of g.. Thus ¢ and t are Cartan involutions of g.®
and the corollary follows (note that since o7 is a (complex) automorphism of
g., ¢ is one as well).

Corollary 3.3. Each semisimple Lie algebra g over R has Cartan decomposi-
tions and any two such are conjugate under an automorphism of g.

ProOF. Let g, denote the complexification of g, ¢ the corresponding conju-
gation, and u a compact real form of g, invariant under ¢ (Theorem 2.3 and
Cor. 3.2). Then put f=gnu, p=gn . Then B<0onf A>0on
p,andsince 0 : T+ X - T — X (T ef, X € p)is an automorphism, B (I, p) = 0.
It follows that g =T + p is a Cartan decomposition.

Consider now two Cartan decompositions,

a=1I +p, g=H0+p,

Then w; =%, 4+ ip; and u, =1, + ip, are compact real forms of g.. Let
7; and 1, denote the corresponding conjugations. By Cor. 3.2 there exists
an automorphism ¢ of g. such that ¢ -u, is invariant under 7,. Thus
@ 1, is equal to the direct sum of its intersections with u, and iu,. Now
B>0oniuand B<Oon¢-u,. Henceiu; n¢-u,=1{0}sou, =¢-u,.
But 7, and 1, both leave g invariant and ¢ can (according to the proof of
Theorem 3.1) be taken as a power of 1,1, so it also leaves g invariant. Thus
¢(g N uy) =g N uy so ¢ gives the desired automorphism of g.

Examples

Let g = sl (n, R), the Lie algebra of the group SL(n, R). The group
§0(n) of orthogonal matrices is a closed subgroup, hence a Lie subgroup,
and by (8) §2-2, its Lie algebra, denoted so(n), consists of those matrices
X e sl(n, R) for which exp tX € SO(n) for all te R, But

exp tX € SO(n)<>exp tX exp t('X) = 1 det (exptX) =1
50 I
so(n)={X esl(n,R)| X +'X =0}

the set of skew-symmetric n x n matrices (which are automatically of trace 0).
The mapping 0: X — —'X is an automorphism of sl(n, R) and 0* = 1.
Since B(X, X) = 2n Tr (X X), B(X, 0X) < 0so 0 is a Cartan involution and

sl(n, R) = so(n) + p (1)

where p is the set of n x n symmetric matrices of trace 0, is the corresponding
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Cartan decomposition. Now it is known that every positive definite matrix
can be written uniquely e* (X = symmetric) and every nonsingular matrix g
can be written uniquely g = op (0 = orthogonal, p = positive definite). Thus
we have a global analog of (1),

SL(n, R) = SO(n)P (2)

where P = exp p, the set of positive definite matrices of determinant 1.
We shall now state a generalization of (2).

Theorem 3.4. Let G be a connected semisimple Lie group with Lie algebra g.
Let g = [ + p be a Cartan decomposition (I the algebra), K the analytic sub-
group of G with Lie algebra f. Then the mapping

(X, k) — (exp X)k

is a diffeomorphism of p x K onto G.

In Theorem 3.4, the center 3 of g is {0}, (immediate from the definition)
so the center Z of G is discrete. One can prove Z < K and that K is compact
if and only if Z is finite. In this case K is a maximal compact subgroup of G,
and every compact subgroup is conjugate to a subgroup of K.

Proposition 3.5. In terms of the notation of Theorem 3.4, the mapping
(exp X)k —exp (—X)k (3)

is an automorphism of G.

In fact let G be the universal covering group of G. Since all simply
connected Lie groups with the same Lie algebra are isomorphic (¢f. (v) §2-2)
the automorphism 0 of g induces an automorphism @ of G such that df, = 0.
By the remarks above, the center Z of G is contained in the analytic subgroup
R of G corresponding to I. But G = G/N, where N < Z so 0 induces an
automorphism of G which is (3).

Consider now the set G/K of left cosets gK (g € G). This set has a
unique manifold structure such that the map X — (exp X)K is a diffeomor-
phism of p onto G/K. (More generally if K is a closed subgroup of a Lie
group G, G/K is a manifold in a natural way.) The group G operates on
G/K: each ge G gives rise to a diffeomorphism t(g) : xK — gxK of G/K.
Since Z = K we have G/K = (G/Z)/(K/Z) and G/Z = Int (g) so the space G/K is
independent of the choice of the Lie group G with Lie algebra g. 1In view of
Cor. 3.3 the different possibilities for K are all conjugate so the space G/K is
in a canonical way associated with g. Let o denote the point {K} in G/K
(the origin) and (G/K), the tangent space. The mapping 7 :g— gK has a
differential dr mapping g onto (G/K), with a kernel which contains f. By
reasons of dimensionality, we see therefore that the mapping

dn:p—(G/K), (4)
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is an isomorphism and if k € K we have for Xep,re R
m(exp Ad (k)tX) = n(k exp tX k™') = 1(k)n(exp tX)
S0
dr (Ad (k)X) = dt(k) dn(X). (3)

Now the form B is > 0 on p so by (4) and (5) we obtain a positive definite
quadratic form Q, on (G/K), invariant under dt(k) (ke K). If pe G/K is
arbitrary there exists a g € G such that p = gK and di(g) : (GIK), = (G/K), is
an isomorphism giving rise to a quadratic form Q, on (G/K),. If g e(;
satisfies 'K = gK, dr(g’) gives the same quadratic form 0, on (GJK) because
of the K-invariance of Q,. Thus we have a Riemannian structure Q on G/K

induced by B.

Proposition 3.6. The manifold G/K with the Riemannian structure induced
by B is a symmetric space.

ProOOF. Let 0 denote the automorphism (3) and &5 rthe mapping gK —
0(g)K of G/K onto itself. Then s, is a diffeomorphism and s,2 = 1, (ds,), =
—1. To see that s, is an isometry let p = gK (g € G) and X e (G;l\) Then
the vector X, = dt(g~") X belongs to (G/K),. Butif xeG we have

So(gxK) = 0(gx)K = 1(0(9))(5,(xK))
0 5,5 %(g) = 2(0(g)) - s, and therefore
Q(dsy(X), ds,(X)) = Q(ds, o de(g)(X,), ds, = de(g)(X,)
= Q(dx(0(g)) - ds,(X,), dx(0(g)) - ds,(X,))
= (X, Y) = 0(X, )

Thus s, is an isometry and since (ds,), = — I, it reverses the geodesics through
0. The geodesic symmetry with respect to p = gK is given by

5, =1(g)os,0t(g™")

which is an isometry, so the proposition follows.

Proposition 3.7. The geodesics through the origin in G/K are the curves
t—exptX-o(Xep).

Although the proof is not difficult we shall omit it. Instead let us take
a second look at the example G = SU(1, 1). The decomposition

(5 -)=(c &)+ 0) ®
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gives a Cartan decomposition of su(l, 1). We have also if

0
%s=(3 o)
exp (1X,) = cosh (1 B + - sinh ()X,
SO
exp (1Xy) - o = (tanh 1 |f]) 2
, A

verifying the proposition in this case.

3-4 Discussion of Symmetric Spaces

We shall now summarize some basic results in the general theory of
symmetric spaces and indicate how the coset spaces G/K from the last section
fit into this general theory.

Let M be a symmetric space as defined in Ch. 1. The group /(M) of
all isometries of M is transitive on M. (In fact, if p, ¢ € M they can be joined
by a broken geodesic and the product of the symmetries in the midpoints of
these geodesics gives the desired isometry.) One can now parametrize the
group /(M) in a natural way turning it into a Lie group. The identity compo-
nent G = I,(M) is still transitive on M. Fix a point o € M and let K be the
group of elements in G which leaves o fixed. Then the mapping gK —g- o
is a diffeomorphism of G/K onto M. If s, is the geodesic symmetry with
respect to o the mapping o : g — s, gs, is an involutive automorphism of G
and (K,), =« K< K,, where K, is the set of fixed points of ¢ and (K,), its
identity component. In order to verify these inclusions let k € K. Then the
maps k and s, ks, are isometries leaving o fixed and inducing the same linear
map of the tangent space M,. Considering the geodesics starting at o we see
that k and s,ks, must coincide so K< K,. On the other hand, suppose
X in the Lie algebra g of G is fixed under the differential (dg),. Then s,
exp tX s, = exp tX for all € R, so applying both sides to the point 0 we see
that exp X - o is fixed under 5s,. But o is an isolated fixed point of s, so
exp tX - o = o for all sufficiently small 7. But then X € 1, the Lie algebra of K|
whence (K,), € K. Note finally that the group Ad;(K) is compact, being a
continuous image of the compact group K.

Conversely, let G be a connected Lie group, K a closed subgroup,
Adg (K)compact. Suppose there exists an involutive automorphism ¢ of G
such that (K,), = K= K,. Then there exists a Riemannian structure on G/K
invariant under G, and for every such Riemannian structure, G/K is a sym-
metric space. i
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Consider now M as above and G = I,(M); M is said to be of the non-
compact type if G.is noncompact, semisimple without a compact normal
subgroup # {e}, and of the compact type if G is compact and semisimple.

Proposition 4.1. Let M be a symmetric space, which is simply connected.
Then M is a product

M=M,x M, x M,

where M, is a Euclidean space and M_ and M, are symmetric spaces of the
compact type and the noncompact type, respectively.

Proposition 4.2. A symmetric space of the compact type (noncompact type)
has sectional curvature everywhere > 0 (respectively < 0).

There is a very interesting duality between the compact type and the
noncompact type. Let M = G/K be a symmetric space of the noncompact
type where G = I,(M). Let g and f denote the Lie algebras of G and K,
respectively. Let g =+ p be the corresponding Cartan decomposition of
g and g, = g + ig the complexification of g. Since [p, p] = I, the subspace
u =T+ ip of g, is actually a Lie algebra and another real form of g,. Since
the Killing form of g.is <0 on f, and >0 on p, it is <0 on u, so u is a
compact real form. If U is a connected Lie group with Lie algebra u and K’
is the connected Lie subgroup with Lie algebra {, the space U/K' is a sym-
metric space of the compact type. This process can be reversed, that is,
G/K can be constructed with U/K as a starting point.

Examples
(i) Consider the symmetric space G/K, where G = SU(1, 1) and K the
subgroup of matrices ((!) ?,1), [t| =1. In this case the Cartan decomposi-

tion (6) in §3-3 shows that u is the set of all matrices of the form

80 u = su(2), the algebra of all 2 x 2 skew symmetric matrices of trace 0.
For the space U/K’ we can therefore take the space SU(2)/K. [SU(n) denotes
the special unitary group.] It is not hard to show that when the unit sphere
52 is projected stereographically onto the complex plane the rotations of the
sphere correspond to the transformations

az+ b

2 2
Z—— al*+ |b|* =1
—)—bz+ﬁ lal 1b]

that is, to the members of SU(2). In this manner SU(2) acts transitively on
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S? and the subgroup leaving the point z =0 fixed is K. Thus U/K = §? so
the non-Euclidean disk D (Ch. 1) and the sphere $? correspond under the
general duality indicated. The formulas g =f+p and u=1f+ ip can be
regarded as an explanation of the phenomenon that the triangle formulas in
non-Euclidean trigonometry are obtained from the triangle formulas in
spherical trigonometry by replacing the sides a, b, ¢ by ia, ib, ic and using the
relations sinh (ia) = i sina, cosh (ia) = cos a. Lobatschevsky did indeed
speak of his non-Euclidean trigonometry as spherical trigonometry on a
sphere of imaginary radius.

(i) Let U be a connected, compact Lie group with Lie algebra u. If
Q is any positive definite quadratic form on u, we obtain by left translations
such quadratic forms on each tangent space to U and therefore a Riemannian
metric on U which is invariant under all left translations. If Q is chosen
invariant under Ad (U) then the Riemannian metric is invariant under right
translations as well. One can prove that the geodesics through e are the
one-parameter subgroups and the symmetry s,:x —x~' is an isometry so
U is a symmetric space. If U* denotes the diagonal in U x U one has a
diffeomorphism (uy, u,)U* - w,u; ' of (U x U)/U* onto U. The group
involution (uy, u,) = (i, , u;) of U x U leaves U* pointwise fixed and induces
the symmetry s, of U, via the diffeomorphism indicated.

If U is in addition semisimple, the symmetric space (U x U)/U* has in
the above sense a noncompact dual G/U’, where U’ has Lie algebra u and the
Lie algebra g of G is a certain real form of the complexification of the product
algebra u x u. One can prove that as u runs through the compact semisimple
Lie algebras, g runs through the complex semisimple Lie algebras (regarded
as Lie algebras over R).

3-5 The Iwasawa Decomposition

Let g be a semisimple Lie algebra, g = f + p a Cartan decomposition.
The operators ad X (X e p) are all symmetric with respect to the positive
definite form B; and each of them can therefore be diagonalized, and a com-
mutative family can be simultaneously diagonalized. Hence let a denote a
maximal Abelian subspace of p and if « is a real-valued linear function on a
put

g, = {X eg|[H, X] = a(H)X for all H € a} (1)

If g, # {0}, @ #0, a is called a restricted root. Clearly, if £ denotes the set
of restricted roots,

g=>3 8. +9, ()]

ae X

The dimension dim (g,) is called the multiplicity of «. Let a’ denote the set
of elements in a, where all roots are # 0. The connected components of a’
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are intersections of half spaces; hence they are convex open sets. They are
called Weyl chambers. Fix any Weyl chamber a* and call a restricted root
positive if its values on a™ are positive.

Let £* denote the set of positive restricted roots and put

1 ;

n=3% g, p== Y (dmg)x (3)
a>0 2 a>0

Then n is a nilpotent Lie algebra. The following result is called the Iwasawa

decomposition.

Theorem 5.1. g =t + a + n (direct vector space sum). Let G be any connec-
ted Lie group with Lie algebra g, and let K, 4, N denote the analytic subgroups
corresponding to f, a, and n, respectively. Then the mapping

(k. a, n) — kan

is a diffeomorphism of K x 4 x N onto G.
Rather than give the proof we consider some examples. Consider the
Cartan decomposition (1) §3-3,

sl(n, R) = so(n) + p 4)

The diagonal matrices of trace 0 form a maximal Abelian subspace a of p
and as in §3-2 we find that the corresponding restricted roots are the linear
forms o;; (H) = e, (H) — €;(H1) (H € a), e;(H) being the ith diagonal element
in H. Hence a’ consists of those H for which all e;(H ) are different. The set

{Heale(H) > e;(H) > > e,(H)} (5)

is clearly a connected component of a’ and we take this as the Weyl chamber
a*. Then Z* consists of the roots ;; (i < j) and n is easily found to be the
set of upper triangular matrices with 0 in the diagonal. An Iwasawa decom-
position of the group SL(n, R) is therefore g = oan, where o0 € SO(n), a is a
diagonal matrix of determinant 1 and diagonal > 0, and » is an upper tri-
angular matrix with all diagonal elements 1.

For another example consider the Cartan decomposition of su(l, 1)
given by

- TR N 0 0y
(5 )=(o i)+ (5 o)

where x e R, ye C. As the space a we can take
: S F
i o)
iy ix Y\l _(F—y =2ix
kol A3 minddi \2in 0 pos

and since
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we see that the decomposition (2) equals
P =i i i 0 1
= N
o e
and the restricted roots are o« and —«, where
el
:z(] 0’) =2
Thus a’ consists of the nonzero elements in a and for a™ we take for example
04
R+
1)
"= R(t i r)
0=
and N = exp n equals the group of matrices

(1+m —r'n) eSUW, 1)

in I —in

SO

The Iwasawa decomposition of a semisimple Lie algebra g involves
some free choices, namely, that of , a, and a*. We have seen that f is unique
up to conjugacy, and now we shall see that a and a* are uniquely determined
up to conjugacy by elements of K. We begin with a result which goes back
to Weyl and Cartan with a proof given by Hunt [41].

Theorem 5.2. Let a and o' be two maximal Abelian subspaces of p. Then
there exists an element k € K such that Ad ;(k) a=a’. Also

p=J)Ad (k) a
ke K

Proo¥r. Select H € a such that its centralizer in p equals a. (It suffices to
take H such that «(H) # 0 for all restricted roots «.) Put K* = Ad 4(K) and
let X € p be arbitrary. The function

k*—B(H, k*-X) (K*eK®

has a minimum, say, for k* = k,. If Tet we have therefore
d
— B(H, Ad (exp tT)k, - X) =
dt =0

SO

B(H,[T,k,-X])=0 Tef
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Thus
B(E.[H k,  X])=0 for all Tet

and since [H, ko+ X]eT we deduce [H, k,- X]=0 so by the choice of
H ko Xea.

In particular, there exists a k, € K such that H € Ad (k,)a’. Thus each
element in Ad (k;)a’ commutes with H so Ad (k,)a’ = a. This proves the

theorem.

3-6 The Weyl Group

Let g be a semisimple Lie algebra, g = f + p a Cartan decomposition, G
any connected Lie group with Lie algebra g, K the analytic subgroup with
Lie algebra I = g. Consider as before a maximal Abelian subspace a < p
and let M" and M denote, respectively, the normalizer and centralizer of
a in K; that is,

M’ = {ke K|Ad (k)a < a}
M = {k e K|Ad (k)H = H for all H € a}

Clearly M is a normal subgroup of M’ and the factor group M'/M can
obviously be viewed as a group of linear transformations of a. It is called
the Weyl group and denoted W. In view of Theorem 5.2 it is (up to isomor-
phism) independent of the choice of a,

Now M and M’ are Lie subgroups of K and their Lie algebras m and
m’ are given by (¢f. (8) §2-2, (7) §3-1),

m={Tel|[H, T] =0 forall Hea}
m’' = {Tet|[H, T] < aforall Hea)
Note, however, that if Te m’ then for H € a,
B([H,T],[H, T])= —B([H,[H,T]], T)=0

so Tem, whence m =m’. Thus M'/M is a discrete group and being also

compact, must be finite.
If 4 is a complex-valued linear function on a let H, denote the vector

in a + ia determined by B(H, H,) = A(H) for all Hea. For aeX let 5.
denote the symmetry in the hyperplane a(H) = 0:

Ll i SR (1)
a(H) ° e

s(H)=H -2
(Remember p and hence a have a Euclidean metric given by B.)

Theorem 6.1. s, e W for each a € X.
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PrROOF. Pick Z,eg such that [H, Z,] = a(H)Z,. Decomposing Z, =
T,+ X, (T,ef, X,ep) the relations [t, p]<yp, [p, pl=t imply that
(ad H)*T,=T,. Multiplying Z, by a real factor if necessary we may assume
B(T,,T,) = —1. Now if a(H{) =0 we have [H, T,] =0 so

Ad (exp IT)H = ¢ T (H) = H if a(H) =0
A simple computation shows that

P (Inlz)Ha o _Ha

provided 1,(x(H,))'/? =n. Thus s, coincides with the restriction of
Ad (exp t,T,) to a.

If s € Wand a e Z it is clear from the definitions that the linear function
o : H—a(s 'H) on a is a restricted root. Consequently, s permutes the
Weyl chambers. Now let C; and C, be two Weyl chambers and let H, € C,,
H, e C,. If the segment -FITI_{; intersects a hyperplane «(H) =0 (x e X)
then clearly the norm | | in a satisfies

|Hy — Hy| > |Hy — 5, H,| (2)

As s runs through the finite group W the function |H, — sH,| takes a mini-
mum, say for s =s,. By (2) the segment from H, to s, H, intersects no
hyperplane 2(H) =0 (x € ) so H, and s, H, lie in the same Weyl chamber
and thus C; =s,C,. This proves:

Corollary 6.2. Any two Weyl chambers in a are conjugate under some
element of Ad ;(K) which leaves a invariant.

For orientation we state without proof a somewhat deeper result on
the Weyl group.

Theorem 6.3. The Weyl group W is generated by the symmetries s, (x € )
and it is simply transitive on the set of Weyl chambers in a.

3.7 Boundary and Polar Coordinates on the Symmetric
Space G/K

For the non-Euclidean disk D we have a natural notion of boundary,
namely, the unit circle |z| = 1. However, this boundary notion refers to
the position of D in R*. In order to make this definition more intrinsic we
can define the boundary of D as the set of all rays (half-lines) from the origin
in D. This motivates the following definition of the boundary of the sym-
metric space G/K. First, we recall the isomorphism dr : p - (G/K), from §3-3,
which permits us to think of p as the tangent space to G/K at 0. Then we
understand by a Weyl chamber in p a Weyl chamber in some maximal Abelian
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subspace pf p. The boundary of G/K is now defined as the set of all Weyl
chambers in p. Now fix a = p and a™ a Weyl chamber in a. Then accord-
ing to Theorem 5.2 and Cor. 6.2, Ad (k)a™ (k € K) runs through the boundary
and if Ad (k)a™ = a™*, then ke M’ so Ad (k) on e is a member of the Weyl
group. Using Theorem 6.3 we see that k e M. Thus the mapping

kM — Ad (k)a*

identifies K/M with the boundary of G/K. In view of the Iwasawa decompo-
sition G = KAN and the fact that M normalizes AN we have a diffeomorphism

kM — kMAN

of K/M onto G/MAN. In his paper [19], Furstenberg defines a boundary
of G to be a compact coset space G/H of G such that for each probability
measure u on G/H there exists a sequence (g,) = G such that the transformed
measures g, - p converge weakly to the delta function on G/H. It was proved
by Furstenberg [19] and Moore [53] that a * maximal* boundary of this sort
is given by G/ M AN which, as we saw, coincides with the geometrically defined
boundary above. The relation K/M = G/MAN shows in particular that G
acts as a transformation group on the boundary; in an explicit manner

g(kM) = k(gk)M

if for x € G, k(x) € K is given by x € k(x)AN.
Now let A" =expa*. Then we have the following * polar coordinate
representation’ of the symmetric space G/X.

Theorem 7.1. The mapping (kM, a)— kaK is a diffeomorphism of K/M
x A" onto an open submanifold of G/K whose complement in G/K has lower
dimension.

Without spelling out the proof in detail we remark that it is a fairly
direct consequence of Theorems 3.4, 5.2, and 6.3.

CHAPTER 4: FUNCTIONS ON SYMMETRIC SPACES

4-1 Invariant Differential Operators

Let M be a manifold and D a differential operator on M, that is, a
linear mapping of C,*(M) into itself which in an arbitrary coordinate system
is expressed by partial derivatives in the coordinates. Let ¢: M- M be a
diffeomorphism, and if f is a function on M put f*=f. ¢~ and let D*
denote the operator

Df = (Df*"'y?
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Then D? is another differential operator, and we say D is incariant under ¢
if D% =D,

Examples

Let us find all differential operators D on R" which are invariant under
all rigid motions. Since D is invariant under all translations it has constant
coeflicients so D = P(¢/dx,, ..., 0/dx,), where P is a polynomial. But D is
also invariant under all rotations around 0 so P is rotation-invariant, and
since the rotations are transitive on each sphere |x| = r, we find P is constant
on each such sphere so P(x,, ..., x,) is a function of x;? + -+ + x,2, hence
a polynomial in x,% + -+ 4+ x,%.

Proposition 1.1. The differential operators on R" which are invariant under
all isometries are the operators Za, A" (a, € C), where A is the Laplacian.

This result holds also if R" is replaced by a symmetric space of rank |
(and A by the Laplace-Beltrami operator) and also if we replace the isometries
of R" by the inhomogeneous Lorentz group, in which case the Laplacian is
replaced (¢f. [29], p. 271) by the operator

A2 - A2
o° 0* ik
VR N A T e e g
0x; ax, ox,

Now if M is a Riemannian manifold the Laplace-Beltrami operator
A on M is invariant under all isometries of M. The examples above have a
high degree of mobility, that is, a large group of isometries, so essentially
only A is invariant. The following interesting generalization is essentially
a combination of results of Harish-Chandra and Chevalley (see [31] p. 432).
It expresses in a precise way how higher rank of the space, that is, lower
degree of mobility, leads to more invariant operators.

Theorem 1.2. Let G/K be a symmetric space of rank /. Then the algebra of
all G-invariant differential operators on G/K is a commutative algebra with
I algebraically independent generators.

It will now be convenient to assume that G has finite center so K is
compact. As pointed out in §3-3, this is no restriction on the symmetric
space G/K. Let L(g) and R(g) denote left and right translations on G by
the group element g and let D(G) denote the set of all differential operators
on G invariant under all L(g). If X e g the operator

X : F(g)— {(d/d)F(g exp tX)},_0

belongs to D(G). Let Dy(G) denote the set of elements in D(G) which are
invariant under all R(k) (ke K). For D e D(G) we put

D' = J DR® dk (1)

K
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where dk denotes the normalized Haar measure on K. The integral makes
sense since all the operators D*® (k € K)) belong to a fixed finite-dimensional
vector space, so D" is a differential operator on G. Clearly D% e Dg(G),
and we have

(D*F)(e) = (DF)(e) (2)

for every Fe C®(G) which is bi-invariant under K (that is, F(k,gk,) =
F(g)ngG-, /\’11 szK). In fac!,

Il

(DbF)(P) J.K(DR(HF)((_,) dk = J‘K((DFRM* l))R{k))(g) dk

II

[ (DF)(k™") dk = [ (DFY“®(e) dk
) J

il J (DF)(e) dk = (DF)(e)

Let 7 denote the natural projection g — gK of G onto G/K; if fis a
function on G/K we put f = f- n. Then the mapping f — f'is an isomorphism
of C*(G/K) onto the space Cx™(G) of functions Fe C*(G) satisfying
F(gk) = F(g). Similarly, we would like to “lift’’ the operators in D(G/K)
to the group G. If D e Dy(G) let n(D) denote the operator on C*(G/K)
determined by (n(D)f)~ = Df (fe C*(G/K)). It is easy to see (cf. [31],
p. 390) that the map D — n(D) maps D (G) onto D(G/K).

' As before let t(g) denote the diffeomorphism iK — ghK of G/K onto
itself. We shall often denote the symmetric space G/K by X.

4-2 Harmonic Functions on Symmetric Spaces
In view of Prop. 1.1 it is natural to make the following definition.
Definition. A function ue C*(G/K) is called harmonic if Du=0 for all

D e D(G/K) which annihilate the constants (that is, “without constant
term”’).

Godement made this definition in [22] (even for nonsymmetric spaces
G/K), where he proved also the mean value theorem below.
Theorem 2.1. A function u € C*(G/K) is harmonic if and only if
Lu(gkh 0)dk=u(g-0) forallg,heG (1)
This result is most easily interpreted if rank (G/K)=1. Then the

orbit K - (h - 0) is a sphere and gK - (/ - 0) is a sphere with center g - 0. Thus
the theorem states in this case that u is harmonic if and only if the mean value
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of u over an arbitrary sphere is equal to the value of u in the center (¢/. Gauss’
mean value theorem for harmonic functions in R").

PROOF. Suppose first that u is harmonic and for a fixed g € G consider the
function

Fiho J i(gkh)dk  (heG)
K

Let D be an operator in D(G) annihilating the constants. Then using (2)
in §4-1,

(DF)(e) = (D*F)(e) = {(Dm (J’Ka(gkh) a‘k)}

h=e

which by the left invariance of D? equals
[ (D*a)(gk) dk = (D*a)(g)
YK

(the last relation coming from the right invariance of D%i under K). However,
(D) = (n(D?*)u)”~ = 0 since n(D%) annihilates the constants. Thus(DF)(e) =
0 for all D € D(G) which annihilate the constants.

Since u satisfies the elliptic equation Au =0 and since A has analytic
coefficients, it follows from a theorem of Bernstein (John [44], p. 142) that u
is also analytic. Hence @i and F are also analytic so from Taylor’s formula
(§2-2) we can conclude that F is constant. But the relation F(h) = F(e) is (1).

On the other hand, suppose (1) holds. Let D e D(G/K) annihilate the
constants. Writing (1) as

'- w* ' Nx)dk =u(g-o) geG,xeX

YK
we deduce by applying D to both sides (considered as functions of x),

| (Du)(gk-x) dk =0
K
Taking x = 0 we conclude Du = 0, so u is harmonic.
Now we intend to study bounded harmonic functions « on the symmetric

space G/K and prove a Poisson integral representation formula due to Furs-
tenberg [19]71 Let Q, denote the set of all functions y € L*(G) (the space of

bounded measurable functions on &) such that the supnorm [|[/|| , = sup [y/(h)]
satisfies Y|, < |u|,, and such that heG

u(g-0) = [ W(gkhydk  forallg, heG
*K

According to Godement’s theorem ii € Q,, so Q, is not empty. In addition

X hf.ee{«f?- b9 1'n npfeg
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it is a convex set and closed in the weak* topology of L*(G) (the weakest
topology for which all the maps ¥ — [ f(g)y(g) dg of L*(G) into C are con-
tinuous, / being an integrable function on G and dg being a Haar measure).
Since the unit ball in L*(G) is compact in the weak* topology (see, for exam-
ple, [50]) it follows that Q, is compact. Now if i € O, we have y*? € Q,
for all g € G so G acts as a transformation group of Q, by right translations.
We would like to find a fixed point under the sugbroup M AN, which then
would give us a function on the boundary G/MAN.

Definition. A group has the fixed point property if whenever it acts contin-
uously on a locally convex topological vector space by linear transformations
leaving a compact convex set Q # (f invariant it has a fixed point in the set.

Lemma 2.2. Connected solvable Lie groups have the fixed point property
(cf. [6], p. 113).

PrOOF. Let ¥ be a locally convex topological vector space and G any
Abelian group of linear transformations of V. For each ge G let

o=/ +g+---+g" ") let G denote the set of all products g,, ... g,
(n;eZ”,geG). All elements of G commute. Let Q = V be a nonempty
compact convex subset of V. By convexity, 1Q = Qforhe G. Leth,, ...,

h,eG. Then foreachi,1<i<r,
By O=hhi e By kO hD
whence
hy ...k, Qe (YR Q
i=1
so this intersection is # ¢J. By compactness of Q (expressed by the finite

intersection property), we have

(hQ # &

hedG

Let x an element in this intersection and let g€ G. Then x e g, O, so for a
suitable element y € Q,

1
X =;(_}; +gy+c+ gﬂ—l},)
SO

1 1
gr~xi=={g'y =y}~ (0 +(~0)
n n

for each n. Using again the compactness of Q we conclude g - x = x.
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Now assume G is a connected solvable Lie group of linear transform-

ations of V. Let g be its Lie algebra and let
8=002812"""28x=1{0}  gu-1 #10}

be the sequence of derived algebras, g;,= D'g. Let G=G,>G, > >
G,, = {e} be the corresponding series of analytic subgroups of G. Suppose
now the lemma holds for all connected solvable Lie groups whose series (as
defined above) has length < m. Let A denote the set of points in Q fixed under
all ge G,. By the induction assumption, 4 is # ¢ and, of course, A4 is
convex and compact. Let yeG. If geG, then ygy '€ Gy, so if x€ A,
ygy 'x=x so gy 'x =y 'x. Thus y 'x is fixed by all elements in G,;
being in O, 7 'x belongs to A. Thus G maps A into itself. The closed sub-
space ¥V, of V' generated by A is locally convex and since G, acts trivially on
it, G acts on ¥, as an Abelian group. By the first part of the proof there
exists a v € A4 fixed under allge G. Q.E.D.

Lemma 2.3. The group MAN has the fixed point property.

ProOF. Let MAN act on a locally convex space V and let Q< V be a
compact convex subset # ¢ invariant under MAN. Since AN is solvable
and connected there exists a point ¢ € Q fixed under AN. If dm denotes the
normalized Haar measure on the compact group M the integral

f m-qdm
M

(defined by means of approximating sums) represents, because of the com-
pactness and convexity, a point ¢* in Q. Since m(AN)m ' < AN we have
for se AN
3q° = [ sm - gdm = J. m(m~'sm)q dm = f m-q dm
M M

M

so g* is fixed under MAN.

We recall now that the boundary B of the symmetric space is given by
the coset space representations B = K/M, B= G/MAN. The latter shows
that G acts on B; this action will be denoted (g, &) — g(b) in order to distin-
guish it from the action (g, x) > ¢ x of G on X = G/K, which we have
already used. Let db denote the unique K-invariant measure on B satisfying

fdb:l
B

Theorem 2.4. If u is a bounded harmonic function on X then there exists a
bounded measurable function i on B such that

u(g-0) = [ lg(®)) db )
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On the other hand, if @ is a bounded measurable function on B then u as
defined by (2) is a bounded harmonic function on X.

PROOF. As shown above (Lemma 2.3) the set Q, has a fixed point under
MAN, say u,. Define # on G/MAN by (gMAN) = u,(g). Then by the
definition of Q,, we have

u(g - 0) = J'Ka(gkhMAN) dk

Take i = e and recall that gkMAN is g(b) if b= kM. Then (2) follows
because if F is any continuous function on B,

[ F(b) db = f F(kM) dk
“B K
On the other hand, if @ is a function in L*(B), define u by (2). Then
u(gkh - 0) = f f(gkh(b)) db (3)
B

Now let b = kK’ M AN ; then gkh(b) = gkhk’ MAN = gkkyMAN if hk' = k,a;n,
(Theorem 5.1, Ch. 3). Hence,

fu(gkh'o) dk = f (j fi(gkhk’MAN) dk’) dk
K K K
:f (f 0(gkhk’ MAN) dk) dk’ =f (f fi(gkk,MAN) dk) dk’
K K K K

:J- (f a(gkM AN) dk) dk’ = [a(ngAN) dk = u(g o).
K\"K 35

By Theorem 2.1, u is harmonic, so the theorem is proved.
Now define the Poisson kernel P(x, b) on the product space X x B by
the Jacobian

-1
_dig” () @)
db
As we saw in Ch. 1. (11) §1-3 this does indeed give the classical Poisson

kernel in the case when G/K is the non-Euclidean disk. We shall give the
general formula for (4) later. But at any rate formula (2) can be written

P(g o, b)

u(x) = fHP(x, b)a(b) db (5)

giving a Poisson integral representation of an arbitrary bounded harmonic
function on X, Furstenberg showed in [19], p. 366, that in the weak topology
of measures the values of fi can be regarded as boundary values of u. We
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shall now see that this is also the case, when we approach the boundary in a
more geometric fashion.
Let n denote the subalgebra of g given by

n=3%g,

a<0

where the g, are given by (2) §3-5. Let N denote the corresponding analytic
subgroup of G. As an immediate consequence of the Bruhat lemma (see
Harish-Chandra [26]) we have that the subset NMAN < G is an open subset
whose complement has lower dimension. As a result the mapping T: i1 —
k()M maps N onto a subset of K/M whose complement has lower dimension
[Here k(1) is the K-component of i1 according to the decomposition G = KAN.]
One can also prove that the mapping T is one-to-one.

Lemma 2.5. For a certain positive integrable function  on N, we have
[ feM) diy = j fkEMW(R) di  fe C*(K/M)
*K/M N
Here dk,, is the normalized K-invariant measure on K/M and dii is a Haar

measure on N.

PrROOF. Let dky o T denote the measure on N given by
(dky s TYC) = j dk,,  Ccompactin N
T(C)

Let (i) denote the Radon-Nikodym derivative (see, for example, [24],
p. 128). Then the lemma follows at once from the properties of T given above.

ReEmMARK. This lemma is given in Harish-Chandra [27], p. 287, with an ex-
plicit formula for y(7) which will be derived later (Proposition 2.10).

The mapping T is particularly useful for studying the action of 4 on
the boundary. In fact, if ae 4, i e N we have

alk(n)M) = ak(n)MAN = k(an)MAN = k(ana™ WMAN
k(w] By
a(k(A)M) = k(F)M (6)

¥

that is,

the superscript denoting conjugation.

Theorem 2.6. Let F be a continuous function on B and u its Poisson integral

u(x) = LP(x, b)F(b)db  xeX
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Then u has boundary values given by F, that is,
lim u(k exp tH - 0) = F(kM) (/)

I+ a0

for each k € K and each Hea™.

PROOF. We may assume k = e. We must prove that if a, = exp tH then as
t— o0

fwr(a,(w)) dky — F(eM)
But by Lemma 2.5 and (6) the integral on the left equals
fNF(a,(k(ﬁ)M))tjf(ﬁ) dii = LF(k(H"')M)W(r‘:) dii (8)
Now
r=exp ( ;)X!)

where X, € g, and by (7) and (9) in §3-1,

i**# = exp H exp (Z Xa) exp (—H) = exp (Ad (exp H)(Z X, ]

= exp (e"d ”(Z X,)) = exp (Z e’””Xz)

But «(H) <0 whenever « < 0 so we see that for each ie N, i®*'™ - ¢, It
follows (using the dominated convergence theorem) that the right-hand side
of (8) has a limit

f F(eM)y(ii) dii = F(eM)
N
as t = o0. This proves the theorem.
The result above is not new (¢f. Karpelevié [46], Theorem 18.3.2 and

also Moore [53], p. 204). Next we prove that the boundary function # in
Theorem 2.4 is unique.

Corollary 2.7. Let Fe L*(B) and
u(x) = f P(x,b)F(b)db  (xeX)
B

Then if # = 0, we have also F = 0.
In fact, let ¢ € L'(G) be continuous and consider the function

Fub)= [ $@)F(gb) dg  beB
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The function F; is continuous (as a convolution of a continuous integrable
function with a bounded function) and its Poisson integral u, is given by

uy(h-0) = [ P(h-o, b)F,(b) db = f F(h(b)) db
“B B

S JB( [ so)F(antsy dg) ab = [ $oioh-o) dg

Now if u =0 we have u; =0 so by Theorem 2.6, F; =0. But since ¢ is
arbitrary, we conclude F= 0.

The Topology of X U B

It is possible to define a topology on the union X u B such that the limit
relation (7) is convergence in this topology. A vector Y € p is called regular
if its centralizer Z, in p is Abelian. A point x = (exp Y)K in X is called
regular if" Y is regular. Now a regular vector Y € p belongs to a unique
Weyl chamber by in the maximal Abelian subspace Z,. We say that a
sequence of points x;, x,, ... in X converges to a boundary point & if

(1) Each x, = (exp Y,)K (where Y, € p) is regular

(i) The Weyl chambers by_ converge to b (in the topology of B)

(iii) The distance from Y, to the boundary of by in Zy tends to o

It is not hard to verify that this convergence concept (together with the
usual convergence definition on X itself) defines a topology on the union
Xu.l.

We shall now prove some measure—theoretic results due to Harish-
Chandra ([25], p. 239, [27], p. 294) and give an explicit formula for the
Poisson kernel P(x, b) as a consequence (¢f. also Schiffmann [56]).

Lemma 2.8. Let dk, da, and dn be left invariant Haar measures on the groups
K, A, and N, respectively. Then for a suitable normalization of the Haar

measure dg of G, we have

[f@dg=  flkanyets® dk da dn
G KxAxN

for all fe C.*(G). This p is defined in §3-5 and log denotes the inverse of
the mapping exp:a— 4.

Proofr. Since the mapping (k, a, n) — kan is a diffeomorphism of K x 4 x N
onto G (§3-5) there exists a function D(k, a, n) on K x A x N such that

_[ f(g) dg = J f(kan)D(k, a, n) dk da dn 9)
G KxAxN
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for all fe C.°(G). The groups G, K, A, N are all unimodular, that is, the
left invariant Haar measures are all right invariant. Thus the left-hand side
of (9) does not change if we replace f(g) by f(k,gn,), k; € K, n, e N. It fol-
lows that D(k; 'k, a, nn7") = D(k, a, n) so D(k, a, n) is a function &(a) of
a alone. Leta, e A. Then

[ 7@ dg = [ f(gaydg = f(kana,)(a) dk da dn
G G KAN
= f f(kaa,(a; 'na,))d(a) dk da dn
KAN
= j f(ka(a; 'na,))d(aa; ") dk da dn
KAN

- f f(kan)s(aa; V)J(a,, n) dk da dn
KAN
where J(a,, b) denotes the Jacobian determinant of the mapping n — a,na; *
of N onto N. The computation in the proof of Theorem 2.6 shows that
J(a,, n) = e?¢tls2)
Thus

é(a) = 6(aay )e?rozes)

and the lemma follows.
Given ge G, let k(g9) € K, H(g)€ a, n(g) e N be determined by g =

k(g) exp H(g)n(g).

Corollary 2.9. The Poisson kernel on G/K x K/M is given by
P(gK, kM) = e~ 2p(H(g™ k)

PrROOF. The mapping k — k(gk) is a diffeomorphism of K onto itself. Now
fix he G. Then for fe C.%(G),

f f(kan)e?*'*® 4k da dn = f f(g) dg = f f(hg) dg (10)

Now if g = kan, then
hg = hkan = k(hk) exp H(hk)n(hk)an = k(hk) exp H(hk)a(a™* n(hk)an)

which we write as k;a,n;. Then our integral on the right-hand side of (10)
equals

ff(k,alnl)ez"““"’ dk da dn. (11)
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But the map a — exp H(hk)a preserves the measure da and the map n—
(a™'n(hk)a)n preserves the measure dn. The integral (11) therefore equals

f f(k(hk)a n)e?# s @g=20HEN gL dg. dn
so comparing with the left-hand side of (10), we find
f F(k) dk = j F(k(hk))e™2#HE) gk (F e C*(K)) (12)
K K

In particular, let us use this for F(k) = ¢(kM), ¢ being an arbitrary C”
function on the boundary. Since

j F(k) dk = j $(kM) dk,,
K K/M

fF(k(hk))e'““’”‘"” dk :J iﬁ(k(hk)M)e_z"m("k” dkM
& K/M

and since k(hk)M = h(kM) the corollary follows from (12).
As another application let us compute the function ii— (i) in

Lemma 2.5.

Proposition 2.10. For a suitable Haar measure dii on N we have

f flkyy) dkpy = j f(k(R)M)e™2#H® g e C*(K[M).
K/M N

ProoF. Fix an element i, N and consider the function f™ :kM —
f(fig(kM)) on K/M. Since fig(k(7)M) = k(iio i)M we conclude from Lemma
28,

[ 7@n) diey = [ SOk, MW dii = [ fREDMWG; ') di,
K/M N N
and from the definition of the Poisson kernel,
[ sGgem) diy = [ JUMPG®, 0, kM) dky
K/M K/M

= [ FU@M)PGR, -0, KM () d
N

Comparing the formulas we conclude,
(7, '7i) = P(7, " o, k(M)M)WY(7i)

so putting /i = e the proposition follows from Cor. 2.9,
To conclude this section we state two theorems without proof. Let A

denote the Laplace-Beltrami operator on X.
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Theorem 2.11. Let u be a bounded solution of the equation Au= 0 on X.
Then u is harmonic.

A probabilistic proof of this theorem is given in Furstenberg [19]
(¢f. also Berezin [2] and Karpelevic [46]).

Using this result, A. Kordnyi and the author ([38]) have proved the
following theorem which generalizes the classical Fatou theorem for the unit

disk.

Theorem 2.12. Let u be a bounded solution of the equation Au=0 on X.
Then for almost all geodesics ¢ — y(¢) in X starting at the origin o the limit
lim u(y(1))
I~ 00

exists.

4-3 Spherical Functions on Symmetric Spaces

Let X = G/K be a symmetric space of the noncompact type as in the
last section. A spherical function on G/K is by definition a K-invariant eigen-
function ¢ of all the operators D e D(G/K) satisfying ¢(0) = 1. According
to a theorem of Harish-Chandra the spherical functions are precisely the
functions on G/K given by

$,(gK) = f SliA=o)H@k) g (1)
K

where 4 is an arbitrary complex-valued linear function on a.

In the simplest case when X is the non-Euclidean disk D from Ch. 1
the spherical functions are the Legendre functions P, and their integral
formula

l 2n
P(coshr) = > f (cosh r + sinh r cos 0)” d6
To

is the simplest example of (1) (see, for example, [31], p. 406).

We shall now state Harish-Chandra’s result ([27], p. 612, [28], p. 48)
which describes how an arbitrary K-invariant function SfeC.*(X) can be
decomposed into spherical functions. In view of Theorem 7.1,Ch. 3such a
function f is completely determined by the values fla-0), (ae A") and we
define the transform (spherical Fourier transform) (1) by

f=| @ op@bayda (rea?) )
Here a* is the dual of the vector space a and the function D(a) is the density

for the volume element dx on X in polar coordinates (Theorem 7.1, Ch. 3).
More precisely, if x = ka - o then dx = D(a) dky da.
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The problem is now to invert formula (2). Motivated by the spectral
theory of singular ordinary differential operators, Harish-Chandra expands
the function ¢, (exp H) in a series of the form

$ilexp Hy= ) ( zwu(sz)e““"’)e-“‘”’ (Hea*) 3)

B

Here p runs through certain subset of a*, the y, are certain functions on
a* and W denotes the Weyl group (which acts on a* by duality). The dom-
inating term in this series has the form

e P N e(sd)e* M 4)

seW
where 1/¢(4) is a certain analytic function on a*. From (1) above and Prop.
* 2.10, Harish—Chandra derives the integral formula

e(A) = J' e —iA=)H@®) g3 (5)
N
whenever the integral converges absolutely.

Theorem 3.1. The inverse of the spherical Fourier transform f— f in (2) is
given by

fla-0)= f.f (Da(a) le(A)|~* dA 6

where dJ is a constant multiple of the Euclidean measure on a*.

The simplest case of this theorem is the inversion formula for the Mehler
transform stated in Ch. 1.

We shall now attempt to describe some of the main steps in the proof
of this theorem. For a restricted root a > 0 let m, = dim (g,), where g, is as
defined in §3.5. Let (,) denote the inner product on a* induced by the
Killing form B of g, restricted to a.

(i) The function (1) is given by ¢(1) = I(iA)/I(p), where

1 1 (v, @)
I(v) =EUOB(E mey Z My + m) (vea®) (7
and B denotes the Beta function,
re)r(y)
B(x,y) = ————
(x, y) Tx + 7)

Let us first consider the case rank (G/K) = 1. Then ¢,(a) is a function
of one real variable and is characterized by a single second-order ordinary
differential equation (which comes from ¢, being an eigenfunction of A).
One finds then that ¢, is given by a hypergeometric function. If one now
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compares the series expansion for the hypergeometric function with the
expansion (3), formula (7) follows. For the details see Harish-Chandra
[27], p. 301.

Bhanu-Murthy [4, 5] extended (7) to several other special cases where-
upon Gindikin and Karpelevi& [21] proved (7) in general along the following
lines. Let « > 0 be a restricted root which is not a positive integral multiple
of other restricted roots. Let g* denote the subalgebra of g generated by
g,and g_,. Then g* is semisimple and has a Cartan decomposition

g=0+p P=gotal pPP=g"np (8)

Let G* and K* denote the analytic subgroups of G corresponding to g* and
%, respectively.: The symmetric space G*/K* (which can be identified with
the orbit G* - 0 and is a totally geodesic submanifold of G/K) has rank one.
In fact if a* denotes the orthogonal complement in a of the hyperplane
o(H) = 0 then a* is maximal Abelian in p*. Now G* has an Iwasawa decom-
position G* = K*4°N*®, and the e-function for G*/K*, denoted ¢? is given by an
integral of the form (5) over the group N®>. Now Gindikin and Karpelevi¢
prove that the product of these integrals (for the various «) is equal to the
integral (5) over N ; more precisely,

e(d) = [ () ©9)

where A* denotes the restriction of A to a® and « runs through the restricted
roots specified above. Now (7) follows from the rank-one case.

Now let #(a*) denote the set of rapidly decreasing functions on a* in
the sense of Schwartz [57] and let #(a*) denote the set of W-invariant func-
tions in #(a*). (Here W is the Weyl group.)

(ii) Let p€a*. Then the mapping

S,:b— Lm}( j b(2)s(a) le(D)] 2 dA)D(a) da

[6 € F(a*)] is a tempered distribution on a*.

It is easy to see from (7) that the integral over A is absolutely convergent.
On the other hand to show that the integral with respect to a is absolutely
convergent and makes S, a distribution requires very detailed study of the
behavior of ¢, (a) for large a (see Harish-Chandra [27], p. 588).

Eventually one wants to prove that for a suitable normalization of dA,
S,(b) = b(p). But first one proves

(iii) If p is a Weyl group invariant polynomial on a* then

PS, = p(p)S,
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To see this select a differential operator D € D(G/K) such that D¢, =
p(A); (see [27], p. 591 or [31], p. 432). Then
S,(0) = 5,(00) = [ ([ pAOBDS0 eI d) dx

Here we replace p(A)¢;(x) by (D¢;)(x) and carry D over on ¢, by replacing
it with its adjoint; the result is p(u)S,(b) as desired.

As a fairly easy consequence of (iii) we obtain (cf. [27], p. 591).

(iv) There exists a function y on a* such that

S(b) =y(wb(x)  be F(a¥).

Now we must prove that y is a constant. Consider for f as in (2) the
function F, defined by

F(a) = "9 | f(Ra-0)dn acA
b N

Then we have as a simple consequence of (1) and Lemma 2.8 that
J@) = [ fx)6:(0) dx = [ F(a)e™ % da (10)
X A
If b € #(a*) consider the function
1) = [ b)) le(D] 2 dA

The integral for F,, can be shown to converge and by the inversion formula
for the Fourier transform on 4 and a* we obtain

Fy,(a) = e?(® f,q‘f’b(ﬁa -0) dii = J .éb(i)e““ow di
=J- Si(b)ei).(loga’ di ='[ y(;_)bu)eimuga) di

= L[ ) ¥ esraero ay
W Jg»

seW

where w denotes the order of W. The relation y = w would therefore result
from the following statement.
(v) The relation

e~ 22 [ ¢,(a+0)dii = 3, 400 (11
N

seW

holds in the weak sense in A, that is, it gives the right result when integrated
against any b e S(a*).



56 SIGURDUR HELGASON

This is carried out by means of a beautiful analysis in §15, p. 597, of
Harish-Chandra [27]. Here we have to settle for a vague plausibility
argument. Writing fa = k,a'k, (ky, k, €K, a’€ A*) we have (loc. cit.
p. 604)

log a’ ~ log a + H(in)
as a— o in A*. Since (4) is the dominating term in the expansion for
¢, (exp H) let us replace ¢;(fia - 0) = ¢,(a’ - 0) by
g~ Plloga+H(@) Z c(sl)eisl(loga+ﬂ'(ﬁ))
seW

When this expression is integrated over N we obtain from (5) the expression

e_ﬂ(log a) Z C(SA)C( s Si)eisl(lug a)
seW

which equals e™#(°8) |e(A)|? 3 2029 jn accordance with (11).
seW
In order to deduce Theorem 3.1 from the relation S, (b) = (const)b()

(b e F(a*)) we still have to prove the following statement.
(vi) Each K-invariant function fe C,“(X) can be written in the form

f(x) = fa'b(l)qbz(x) le()~*di  beS(a¥)

This was stated as a conjecture in Harish-Chandra [27], p. 612, and
was finally proved by him in [28], p. 48. Since this proof involves so much
work on the general Plancherel formula for G (in particular, the discrete
series) it would not be feasible to describe it here. Instead let me outline a
different effort [37] at proving (vi).

Let F be a W-invariant function in C,*(A4) and F* its Fourier transform

F*() = f F(a)e™ 1059 gg
A

Writing the expansion (3) as
$uexp H) =3 Y (4, H) (Hea") (12)
u
we assume that the term-by-term integration
[ F*ygsexp Mle) 2 di= ¥ [ F*O, 0, H)le) ™ di  (13)
a* B “a*
is permissible. Then we have (loc. cit. p. 302).
(vii) For Hea let |H|=B(H, H)"?>. Suppose R>0 such that
F(exp H) =0 for |[H|> R. Then

f_p*(z)%(a, H)|e()|"2dA=0 for |H| >R (14)
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This is proved by translating the integration into the complexification
a* + ia* by use of Cauchy’s theorem. Because of the formula (7) the func-
tion ¢(A) ! can be extended to a function on a* + ia* with singularities, whose
location can be determined. The functions v, (4, H) are determined by
certain recursion formulas which result from ¢, being an eigenfunction of
each D e D(G/K). It is therefore possible to describe the sets of singularities
of the functions (4, H) and the integration in a* can by Cauchy’s theorem
be translated away from these sets. This leads to estimates of the integral,
which prove (14).

In order to prove (vi) let fe C.°(X) be K-invariant and let us use (14)
on the function F(a) = Fy(a), (a € A). We put

9() = [ F* 0,0 e(R)|* dA (15)
and by (13) and (14) we have ge C.*(X) and K-invariant. On the other
hand, we have by (10) and the result S,(b) = b(u) (with dA suitably normalized),

g(d) = F*(1) = F*(%) (16)
The Euclidean Fourier transform F— F* is one-to-one so the last relation
implies

F,(a) = F(a) = F(a)

Thus, in view of (10), the function & = f — g is a K-invariant function in C,*(X)
satisfying

th(x)cm(x) dx =0

for all complex-valued linear forms 4 on a*. It is well-known (see, for exam-
ple, [31], p. 409, 453) that this implies & = 0, so

1) = [ FY)$s(0)1e(@)|~* di

which gives (vi).

What is lacking in this proof of (vi) is a justification of the term-by-term
integration (13). In the quoted paper this justification is given for the case
rank (G/K) =1; in this case the proof also gives a Paley-Wiener type of
theorem for the transform f— f, that is, an intrinsic characterization of the
functions f(4) as f runs through the K-invariant functions in C,*(X).

We conclude this section with a simple remark on the formulas

Jay=[ fa-0¢(aD(a)da

f@o)= [ JDda)s(Ddi  6(2) = le(H)?
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In analogy with the product formula (9)
3(2) = [ 6.2 (17)

one can prove (and this is an elementary result) that
D(exp H) = [ | D,(exp H*) (18)

where D, is the D function for the space G*/K?*, and H* is the projection of H
on a*. It seems conceivable that a fuller understanding of the reason for
the product formulas,(17) and (18) might lead to a reduction of Theorem 3.1
to the rank-one case.

4-4 Fourier Transform on Symmetric Spaces

As before let X denote the symmetric space G/K. Now we would
like to define a Fourier transform for arbitrary functions f'e C,*(X), not just
for the K-invariant ones. We motivate this by means of the definition given
in §1-3 for the non-Euclidean disk D. 1In this case the group G equals SU(1, 1)
and as calculated in §3-5 the group N consists of the group of matrices

1+in —in
( in 1o in) neR
The orbit N-O consists of the points in/(in — 1), which clearly form a
horocycle and it is a simple matter to verify that the horocycles in D are the
orbits in D of all groups of the form gNg~*.

Hence, we define for the general symmetric space X = G/K a horocycle
to be an orbit in X of a subgroup of G of the form gNg~*, g being an arbitrary
element in G.

Lemma 4.1. The group G permutes the horocycles transitively.

ProoF. The most general horocycle ¢ is of the form & = gNg~'h - 0, g and h
being fixed elements in G. By the Iwasawa decomposition we can write
h™'g = kan and deduce (since aNa~' = N) that gNg~'h-0 = hkN - 0. In
other words, the element 4k € G maps the horocycle &, = N o0 onto ¢, so the
lemma is proved.

In particular, all the horocycles are submanifolds of X of the same
dimension and since N n K = {e} the mapping n — n - o is a diffeomorphism
of N onto &, .

Lermma 4.2. Each horocycle ¢ can be written
§=ka¢, (1)
where a € A4 is unique and the coset kM e K/M is unique.
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Although the proof of this lemma is not difficult we shall not stop to
prove it here. For the case X = D the lemma is quite obvious.

Definition. The Weyl chamber kM in (1) is called the normal to the horocycle
£; the element a € 4 in (1) is called the complex distance from o to &.

Considering the example X = D the term ““ normal ™’ is quite reasonable;
so is the term “ complex distance” because the point ka- o is the unique point
in ¢ at minimum distance from o. (If a =exp H, H € a, the distance is
B(H, H)'2, ¢f. [37], p. 306.)

We recall now that given the maximal Abelian subspace a < p, the
group N is determined following a choice of a Weyl chamber n™ < a.

Lemma 4.3. Let ay,...,a, denote the various Weyl chambers in a and
N;, ..., N, the corresponding Iwasawa groups. Then the horocycles
N;- o, ..., N, o all have the same tangent space at the point o.

PrOOF. The projection n: G — G/K given by n(g) =g - 0 maps N onto &,
and the differential dn : g = (G/K), mapsnonto (¢,),. Butthemapdn:p —
(G/K), is an isomorphism so let q < p be the subspace which dn maps onto
(€,).- We shall prove that the manifolds N - o and A4 - o are orthogonal at
o and since

(&o)o = dn(a)  (A4-0), = dn(a)

it suffices, because of the choice of metric on G/K (§3-3), to prove B(q, a) =0,
that is, q and a are orthogonal with respect to B. But if H€a, X € q then
there exists an X, € n such that dn(X) = dn(X;). Thus X — X, €I so since
B(a, T) = 0 and B(a, n) =0, we obtain

B(X,H)= B(X,,H)=0

Thus each of the tangent spaces (N, - 0), is perpendicular to the tangent
space (A4 - 0), and since dim N * 0 + dim A4 - 0 = dim G/K, the lemma follows.

Lemma 4.4. Given x € X, b € B, there exists exactly one horocycle passing
through x with normal b.

PrOOF. Let b= kM. We must find a unique a € 4 such that x lies on the
horocycle ¢ =ka-¢,. But xeé means x =kan-o for some neN so
an-o=k™"'-x. Thus, by the Iwasawa decomposition, a is uniquely deter-
mined by k and x.

We denote the horocycle determined by this lemma by &(x, b) and write
exp A(x, b) (A(x, b) € a) for the complex distance from o to {(x, b). We can
now write down the analogs of the functions e“¢**” in §1-3.
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For b € B and A a complex-valued linear function on a, define the func-

tion e; , by
e 5% > etaEE) xeX

We state without proof two properties of e, ,, the second of which is
trivial.

(1) e, , is an eigenfunction of each operator D € D(G/K)

(ii) e, ,is constant on each horocycle with normal 5. A function on X

with this property will be called a plane wave with normal b.

One can also prove that these two properties characterize the functions
e, (if certain singular eigenvalue systems are excluded). In accordance with
the definition in §1-3 we define Fourier analysis on the symmetric space X to
be a decomposition of ““arbitrary” functions on X into functions of the
forme, ,.

As before let dx denote the volume element on X and

1

5 agﬂdjm (ga)a

Let a* denote the dual of a, that is, the set of real linear functions on a. Then
the following theorem holds (cf. [35]).

p:

Theorem 4.5. For fe C.°(X) define the Fourier transform fon a* x B by
F@ b= [ feye-ioum gy Jea* beB
X
Then
£ = [ [ 7@, bet# o 122 4j ab
a* B
if the Euclidean measure d1 on a* is suitably normalized.
This theorem is proved by reducing it to Theorem 3.1 in a way which is

similar to the reduction of Theorem 3.1, Ch. 1, to the inversion formula for
the Mehler transform. That reduction made use of the geometric identity

{t:2,7b)=4z,b) + {r:0,7:b> (2)
and the formula
d(z-b)| _ 2¢t-1-0,b,
i i 3)

valid for an arbitrary isometry 7 of the non-Euclidean disk D.
The generalization of the formula (2) to the symmetric space X is

A(g * x, g(b)) = A(x, b) + A(g -0, g(b)) (4)

for ge G, x e X and b € B. (Here the action of G on X and on B is denoted
asin §2.) In order to prove (4) let x = hK, b = kM. Then

h-oe€kexp A(x, b)N -0
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so for somen, e N, k; e K
gh = gk exp A(x, b)n,k,
which by the Iwasawa decomposition can be written
gh = k(gk) exp H(gk)n(gk) exp A(x, b)n k,
Since aNa~' < N (a € A), this relation implies
g - x € k(gk) exp (H(gk) + A(x, b))N -0
and since k(gk)M = g(kM ), we conclude
A(g - x, g(b)) = H(gk) + A(x, b) 5

On the other hand, we have by the definition of A(g- o, kM) that for

some n, € N, k, e K,

g = kexp A(g-o, kM)n, k,
SO

H(g™'k) = —A(g -0, kM) (6)
Hence, (5) becomes

A(g-x, g(b)) = —A(g™" -0, b) + A(x, b)

In particular, putting x =0, we get A(g- 0, g(b)) = — A(g™" - 0, b), so the
desired formula (4) follows. The generalization of (3) to the space X is
given by

— 2p(Alg™'0,b) (7)

d(g(b))
db

and this of course is a direct consequence of Cor. 2.9 and (6). Now the
proof of Theorem 4.5 proceeds essentially as the proof of Theorem 3.1 in
B

Finally we observe that the Poisson integral representation of bounded
harmonic functions on X (¢f. (5) in §2) can be written

u(x) i j ezplA(x, b))a(b) db
B

and is, therefore, according to our definition, to be regarded as a formula in
Fourier analysis on X.

4-5 Interpretation by Representation Theory; Eigen-
functions of the Invariant Differential Operators

Since the group G leaves the volume element dx on X invariant we get
a unitary representation Ty of G on L*(X) by associating to each g € G the
operator f— % on L*(X). (Here f*® denotes the function x - f(g ™' - x).)
We shall now indicate how Theorem 4.5 gives a decomposition of this repre-
sentation into irreducible ones.
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For 1 € a* let $; denote the vector space

H, = {h;‘(x) = J. eiA+e)A=h(py db|h e LZ(B)}
L B
of functions on X. If 1 is regular, that is, sA # A for all s 3 ¢ in the Weyl
group W, one can use an irreducibility criterion of Bruhat [7], p. 193, to prove
that the function 4 € L*(B) above is uniquely determined by h;. If we define
a Hilbert space norm on $; by

Ik, = U,,“’(b)'z db}

1/2

then the mapping which assigns the operator &,(x) = h,(g” ' x)toeachge G

is by (4) and (7) seen to be a unitary representation T, of G on ;. Using
the irreducibility criterion cited, one can show this representation to be
irreducible. Now with the notation of Theorem 4.5 there is a Plancherel
formula, namely,

[ 17 ax = [ [ 17, b le(d)~* didb

In terms of direct integrals of representations (see, for example, Dixmier
[15]), Theorem 4.5 can therefore be written:

LX) = [$ale2dA  Ty=[Tile(2) "2 da

A running through a* (mod W).
The functions in $, are eigenfunctions of each D e D(G/K). More
generally, if T is an analytic functional on B and u € C the function

() = [ 4w ar(p)
B

is an eigenfunction of each D € D(G/K); it appears likely that for sufficiently
general functionals 7 these functions constitute all the simultaneous eigen-
functions of the operators D(G/K) (¢f. Theorem 5.1, Ch. 1).

4-6 Invariant Differential Equations on Symmetric Spaces

We shall now discuss general existence theorems for invariant differen-
tial equations on the symmetric space G/K. In order to motivate the method
followed we first describe a well-known geometric method for solving differ-
ential equations in R" with constant coefficients (Courant-Lax [14], Gelfand-
Shapiro [20], John [44]). The basis of the method is a formula of Radon-John
which in an explicit manner describes a function on R" by means of its integ-
rals over the various hyperplanes in R".
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For f'e C.°(R") let f(w, p) denote the integral of f over the hyperplane
(x, @) = p (here w is a unit vector and pe R and (,) the scalar product).
The function f is called the Radon transform of f.

Theorem 6.1. For the Radon transform f— f the following inversion formula
holds:

f(x) = (A"~ “H](J’s", lf(a,), (x, w)) dw) (1)

for fe C.,”(R"). Here A denotes the Laplacian, dw is the surface element on
the unit sphere $"~ ', and c is a constant.

For the proof see [44]. There the cases n = odd and n = even are
presented in different forms; the unified version can be found in [34], p. 163.

Formula (1) states that when for x € R” we form the integral of f over
each hyperplane through x, then take the average of these integrals, and
finally apply the operator A"~ 12 we recover the function f. However,
for the applications indicated, the important feature of (1) is an explicit decom-
position of finto plane waves. (A plane wave is a function which is constant
on each hyperplane with a given normal vector; this normal vector is then
called the normal to the plane wave.) In fact, for any fixed w e S""! the
function f,, : x - f(w, (x, w)) is a plane wave with normal .

We shall now apply formula (1) to differential equations. Let D be a
differential operator on R" with constant coefficients and consider a differen-
tial equation

Du =f )

where f€ C.”(R") is a given function. We begin by considering the differen-
tial equation

Do =f, (3

where f, is as above and we look for a solution v which is a plane wave with
normal . Buta plane wave with normal o is just a function of one variable;
furthermore if v is a plane wave with normal @ then so is the function Du.
Our problem of finding v of the specified type satisfying (3) is therefore just
an ordinary differential equation with constant coefficients. Pick a solution
u,, and assume that this choice can be made smoothly in w. Then the func-
tion

u=c A""””f u, do (@)

sn*l

is a solution of the equation (1). In fact, since differential operators with
constant coefficients commute we have (at least for n odd)

Du = c A"~ 12 Dumdw=cA“"”“f fodo=Ff
sn-1

sn-1
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This proof actually works also for n even. The weakness of the method lies
in the assumption that u, can be chosen so as to vary smoothly in @w. In
fact the example D = 0%/dx,0x,, @ = (1, 0) shows that u, may not exist for

all .
For a symmetric space X = G/K the inversion formula for the Fourier

transform (Theorem 4.5) does give a decomposition of an arbitrary function
fe C.,°(X) into plane waves. In fact let as before

f(, b) = f flx)elri2tado. DY gy Sl ea® be B
X

and put

£x) = [ J(4, bet+oracsm 1oy =2 g 5)

ut
Then f, (x) is a plane wave with normal b so the formula
1) = [ fx) db (©6)
B

does indeed give a decomposition of finto plane waves. We shall now apply
this formula to the problem of solving a differential equation

D =1 (7N

where D is a given differential operator in D(G/K) and fe C,*(X) is a given
function. First we need a simple lemma concerning the action of invariant
differential operators on plane waves (cf. [27], p. 247, or [45]).

Lemma 6.2. Let D e D(G/K). Then there exists a unique differential opera-
tor &(D) on the submanifold A4 + 0 = X such that if bar denotes restriction to

A
DF = §(D)F

for every F e C*(X) which is N-invariant (that is, a plane wave with normal
a™). This differential operator §( D) is invariant under A.

Proor. Since the mapping (n, a*0)—>na-o is a diffeomorphism of
N x (A - 0) onto X the existence and uniqueness of (D) is obvious. Hence
we just have to prove its invariance under 4. Let ae A and, as before,
if Fe C*(X) let F*@ denote the function x - F(a~!- x)on X. If Fisinvariant
under N then the function F*® is too; in fact,

Ff(n-x)="Fla: n )= F(na " “x)

for some n, € N. Thus F*(n - x) = F*“(x), and of course F*® = (F)*@,
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Thus,
(8(D)“F) = (3(D)F)““™ )@ = (§(D)F™™ Dy

= (DF“ "y @ = (DF*“""y®)~ = DF = 4(D)F

This proves the lemma because each function in C*(A4 - o) can be extended to
an N-invariant function in C*(X).

In order to solve the differential equation (7) we begin by considering
the differential equation

Dv = f, (8)

for an arbitrary b € B. We look for a solution v = v* which like the function
[ [ef. (5)] is a plane wave with normal b.  For example, consider the case
b =a". Then the function f, is invariant under N and so is the required
function ”. According to Lemma 6.2, the differential equation Dv* = f, on
X amounts to the differential equation

s(DY’ = f, 9)

which is by the A-invariance of §(D) a differential equation with constant
coefficients on the Euclidean space 4 - 0. But by a result of Ehrenpreis [16]
and Malgrange [52], a differential operator on R” with constant coefficients
maps the space C*(R") onto itself. Hence a solution v = v® exists. Now we
assume that +* can be chosen so that it depends smoothly on 5. Then we put

u(x) = f (x)db  xeX
B
and have
Du=|Dtdb= [ f,db=
u=[Dldb=] fodb=1

This is not an existence proof for the differential equation (7) because of the
smoothness assumption about v” (see, however, Tréves [59], p. 131). Never-
theless, we have the following general theorem (Helgason [33], p. 577-578).

Theorem 6.3. Let D 5 0 be an arbitrary G-invariant differential operator on
the symmetric space G/K. For each fe C.*(G/K) the differential equation
Du = f has a solution u e C*(G/K).

It suffices to find a distribution 7 on X satisfying the differential equa-
tion DT = o, where ¢ is the delta-distribution at the origin o. In fact, the
desired solution is then u = f x T, where x is the operation on distributions
on X which is induced by the convolution product of distributions on G.
Since D and ¢ are K-invariant we look for a K-invariant 7. For this we use
the transform f— F, discussed in §3. As proved in Harish-Chandra [28],
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p. 46, this transform is one-to-one on the space /(X) of K-invariant, square-
integrable functions on X which are rapidly decreasing on X in a certain
technical sense, and the transform maps /(X) into the space /(4) of Weyl
group invariant functions on 4 which are rapidly decreasing on A4 (considered
as a Euclidean space). On the other hand, it is proved in Helgason [33] that
the range of the mapping f— F,(f € I(X)) is precisely /(4) and furthermore,
Fp; = y(D)F,, where y(D) is a certain constant-coefficient differential operator
on A. The isomorphism /= F, of I(X) onto /(A) has a transpose, mapping
the dual I'(A) of I(A) onto the dual I'(X) of I(X). Under this isomorphism
the differential equation DT =  on X is transformed into a differential equa-
tion for tempered distribution on 4, and this last differential equation has
constant coefficients since y(D) does. But by a theorem of Hérmander [40]
and Lojasiewicz [49] any differential operator on R" with constant coeffi-
cients maps the space of tempered distributions on R" onto itself. This
leads to the desired distribution T on X, proving the theorem.

4-7 The Wave Equation on Symmetric Spaces

We shall now discuss a different method for solving differential equa-
tions on the symmetric space X. It uses the Radon transform on X which we
now define. Let = denote the set of all horocycles in X. For fe C.”(X)

we define the function f on E by
fo=[jwdw e M

where do is the volume element on ¢. (The Riemannian structure on X
induces in an obvious way a Riemannian structure on the submanifold ¢.)
The function f is called the Radon transform of f.

If x € X the (compact) subgroup K, of G which keeps x fixed permutes
the horocycles through x transitively. For x = o this is obvious from Lemma
4.2 and in general it follows by the homogeneity of X. The set of horocycles
passing through x has a unique normalized measure, say v, invariant under
K.

If ¢ is a function on Z the function ¢ on X is defined by

d)=[ 9@ d® ()

Theorem 7.1. Suppose all Cartan subgroups of G are conjugate. Then for
a certain fixed differential operator [J € D(G/K)

f=01N") € C.”(G/K) )
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This formula is analogous to the inversion formula of Radon-John
(Theorem 6.1) for the case of an odd-dimensional Euclidean space. The
even-dimensional Euclidean case corresponds here to the existence of non-
conjugate Cartan subgroups and in this case (3) still holds in a slightly modi-
fied form (c¢f. [35], p. 759). We emphasize that the differential operator ]
can be written down quite explicitly.

By means of (3) one can write down a solution of the wave equation

on X,
0%u
Ez‘ = Au (4)
with initial data
a
u(x,00=0 !E u(x, I)} =1x) (5)
/ t=0

Here A denotes the Laplace-Beltrami operator on X and f is an arbitrary
given function in C,”(X).

In the notation of §1, let [] € D (G) be an operator satisfying ((1f)~ =
1/ for all fe C*(G/K). Let |p| denote the norm of the linear form p, and
let dn be a Haar measure on N which corresponds to the volume element do
on &, = N - o under the diffeomorphism n - n - 0. Let A, denote the Lap-
lacian on the Euclidean space A.

Theorem 7.2. The solution to the wave equation (4) with initial data (5) is

given by
u(g 0,1 = 1, [ Vi fe. 0 dk ) (©)
where ¥V, , is the solution to the equation for damped waves on A x R,
Ay = oIV, = 523 V.o (7

0
Vk.g(a3 O) = O, {a Vk'g(ﬂ, t)}r=0= eP(logﬂ}Fk‘g(a)

where
Fy (a) = J f(gkan - 0) dn
N

Although the verification of this theorem is not long (¢f. [32], p. 688)
we omit it here because it requires some further preparation. The function
V. ¢ is given as a convolution of a certain Bessel function with F ; so the
solution (6) is explicitly given in terms of the initial data f(x).
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Huygens’ Principle

Let M be an analytic pseudo-Riemannian manifold with Lorentzian
signature, in short, a Lorentzian manifold. Since our considerations will
be local we assume that M is convex, that is, any two points in M can be
Joined by a unique geodesic. The geodesics of zero length through a point
p € M generate the light cone C, in M with vertex p. A submanifold S < M
is called spacelike if each tangent vector to S is spacelike. Let A denote the
(hyperbolic) Laplace-Beltrami operator on M, and suppose now that a
Cauchy problem is posed for the wave equation Au = 0 with initial data on
a spacelike hypersurface S « M. Hadamard proved- that the value u(p) of
the solution at a point p € M only depends on the initial data on the piece
S* < § which lies inside the light cone C,. Huygens’ principle (in the strong
sense) is said to hold for Au = 0 if the value u(p) only depends on the initial
data in an arbitrary small neighborhood of the edge s of §*, s = Sy
is known that this is a property of the space M and does not depend on the
particular choice of S = M. The wave equation

u  u u

812 ox,2 ax2_,
for an odd-dimensional R""! satisfies Huygens’ principle. A conjecture,
attributed to Hadamard, was that these were essentially the only second-order
hyperbolic equations satisfying Huygens’ principle. A counter-example of
the form Au + cu = 0 (n = 6) was given by Stellmacher [58] in 1953, and in
1965, P. Giinther [23] gave a whole series of counter-examples for the pure
equation Au =0 (n=4). These are based on Hadamard’s criterion that
Huygens’ principle holds if and only if 7 is even and > 4 and the logarithmic
part of the fundamental solution (in Hadamard’s sense) vanishes.

If M is symmetric the evidence available seems to indicate that * Hada-
mard’s conjecture” might hold for the pure equation Au=0. For M of
constant curvature (a *“ de Sitter space”” or an ‘““anti de Sitter space”) this is
indeed so (cf. [29], p. 296; see also [13].) The answer is also affirmative if M
has the form M = M, x R, where M, has dimension 3 and constant curva-
ture (Holder [39]). Finally the answer is affirmative if M = X x R, where X
is a symmetric space whose group of isometries is a complex semisimple Lie
group (Helgason [33], p. 582).

=0
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