Hörmander's Topological Paley-Wiener Theorem

(Informal class notes, S. Helgason)

The space $\mathcal{D}=\mathcal{D}\left(\mathbf{R}^{n}\right)=\mathcal{C}_{c}^{\infty}\left(\mathbf{R}^{n}\right)$ is given the inductive limit topology of the spaces $\mathcal{D}_{\overline{B_{j}(0)}}$ of functions $\varphi \in \mathcal{D}$ with support in the ball $\overline{B_{j}(0)}=$ $\left\{x \in \mathbf{R}^{n}=|x| \leq 1\right\}$. This topology can be characterized by the following result of Schwartz (Distributions, p. 67).

Theorem 1. Given two monotonic sequences

$$
\begin{array}{lr}
\{\epsilon\}: \epsilon_{0}, \epsilon_{1}, \ldots & \epsilon_{i} \rightarrow 0 \\
\{N\}: N_{0}, N_{1}, \ldots & N_{i} \rightarrow \infty
\end{array}
$$

let $V(\{\epsilon\}\{n\})$ denote the set of functions $\varphi \in \mathcal{D}$ satisfying for each $j \geq 0$ the conditions:

$$
\begin{equation*}
\left|D^{\alpha} \varphi(x)\right| \leq \epsilon_{j} \text { for }|\alpha| \leq N_{j}, \quad|x| \geq j . \tag{1}
\end{equation*}
$$

Then the sets $V(\{\epsilon\},\{N\})$ form a fundamental system of neighborhoods of 0 in \mathcal{D}.

Let $A \geq 0$ and \mathcal{D}_{A} the space $\mathcal{D}_{\overline{B_{A}(0)}}$ topologized by the seminorms

$$
\begin{equation*}
\|f\|_{m}=\sum_{|\alpha| \leq m} \sup _{|x|<A}\left|\left(D^{\alpha} f\right)(x)\right| . \tag{2}
\end{equation*}
$$

Also let $\mathcal{H}_{A}=\mathcal{H}_{A}\left(\mathbf{C}^{n}\right)$ denote the space of holomorphic functions of exponential type A, that is the space of holomorphic functions φ such that for each $N \in \mathbf{Z}^{+}$

$$
\begin{equation*}
\left|\|\varphi\| \|_{N}=\sup _{\zeta \in \mathbf{C}^{n}}(1+|\zeta|)^{N} e^{-A|\operatorname{Im} \zeta|}\right| \varphi(\zeta) \mid<\infty . \tag{3}
\end{equation*}
$$

Im ζ denoting the imaginary part of ζ. We topologize \mathcal{H}_{A} with the seminorms ||| $\left\|\|_{N}\right.$.

Theorem 2. The Fourier transform $f \rightarrow \widetilde{f}$ where

$$
\tilde{f}(\zeta)=\int_{\mathbf{R}^{n}} f(x) e^{-i\langle x, \zeta\rangle} d x, \quad \zeta \in \mathbf{C}^{n}
$$

is a homeomorphism of \mathcal{D}_{A} onto \mathcal{H}_{A}.

Proof:

The Paley-Wiener theorem states that

$$
\widetilde{\mathcal{D}}_{A}=\mathcal{H}_{A} .
$$

The continuity statements follow easily from the formulas

$$
\begin{equation*}
i^{|\beta|} \zeta^{\beta} \widetilde{f}(\zeta)=\int_{\mathbf{R}^{n}}\left(D^{\beta} f\right)(x) e^{-i\langle x, \zeta\rangle} d x \tag{4}
\end{equation*}
$$

and the inversion

$$
\begin{equation*}
\left(\mathcal{D}^{\alpha} f\right)(x)=(2 \pi)^{-n} \int_{\mathbf{R}^{n}}(i \zeta)^{\alpha} \widetilde{f}(\zeta) e^{i\langle x, \zeta\rangle} d \zeta \tag{5}
\end{equation*}
$$

The space \mathcal{D}_{A} is complete. If \widetilde{f}_{i} is a Cauchy sequence in \mathcal{H}_{A}, replacing f in (5) by $f_{i}-f_{j}$ we see

Proof:

Let $W(\{\delta\},\{M\})$ denote the set of $u \in \mathcal{D}$ satisfying (6). Given $k \in \mathbf{Z}^{+}$ the set

$$
W_{k}=\left\{u \in \mathcal{D}_{\overline{B_{k}(0)}}:|\widetilde{u}(\zeta)| \leq \delta_{k} \frac{1}{(1+|\zeta|)^{M_{k}}} e^{k|\operatorname{Im}|}\right\}
$$

is by Theorem 2 a neighborhood of 0 in $\mathcal{D}_{\overline{B_{k}(0)}}$ and is clearly contained in $W(\{0\}\{M\})$. If V is a convex set containing $W(\{\delta\},\{M\})$ then $V \cap \mathcal{D}_{\overline{B_{k}}}(0)$ contains the neighborhood W_{k} of 0 in $\mathcal{D}_{\overline{B_{k}(0)}}$ so by the definition of inductive limit V is a neighborhood of 0 in \mathcal{D}.

Proving the converse amounts to proving that given $V(\{\epsilon\},\{N\})$ there exist sequences $\{\delta\}\{M\}$ such that

$$
W(\{\delta\}\{M\}) \subset V(\{\epsilon\},\{N\}) .
$$

For this we shift the path of integration in

$$
\begin{equation*}
u(x)=(2 \pi)^{-n} \int_{\mathbf{R}^{n}} \widetilde{u}(\xi) e^{i\langle x, \xi\rangle} d \xi \tag{7}
\end{equation*}
$$

to another one, in which the two weight factors in (3) are comparable. We write

$$
\begin{array}{ll}
x=\left(x_{1}, \ldots, x_{n}\right), & x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right) \\
\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right), & \zeta^{\prime}=\left(\zeta_{1}, \ldots, \zeta_{n-1}\right) \\
\xi=\left(\xi_{1}, \ldots, \xi_{n}\right), & \xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n-1}\right) \\
\zeta=\xi+i \eta &
\end{array}
$$

Then

$$
\begin{equation*}
\int_{\mathbf{R}^{n}} \widetilde{u}(\xi) e^{i\langle x, \xi\rangle} d \xi=\int_{\mathbf{R}^{n-1}} e^{i\left\langle x^{\prime}, \xi^{\prime}\right\rangle} d \xi^{\prime} \int_{\mathbf{R}} e^{i x_{n} \xi_{n}} \widetilde{u}\left(\xi^{\prime}, \xi_{n}\right) d \xi_{n} \tag{8}
\end{equation*}
$$

In the last integral we shift from \mathbf{R} to the contour in \mathbf{C} given by

$$
\begin{equation*}
\gamma_{m}: \zeta_{n}=\xi_{n}+i m \log \left(2+\left[\left|\xi^{\prime}\right|^{2}+\xi_{n}^{2}\right]^{1 / 2}\right) \tag{9}
\end{equation*}
$$

m being arbitrary. We claim that, by Cauchy's theorem

$$
\begin{equation*}
\int_{\mathbf{R}} e^{i x_{n} \xi_{n}} \widetilde{u}\left(\xi^{\prime}, \xi_{n}\right) d \xi_{n}=\int_{\gamma_{m}} e^{i x_{n} \zeta_{n}} \widetilde{u}\left(\xi^{\prime}, \zeta_{n}\right) d \zeta_{n} . \tag{10}
\end{equation*}
$$

For this we must estimate the right integrand in the "strip" between the ξ_{n}-axis and the curve γ_{m}.

The function $\zeta_{n} \rightarrow \widetilde{u}\left(\xi^{\prime}, \zeta_{n}\right)$ satisfies

$$
\begin{equation*}
\left|\widetilde{u}\left(\xi^{\prime}, \zeta_{n}\right)\right| \leq C_{N} \frac{e^{A\left|\operatorname{Im} \zeta_{n}\right|}}{\left(1+\left|\zeta_{n}\right|\right)^{N}} \tag{11}
\end{equation*}
$$

for some A, all N, the constant C_{N} depending only on N. On the vertical line joining $\left(\xi_{n}, 0\right)$ to $\left(\xi_{n}, \eta_{n}\right), \widetilde{u}\left(\xi^{\prime}, \zeta_{n}\right)$ (with ξ^{\prime} fixed) decays faster than any power of $\left|\zeta_{n}\right|^{-1}$. Secondly,

$$
\left|e^{i x_{n} \zeta_{n}}\right| \leq e^{\left|x_{n}\right|\left|\eta_{n}\right|}
$$

which is bounded by a polynomial in $\left|\zeta_{n}\right|$. Also on γ_{m}

$$
\begin{equation*}
\left|\frac{d \zeta_{n}}{d \xi_{n}}\right|=\left|1+i m \frac{1}{2+|\xi|} \frac{\partial(|\xi|)}{\partial \xi_{n}}\right| \leq 1+m \quad(m>0) \tag{12}
\end{equation*}
$$

thus (10) follows from Cauchy's theorem in one variable. Putting

$$
\Gamma_{m}=\left\{\zeta \in \mathbf{C}^{n} \mid \zeta^{\prime} \in \mathbf{R}^{n-1}, \zeta_{n} \in \gamma_{m}\right\}
$$

and $d \zeta=d \xi_{1} \ldots d \xi_{n-1} d \zeta_{n}$ we thus have for each $m>0$

$$
\begin{equation*}
u(x)=(2 \pi)^{-n} \int_{\Gamma_{m}} \widetilde{u}(\zeta) e^{i\langle x, \zeta\rangle} d \zeta \tag{13}
\end{equation*}
$$

Now suppose the sequences $\{\epsilon\},\{N\}$ and $V(\{\epsilon\},\{N\})$ are given as in Theorem 1. We have to construct sequences $\{\delta\}\{M\}$ such that (6) implies
(1). By rotational invariance we may assume $x=\left(0, \ldots, 0, x_{n}\right)$ with $x_{n}>0$. For each n-tuple α we have

$$
\begin{equation*}
\left(D^{\alpha} u\right)(x)=(2 \pi)^{-n} \int_{\Gamma_{m}} \widetilde{u}(\zeta)(i \zeta)^{\alpha} e^{i\langle x, \zeta\rangle} d \zeta \tag{14}
\end{equation*}
$$

Starting with positive sequences $\{\delta\},\{M\}$ we shall modify them successively such that $(6) \Rightarrow(1)$. Note that for $\zeta \in \Gamma_{m}$

$$
\begin{array}{r}
e^{k|\operatorname{Im} \zeta|} \leq(2+|\xi|)^{k m} \\
\left|\zeta^{\alpha}\right| \leq|\zeta|^{|\alpha|} \leq\left(\left[|\xi|^{2}+m^{2}(\log (2+|\xi|))^{2}\right]^{1 / 2}\right)^{|\alpha|} \tag{16}
\end{array}
$$

For (1) with $j=0$ we take $x_{n}=|x| \geq 0,|\alpha| \leq N_{0}$ so

$$
\begin{equation*}
\left|e^{i\langle x, \zeta\rangle}\right|=e^{-\langle x, \operatorname{Im} \zeta|} \leq 1 \quad \text { for } \zeta \in \Gamma_{m} . \tag{17}
\end{equation*}
$$

Thus if u satisfies (6) we have by (12), (15), (16)

$$
\text { (18) } \quad\left|\left(D^{\alpha} u\right)(x)\right|
$$

$$
\leq \sum_{0}^{\infty} \delta_{k} \int_{\mathbf{R}^{n}}\left(1+\left[|\xi|^{2}+m^{2}(\log (2+|\xi|))^{2}\right]^{1 / 2}\right)^{N_{0}-M_{k}}(2+|\xi|)^{k m}(1+m) d \xi
$$

We can choose sequences $\{\delta\},\{M\}$ (all $\delta_{k}, M_{k}>0$) such that this expression is $\leq \epsilon_{0}$. This then verifies (1) for $j=0$. We now fix δ_{0} and M_{0}. Next we want to prove (1) for $j=1$ by shrinking the terms in $\delta_{1}, \delta_{2}, \ldots$ and increasing the terms in $M_{1}, M_{2}, \ldots\left(\delta_{0}, M_{0}\right.$ having been fixed).

Now we have $x_{n}=|x| \geq 1$ so (17) is replaced by

$$
\begin{equation*}
\left|e^{i\langle x, \zeta\rangle}\right|=e^{-\langle x, \operatorname{Im} \zeta\rangle} \leq(2+|\xi|)^{-m} \text { for } \zeta \in \Gamma_{m} \tag{19}
\end{equation*}
$$

so in the integrals in (18) the factor $(2+|\xi|)^{k m}$ is replaced by $(2+|\xi|)^{(k-1) m}$.
In the sum we separate out the term with $k=0$. Here M_{0} has been fixed but now we have the factor $(2+|\xi|)^{-m}$ which assures that this $k=0$ term is $<\frac{\epsilon_{1}}{2}$ for a sufficiently large m which we now fix. In the remaining terms in (18) (for $k>0$) we can now increase $1 / \delta_{k}$ and M_{k} such that the sum is $<\epsilon_{1} / 2$. Thus (1) holds for $j=1$ and it will remain valid for $j=0$. We now fix this choice of δ_{1} and M_{1}.

Now the inductive process is clear. We assume $\delta_{0}, \delta_{1}, \ldots, \delta_{j-1}$ and M_{0}, M_{1}, \ldots, M_{j-1} having been fixed by this shrinking of the δ_{i} and enlarging of the M_{i}.

We wish to prove (1) for this j by increasing $1 / \delta_{k}, M_{k}$ for $k \geq j$. Now we have $x_{n}=|x| \geq j$ and (19) is replaced by

$$
\begin{equation*}
\left|e^{i\langle x, \zeta\rangle}\right|=e^{-\langle x, \operatorname{Im} \zeta\rangle} \leq(2+|\xi|)^{-j m} \tag{20}
\end{equation*}
$$

and since $|\alpha| \leq N_{j},(18)$ is replaced by

$$
\begin{equation*}
\left|\left(D^{\alpha} f\right)(x)\right| \tag{21}
\end{equation*}
$$

$$
\begin{aligned}
& \leq \sum_{k=0}^{j-1} \delta_{k} \int_{\mathbf{R}^{n}}\left(1+\left[|\xi|^{2}+m^{2}(\log (2+|\xi|))^{2}\right]^{1 / 2}\right)^{N_{j}-M_{k}}(2+|\xi|)^{(k-j) m}(1+m) d \xi \\
& +\sum_{k \geq j} \delta_{k} \int_{\mathbf{R}^{n}}\left(1+\left[|\xi|^{2}+m^{2}(\log (2+|\xi|))^{2}\right]^{1 / 2}\right)^{N_{j}-M_{k}}(2+|\xi|)^{(k-j) m}(1+m) d \xi
\end{aligned}
$$

In the first sum the M_{k} have been fixed but the factor $(2+|\xi|)^{(k-j) m}$ decays exponentially. Thus we can fix m such that the first sum is $<\frac{\epsilon_{j}}{2}$.

In the latter sum the $1 / \delta_{k}$ and the M_{k} can be increased so that the total sum is $<\frac{\epsilon_{j}}{2}$. This implies the validity of (1) for this particular j and it remains valid for $0,1, \ldots j-1$. Now we fix δ_{j} and M_{j}.

This completes the induction. With this construction of $\{\delta\},\{M\}$ we have proved that $W(\{\delta\},\{M\}) \subset V(\{\epsilon\},\{N\})$. This proves Theorem 3 .

Differential Operators with Constant Coefficients

The description of the topology of \mathcal{D} in terms of the range $\widetilde{\mathcal{D}}$ given in Theorem 3 has important consequences for solvability of differential equations on \mathbf{R}^{n} with constant coefficients.
Theorem 4. Let $D \neq 0$ be a differential operator on \mathbf{R}^{n} with constant coefficients. Then the mapping $f \rightarrow \mathcal{D} f$ is a homeomorphism of \mathcal{D} onto $D \mathcal{D}$.

Proof: This proof was shown to me by Hörmander in 1972. A related proof appears in Ehrenpries, loc. cit.

It is clear from Theorem 2 that the mapping $f \rightarrow D f$ is injective on \mathcal{D}. The continuity is also obvious.

For the continuity of the inverse we need the following simple lemma.
Lemma 5. Let $P \neq 0$ be a polynomial of degree m, F an entire function on \mathbf{C}^{n} and $G=P F$. Then

$$
|F(\zeta)| \leq C \sup _{|z| \leq 1}|G(z+\zeta)|, \quad \zeta \in \mathbf{C}^{n}
$$

where C is a constant.

Proof: Suppose first $n=1$ and that $P(z)=\sum_{0}^{m} a_{k} z^{k}\left(a_{m} \neq 0\right)$. Let $Q(z)=z^{m} \sum_{0}^{m} \bar{a}_{k} z^{-k}$. Then, by the maximum principle,

$$
\begin{equation*}
\left|a_{m} F(0)\right|=|Q(0) F(0)| \leq \max _{|z|=1}|Q(z) F(z)|=\max _{|z|=1}|P(z) F(z)| . \tag{22}
\end{equation*}
$$

For general n let A be an $n \times n$ complex matrix, mapping the ball $|\zeta|<1$ in \mathbf{C}^{n} into itself and such that

$$
P(A \zeta)=a \zeta_{1}^{m}+\sum_{0}^{m-1} P_{k}\left(\zeta_{2}, \ldots, \zeta_{n}\right) \zeta_{1}^{k}, \quad a \neq 0
$$

Let

$$
F_{1}(\zeta)=F(A \zeta), \quad G_{1}(\zeta)=G(A \zeta), \quad P_{1}(\zeta)=P(A \zeta)
$$

Then

$$
G_{1}\left(\zeta_{1}+z, \zeta_{2}, \ldots, \zeta_{n}\right)=F_{1}\left(\zeta_{1}+z, \zeta_{2}, \ldots, \zeta_{n}\right) P_{1}\left(\zeta_{1}+z, \zeta_{2}, \ldots, \zeta_{n}\right)
$$

and the polynomial

$$
z \rightarrow P_{1}\left(\zeta_{1}+z, \ldots, \zeta_{n}\right)
$$

has leading coefficient a. Thus by (22)

$$
\left|a F_{1}(\zeta)\right| \leq \max _{|z|=1}\left|G_{1}\left(\zeta_{1}+z, \zeta_{2}, \ldots, \zeta_{n}\right)\right| \leq \max _{\substack{z \in \mathrm{C}^{n} \\|z| \leq 1}}\left|G_{1}(\zeta+z)\right| .
$$

Hence by the choice of A

$$
|a F(\zeta)| \leq \sup _{\substack{z \in \mathbf{C}^{n} \\|z| \leq 1}}|G(\zeta+z)|
$$

proving the lemma.
For Theorem 4 it remains to prove that if V is a convex neighborhood of 0 in \mathcal{D} then there exists a convex neighborhood W of 0 in \mathcal{D} such that

$$
\begin{equation*}
f \in \mathcal{D}, D f \in W \Rightarrow f \in V \tag{23}
\end{equation*}
$$

We take V as the neighborhood $W(\{\delta\},\{M\})$. We shall show that if $W=$ $W(\{\epsilon\},\{M\})$ (same $\{M\}$) then (26) holds provided the ϵ_{j} in $\{\epsilon\}$ are small enough. We write $u=D f$ so $\widetilde{u}(\zeta)=P(\zeta) \widetilde{f}(\zeta)$ where P is a polynomial. By Lemma 5

$$
\begin{equation*}
|\widetilde{f}(\zeta)| \leq C \sup _{|z| \leq 1}|\widetilde{u}(\zeta+z)| \tag{24}
\end{equation*}
$$

But $|z| \leq 1$ implies

$$
(1+|z+\zeta|)^{-M_{j}} \leq 2^{M_{j}}(1+|\zeta|)^{-M_{j}}, \quad|\operatorname{Im}(z+\zeta)| \leq|\operatorname{Im} \zeta|+1,
$$

so if $C 2^{M_{j}} e^{j} \epsilon_{j} \leq \delta_{j}$ then (23) holds.

Corollary 6. Let $D \neq 0$ be a differential operator on \mathbf{R}^{n} with constant (complex) coefficients. Then

$$
\begin{equation*}
D \mathcal{D}^{\prime}=\mathcal{D}^{\prime} \tag{25}
\end{equation*}
$$

In particular, there exists a distribution T on \mathbf{R}^{n} such that

$$
\begin{equation*}
D T=\delta . \tag{26}
\end{equation*}
$$

Definition A distribution T satisfying (26) is called a fundamental solution for D.

To verify (25) let $L \in \mathcal{D}^{\prime}$ and consider the functional $D^{*} u \rightarrow L(u)$ on $D^{*} \mathcal{D}$ (* denoting adjoint). Because of Theorem 2 this functional is well defined and by Theorem 4 it is continuous. By the Hahn-Banach theorem it extends to a distribution $S \in \mathcal{D}^{\prime}$. Thus $S\left(D^{*} u\right)=L u$ so $D S=L$, as claimed.

Corollary 7. Given $f \in \mathcal{D}$ there exists a smooth function u on \mathbf{R}^{n} such that

$$
D u=f .
$$

In fact, if T is a fundamental solution one can put $u=f * T$.

