
Hörmander’s Topological Paley–Wiener Theorem

(Informal class notes, S. Helgason)

The space D = D(Rn) = C∞
c (Rn) is given the inductive limit topology

of the spaces DBj(0)
of functions ϕ ∈ D with support in the ball Bj(0) =

{x ∈ Rn = |x| ≤ 1}. This topology can be characterized by the following
result of Schwartz (Distributions, p. 67).

Theorem 1. Given two monotonic sequences

{ε} : ε0 , ε1 , . . . εi → 0

{N} : N0 , N1 , . . . Ni → ∞

let V ({ε}{n}) denote the set of functions ϕ ∈ D satisfying for each j ≥ 0
the conditions:

(1) |Dαϕ(x)| ≤ εj for |α| ≤ Nj , |x| ≥ j .

Then the sets V ({ε} , {N}) form a fundamental system of neighborhoods of
0 in D.

Let A ≥ 0 and DA the space D
BA(0)

topologized by the seminorms

(2) ‖f‖m =
∑

|α|≤m

sup
|x|<A

|(Dαf)(x)| .

Also let HA = HA(Cn) denote the space of holomorphic functions of expo-
nential type A, that is the space of holomorphic functions ϕ such that for
each N ∈ Z+

(3) |‖ϕ‖|N = sup
ζ∈Cn

(1 + |ζ|)Ne−A| Im ζ||ϕ(ζ)| < ∞ .

Im ζ denoting the imaginary part of ζ. We topologize HA with the semi-
norms |‖ ‖|N .

Theorem 2. The Fourier transform f → f̃ where

f̃(ζ) =

∫

Rn

f(x)e−i〈x,ζ〉 dx , ζ ∈ Cn

is a homeomorphism of DA onto HA.
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Proof:
The Paley–Wiener theorem states that

D̃A = HA .

The continuity statements follow easily from the formulas

(4) i|β|ζβf̃(ζ) =

∫

Rn

(Dβf)(x)e−i〈x,ζ〉 dx

and the inversion

(5) (Dαf)(x) = (2π)−n

∫

Rn

(iζ)αf̃(ζ)ei〈x,ζ〉 dζ .

The space DA is complete. If f̃i is a Cauchy sequence in HA, replacing f
in (5) by fi−fj we seef i is aCauchy sequence in D A , conv
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Proof:
Let W ({δ} , {M}) denote the set of u ∈ D satisfying (6). Given k ∈ Z+

the set

Wk = {u ∈ D
Bk(0)

: |ũ(ζ)| ≤ δk
1

(1 + |ζ|)Mk
ek| Im |}

is by Theorem 2 a neighborhood of 0 in DBk(0) and is clearly contained in

W ({0}{M}). If V is a convex set containing W ({δ} , {M}) then V ∩DBk(0)
contains the neighborhood Wk of 0 in D

Bk(0)
so by the definition of inductive

limit V is a neighborhood of 0 in D.
Proving the converse amounts to proving that given V ({ε}, {N}) there

exist sequences {δ} {M} such that

W ({δ}{M}) ⊂ V ({ε}, {N}) .

For this we shift the path of integration in

(7) u(x) = (2π)−n

∫

Rn

ũ(ξ)ei〈x,ξ〉 dξ

to another one, in which the two weight factors in (3) are comparable. We
write

x = (x1, . . . , xn) , x′ = (x1, . . . , xn−1)
ζ = (ζ1, . . . , ζn) , ζ ′ = (ζ1, . . . , ζn−1)
ξ = (ξ1, . . . , ξn) , ξ′ = (ξ1, . . . , ξn−1)

ζ = ξ + iη ξ, η ∈ Rn .

Then

(8)

∫

Rn

ũ(ξ)ei〈x,ξ〉 dξ =

∫

Rn−1

ei〈x′,ξ′〉 dξ′
∫

R

eixnξn ũ(ξ′, ξn) dξn .

In the last integral we shift from R to the contour in C given by

(9) γm : ζn = ξn + im log(2 + [|ξ′|2 + ξ2
n]1/2) ,

m being arbitrary. We claim that, by Cauchy’s theorem

(10)

∫

R

eixnξn ũ(ξ′, ξn) dξn =

∫

γm

eixnζn ũ(ξ′, ζn) dζn .
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ξn

ηn

γm

m log(1 + )|ξ′|

For this we must estimate the right integrand in the “strip” between the
ξn-axis and the curve γm.

The function ζn → ũ(ξ′, ζn) satisfies

(11) |ũ(ξ′, ζn)| ≤ CN
eA| Im ζn|

(1 + |ζn|)N

for some A, all N , the constant CN depending only on N . On the vertical
line joining (ξn, 0) to (ξn, ηn), ũ(ξ′, ζn) (with ξ′ fixed) decays faster than any
power of |ζn|

−1. Secondly,

|eixnζn | ≤ e|xn||ηn| ,

which is bounded by a polynomial in |ζn|. Also on γm

(12)

∣∣∣∣
dζn

dξn

∣∣∣∣ =

∣∣∣∣1 + im
1

2 + |ξ|

∂(|ξ|)

∂ξn

∣∣∣∣ ≤ 1 + m (m > 0)

thus (10) follows from Cauchy’s theorem in one variable. Putting

Γm = {ζ ∈ Cn|ζ ′ ∈ Rn−1 , ζn ∈ γm}

and dζ = dξ1 . . . dξn−1 dζn we thus have for each m > 0

(13) u(x) = (2π)−n

∫

Γm

ũ(ζ)ei〈x,ζ〉 dζ .

Now suppose the sequences {ε}, {N} and V ({ε}, {N}) are given as in
Theorem 1. We have to construct sequences {δ} {M} such that (6) implies
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(1). By rotational invariance we may assume x = (0, . . . , 0, xn) with xn > 0.
For each n-tuple α we have

(14) (Dαu)(x) = (2π)−n

∫

Γm

ũ(ζ)(iζ)αei〈x,ζ〉 dζ .

Starting with positive sequences {δ}, {M} we shall modify them succes-
sively such that (6) ⇒ (1). Note that for ζ ∈ Γm

ek| Im ζ| ≤ (2 + |ξ|)km(15)

|ζα| ≤ |ζ||α| ≤ ([|ξ|2 + m2(log(2 + |ξ|))2]1/2)|α| .(16)

For (1) with j = 0 we take xn = |x| ≥ 0, |α| ≤ N0 so

(17) |ei〈x,ζ〉| = e−〈x,Im ζ| ≤ 1 for ζ ∈ Γm .

Thus if u satisfies (6) we have by (12), (15), (16)

|(Dαu)(x)|(18)

≤
∞∑

0

δk

∫

Rn

(1 + [|ξ|2 + m2(log(2 + |ξ|))2]1/2)N0−Mk(2 + |ξ|)km(1 + m) dξ .

We can choose sequences {δ}, {M} (all δk, Mk > 0) such that this expression
is ≤ ε0. This then verifies (1) for j = 0. We now fix δ0 and M0. Next we
want to prove (1) for j = 1 by shrinking the terms in δ1, δ2, . . . and increasing
the terms in M1,M2, . . . (δ0, M0 having been fixed).

Now we have xn = |x| ≥ 1 so (17) is replaced by

(19) |ei〈x,ζ〉| = e−〈x,Im ζ〉 ≤ (2 + |ξ|)−m for ζ ∈ Γm

so in the integrals in (18) the factor (2+ |ξ|)km is replaced by (2+ |ξ|)(k−1)m.
In the sum we separate out the term with k = 0. Here M0 has been fixed

but now we have the factor (2 + |ξ|)−m which assures that this k = 0 term
is < ε1

2 for a sufficiently large m which we now fix. In the remaining terms
in (18) (for k > 0) we can now increase 1/δk and Mk such that the sum is
< ε1/2. Thus (1) holds for j = 1 and it will remain valid for j = 0. We now
fix this choice of δ1 and M1.

Now the inductive process is clear. We assume δ0, δ1, . . . , δj−1 and M0,M1,
. . . ,Mj−1 having been fixed by this shrinking of the δi and enlarging of the
Mi.
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We wish to prove (1) for this j by increasing 1/δk, Mk for k ≥ j. Now
we have xn = |x| ≥ j and (19) is replaced by

(20) |ei〈x,ζ〉| = e−〈x,Im ζ〉 ≤ (2 + |ξ|)−jm

and since |α| ≤ Nj , (18) is replaced by

|(Dαf)(x)|(21)

≤

j−1∑

k=0

δk

∫

Rn

(1 + [|ξ|2 + m2(log(2 + |ξ|))2]1/2)Nj−Mk(2 + |ξ|)(k−j)m(1 + m) dξ

+
∑

k≥j

δk

∫

Rn

(1 + [|ξ|2 + m2(log(2 + |ξ|))2]1/2)Nj−Mk(2 + |ξ|)(k−j)m(1 + m) dξ .

In the first sum the Mk have been fixed but the factor (2+ |ξ|)(k−j)m decays
exponentially. Thus we can fix m such that the first sum is <

εj

2 .
In the latter sum the 1/δk and the Mk can be increased so that the total

sum is <
εj

2 . This implies the validity of (1) for this particular j and it
remains valid for 0, 1, . . . j − 1. Now we fix δj and Mj.

This completes the induction. With this construction of {δ}, {M} we
have proved that W ({δ}, {M}) ⊂ V ({ε}, {N}). This proves Theorem 3.

Differential Operators with Constant Coefficients

The description of the topology of D in terms of the range D̃ given in The-
orem 3 has important consequences for solvability of differential equations
on Rn with constant coefficients.

Theorem 4. Let D 6= 0 be a differential operator on Rn with constant
coefficients. Then the mapping f → Df is a homeomorphism of D onto
DD.

Proof: This proof was shown to me by Hörmander in 1972. A related proof
appears in Ehrenpries, loc. cit.

It is clear from Theorem 2 that the mapping f → Df is injective on D.
The continuity is also obvious.

For the continuity of the inverse we need the following simple lemma.

Lemma 5. Let P 6= 0 be a polynomial of degree m, F an entire function on
Cn and G = PF . Then

|F (ζ)| ≤ C sup
|z|≤1

|G(z + ζ)|, ζ ∈ Cn ,

where C is a constant.
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Proof: Suppose first n = 1 and that P (z) =
∑m

0 akz
k(am 6= 0). Let

Q(z) = zm
∑m

0 akz
−k. Then, by the maximum principle,

(22) |amF (0)| = |Q(0)F (0)| ≤ max
|z|=1

|Q(z)F (z)| = max
|z|=1

|P (z)F (z)| .

For general n let A be an n × n complex matrix, mapping the ball |ζ| < 1
in Cn into itself and such that

P (Aζ) = aζm
1 +

m−1∑

0

Pk(ζ2, . . . , ζn)ζk
1 , a 6= 0 .

Let
F1(ζ) = F (Aζ), G1(ζ) = G(Aζ), P1(ζ) = P (Aζ) .

Then

G1(ζ1 + z, ζ2, . . . , ζn) = F1(ζ1 + z, ζ2, . . . , ζn)P1(ζ1 + z, ζ2, . . . , ζn)

and the polynomial
z → P1(ζ1 + z, . . . , ζn)

has leading coefficient a. Thus by (22)

|aF1(ζ)| ≤ max
|z|=1

|G1(ζ1 + z, ζ2, . . . , ζn)| ≤ max
z∈C

n

|z|≤1

|G1(ζ + z)| .

Hence by the choice of A

|aF (ζ)| ≤ sup
z∈C

n

|z|≤1

|G(ζ + z)|

proving the lemma.
For Theorem 4 it remains to prove that if V is a convex neighborhood

of 0 in D then there exists a convex neighborhood W of 0 in D such that

(23) f ∈ D, Df ∈ W ⇒ f ∈ V .

We take V as the neighborhood W ({δ}, {M}). We shall show that if W =
W ({ε}, {M}) (same {M}) then (26) holds provided the εj in {ε} are small

enough. We write u = Df so ũ(ζ) = P (ζ)f̃(ζ) where P is a polynomial. By
Lemma 5

(24) |f̃(ζ)| ≤ C sup
|z|≤1

|ũ(ζ + z)| .

But |z| ≤ 1 implies

(1 + |z + ζ|)−Mj ≤ 2Mj (1 + |ζ|)−Mj , | Im (z + ζ)| ≤ | Im ζ| + 1 ,

so if C2Mj ejεj ≤ δj then (23) holds.
Q.e.d.
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Corollary 6. Let D 6= 0 be a differential operator on Rn with constant
(complex) coefficients. Then

(25) D D′ = D′ .

In particular, there exists a distribution T on Rn such that

(26) DT = δ .

Definition A distribution T satisfying (26) is called a fundamental solution
for D.

To verify (25) let L ∈ D′ and consider the functional D∗u → L(u) on
D∗D (∗ denoting adjoint). Because of Theorem 2 this functional is well
defined and by Theorem 4 it is continuous. By the Hahn-Banach theorem
it extends to a distribution S ∈ D′. Thus S(D∗u) = Lu so DS = L, as
claimed.

Corollary 7. Given f ∈ D there exists a smooth function u on Rn such
that

Du = f .

In fact, if T is a fundamental solution one can put u = f ∗ T .
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