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We consider a 2-approximation algorithm for Euclidean mini-
mum-cost perfect matching instances proposed by the authors
in a previous paper. We present computational results for both
random and real-world instances having between 1,000 and
131,072 vertices. The results indicate that our algorithm gener-
ates a matching within 2% of optimal in most cases. In over
1,400 experiments, the algorithm was never more than 4% from
optimal. For the purposes of the study, we give a new imple-
mentation of the algorithm that uses linear space instead of
quadratic space, and appears to run faster in practice.

T he main criticism which is often formulated with regard to
approximation algorithms is that, although they are backed
up by a performance guarantee (often through very elegant
arguments), they might not generate “nearly-optimal” solu-
tions in practice. Indeed, a practitioner will seldom be sat-
isfied with a solution guaranteed to be of cost less than, say,
twice the optimum cost; by far, he will prefer a heuristic
algorithm which typically generates a solution within, say,
3% of optimality, although this heuristic might from time to
time generate a more costly solution. For example, in the
context of the traveling salesman problem, computational
studies show that the heuristic algorithm of Lin and Ker-
nighan outperforms in practice the algorithm of Christ-
ofides, although the latter one has a performance guarantee
of % (i.e., the cost of Christofides” tour is guaranteed to be
within a factor of % of optimal)."! A similar comment can be
made for running Hmes both for exact or approximation
algorithms. The fastest algorithm in practice might not be
the one with best worst-case running time.

Motivated by these comments, we perform a computa-
tional study of an existing approximation algorithm for the
Euclidean minimum-cost perfect matching problem. The
minimum-cost perfect matching problem is the problem of
finding a minimum-cost set of non-adjacent edges that cover
all vertices. The algorithm we consider was proposed by
Goemans and Williamson'"!! for any cost function satisfying
the triangle inequality, but we restrict our attention to Eu-
clidean instances where the edge costs are the distances
between points under the [, or [, norms. The algorithm has
a performance guarantee of 2, and the implementation de-
scribed in [11] runs in O(#* log #) time, where 1 denotes the
number of vertices. The algorithm has an important feature
from a practical point-of-view: it is primal-dual. This means

that it not only generates a perfect matching but also a lower
bound on the optimum cost. The worst-case result proved in
[11] says that the cost of the perfect matching generated is at
most twice the value of the lower bound generated by the
algorithm.

The main purpose of this computational study is to de-
termine how far the perfect matching obtained by the algo-
rithm is from optimal. Our results thus far indicate that in
terms of quality of approximation, the algorithm behaves
more like Lin-Kernighan’s algorithm than Christofides”: in
over 1,400 experiments on random and structured instances
ranging in size from 1,000 to 131,072 vertices, the algorithm
was never more than 4% away from optimal and 7% away
from the lower bound. On random instances drawn uni-
formly from the unit square, a result of Papadimitriou!'®
shows that the cost of an optimal matching on n vertices
almost surely converges to B,,\Vn, where B, is constant.
Assuming that our algorithm has the same behavior, we
show experimentally that the matching constant for the
algorithm is 1.6% away from B,, and 3.7% away from the
constant of the lower bound when the Euclidean norm is
used. When the [ norm is used, these gaps become 2.0% and
4.4%. In the course of obtaining these results, we also obtain
a new estimate of 8,,. On several structured instances drawn
from the Traveling Salesman Library, TSPLIB," the algo-
rithm performed somewhat better than on random in-
stances, generating matchings at most 2% away from opti-
mal and usually within 1-1.5%.

For the purposes of this study, it was necessary to develop
a different implementation of the algorithm than that given
in Goemans and Williamson."""! The main drawback of the
implementation given there is that it requires ®(n”) space.
This space bound severely limits the size of the instances
that could be solved. Using some algorithmic ideas of Bent-
ley and Friedman'®’ and Bentley,” we give an implementa-
tion that uses O(n) space. Our implementation also seems to
be faster in practice, although its worst-case running time,
while still polynomial, is not as good as O(n* log n).

In addition to studying the quality of solutions produced
by the algorithm, we report other various statistical proper-
ties of the solutions and of the algorithm's implementation.

Our study to this point does not yet answer the question
of whether the approximation algorithm is a practical alter-
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Input: A complete graph G = (V, E) and edge costs c. > 0 satisfying the triangle inequality

Output: A perfect matching M and a value LB
Fe1

1

2 LB« 0

3 Ct-—{{'u}:'uEV}

4 For each v € V

5 d(v) «— 0

6 While 3C € C : |C] is odd
7

8

9

Find edge e = (1,7) withi € Cp, €, j€C, €C, G, # Cy that minimizes € =

F — FU{e}
For all v € Cr € C do d(v) « d(v) +¢-p(C;)

10 LB« LB+eY  .2(C)

11 €= CU{C, UC} - {Cp} = {Cy}
12

13

ce—d(i)—

P(Cp)+p(Cy)

F' + {e € F: There exists an odd connected component N in (V, F — {e})}
Convert F' to matching M. For each component of F’, duplicate all the edges of F', shortcut in order to

obtain a collection of cycles and, for each such cycle, keep the best matching out of the two that it induces.

Find optimal matchings on small components.

Figure 1.

native to a very good implementation of an algorithm that
can solve the matching problem exactly or to other heuristics
for the matching problem. Edmonds'”! first showed that the
matching problem is solvable in polynomial time, and since
then several algorithms and implementations of these algo-
rithms have been proposed; see Applegate and Cook!!! for a
brief discussion. For our study, we used a very efficient
implementation of Edmonds’ algorithm written by Apple-
gate and Cook'"! to find optimal matchings. Our implemen-
tation was only faster than Applegate and Cook’s code on
large random instances; it was slightly slower on small
random and structured instances and usually significantly
slower on large structured instances. It is likely that a
speed-up of our implementation can be achieved if we first
restrict our attention to a sparse subgraph as is done by
Applegate and Cook. In addition, other matching heuristics
described in the literature (such as that of Jiinger and Pul-
leyblank*! and those in the survey of Avis™) run much
faster, although the quality of the solutions produced does
not appear to be as good and the heuristics have no worst-
case performance guarantee.

Our paper is structured as follows. In Section 1, we review
the approximation algorithm of Goemans and William-
son.I""! Section 2 discusses the new implementation, and
Section 3 reviews known results about the behavior of Eu-
clidean optimization problems on random instances that
prompted some of our computational study. Section 4 gives
the results of our study, and we conclude with some re-
marks in Section 5.

1. Review of the Algorithm

In this section, we review the algorithm of Goemans and
Williamson"'" and we also briefly indicate an implementa-
tion running in O(n* log n) time.

The main algorithm.

The algorithm is shown in Figure 1. The main portion of
the algorithm (lines 1 through 12) finds a set F’ of edges such
that every vertex has odd degree and, thus, each connected
component has even size. This part of the algorithm main-
tains a forest F of edges, which is initially empty. The algo-
rithm loops, in every iteration selecting an edge (i, j) be-
tween two distinct connected components of F, then
merging these two components by adding (i, j) to F. The loop
terminates when all connected components C of F have even
size. From these edges in F, we form the set F' of edges by
keeping only necessary edges. Thus we remove any edge
from F that joins two components of even size. A parity
argument shows that every vertex in the resulting set must
have odd degree.

The final step of the algorithm (line 13) turns the set of
edges F’ into a perfect matching. A matching of cost no
greater than F' can be obtained as follows: duplicate all
edges in F’ so that each component is an Eulerian graph on
an even number of vertices, shortcut each component to a
cycle, then keep the best matching out of the two induced by
the cycle. To obtain slightly better matchings, we find the
optimal matching on the component by complete enumera-
tion for all components of size 10 or smaller, and use the
doubling-and-shortcutting method for larger components.

The good approximation properties of the algorithm fol-
low from the way in which the edge is chosen in each
iteration. The algorithm maintains variables d(v) for each
vertex v, and a lower bound LB; these variables are all
initially zero. In each iteration, the algorithm chooses an
edge e = (i, /) spanning two distinct components (say C, and
C,) that minimizes ¢ = (¢, — d(i) — d(j))/(p(C,)
+ p(C,)), where p(C) is the parity of component C (that is, 1
if C has odd size, and 0 otherwise). It can be shown that e =
0. Then d(v) is increased by e for all vertices v in odd
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components, and LB is increased by e times the number of
odd components. Goemans and Williamson'"!! show that
choosing the edges in this fashion implicitly constructs a
feasible solution to the dual of a linear programming for-
mulation of the matching problem such that the value of the
dual solution is LB, and 2, ¢, = 2 LB. Because LB is a
lower bound on the value of an optimal matching, this
proves that the algorithm has a performance guarantee of 2.

The main problem involved in implementing the algo-
rithm is deciding which edge to select in each iteration. The
O(n? log n) time algorithm of [11] uses a priority queue of
edges. Given a notion of time T in the algorithm (starting at
zero and advancing by e each iteration), the key value of
each edge e = (i, ) is T + (¢, — d(i) — d(j))/(p(C,)
+ p(C,)). We call this quantity the edge’s addition time; it is
the time at which the reduced cost (¢, — d(i)
= d(jN/(p(C,) + p(C)) of the edge will be zero, given that
the parity of the two components containing its two end-
points remains the same. Since the parity of components
change only when two components are merged, we only
need to update the key values of edges adjacent to the two
components that are merged. Also, for each pair of compo-
nents we only need to keep the edge with the smallest
addition time. We select the edge with the smallest addition
time in each iteration. This analysis leads to O() queue
operations per iteration of the algorithm, with O(n) itera-
tions, for an overall running time of O(#* log n). Gabow,
Goemans, and Williamson''"! have shown how this selection
step can be implemented in O(n*Vlog log ») time by using
many small priority queues.

2. Implementation Description

In this section, we describe another implementation of the
edge selection step. The implementation described in the
previous section has two main disadvantages for perform-
ing computational experiments. The first is that it uses @(n?)
space; this severely limits the size of the instances that can be
solved. The second is that the running time is in fact ©(n* log
n): the algorithm must add at least #/2 edges to obtain a
feasible solution, necessitating ®(1°) queue operations. The
main theoretical advantage of our new implementation com-
pared to the one given above is that it is much more space
efficient, using only O(n) space. Moreover, although its
worst-case time complexity appears to be worse than the
original implementation, it performs well enough on aver-
age to allow us to run relatively large instances. It will
require O(n”) queue operations, and we will see experimen-
tally that it requires O(n' ") queue operations on random
instances, although other factors will now dominate the
running time.

Before we go on to describe the main idea behind select-
ing edges in our implementation, we note that several small
tricks are necessary to ensure that other parts of the algo-
rithm do not force the running time to be (}(n?). For exam-
ple, updating the d(v) variables each iteration would take
®(n*) time. To avoid this, we augment a union-find structure
used to keep track of the connected components of the
current edge set. Since the d(v) are increased by the same

amount for all vertices v in the same component, we increase
an offset in the root of the component, and define d(v) to be
the sum of the offsets along the path to the root. In addition,
we let the increases for a component accumulate and only
change the offset when we merge the component with an-
other component, or when we need to calculate d(i) for some
vertex i in the component.

The basic idea of the implementation is that each compo-
nent should maintain an estimate of its closest neighboring
component under addition times. The corresponding edges
are placed in a priority queue with the estimates as the key
values. The estimates are maintained in such a way that the
shortest edge (under addition times) between two compo-
nents is always found in any iteration of the while loop; thus
the algorithm can be successfully implemented. The main
advantage of this implementation is its space efficiency: we
need to keep track of the keys of only €| edges, where € is
the set of components. This approach is adapted from algo-
rithms for the minimum-cost spanning tree and traveling
salesman problems in Bentley and Friedman'®! and Bent-
ley.!

More formally, let I(¢} denote the current addition time of
edge ¢ = (i, /). For two components C,, and C, in 6, let I(C,,,
C,) be equal to the smallest addition time of an edge with
one endpoint in C, and the other in C,. The key of an edge
e in the queue will be denoted by k(e) and corresponds to the
addition time of that edge when it was added to the queue.
By abuse of notation, we let k(C) denote the key of the edge
in the queue which was selected by component C.

The implementation works as follows:

¢ Initially, every vertex calculates its nearest neighbor (un-
der addition times) and puts the corresponding edge in
the priority queue with a key value of the addition time.

¢ Whenever we pull an edge e off the queue, we check if its
key value k(e) is no less than its actual addition time I(e).
We maintain that whenever this is true, then the edge is
the next edge that should be added; that is, it has the
smallest addition time. Whenever two components get
merged into one, we find its new nearest neighbor under
addition times.

* When the key value of the edge e is less than the actual
addition time, we then search for the component’s real
nearest neighbor, bounding the search by the correct ad-
dition time I(e) of ¢, and insert the corresponding edge in
the priority queue with its correct key value.

In order to prove that the implementation is correct, we
first prove that it maintains an invariant.

Lemma 1. At any point in the algorithm, for all C,, C, € €,
min(k(Cp), k(Cy)) = I(C,, C.

Proof. Certainly the invariant is true initially. Suppose that
we insert an edge e selected by component C to the queue.
This insertion might be the result of either two components
merging into C or the discovery that the edge in the queue
corresponding to C has a key less than its addition time. In
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both cases, the invariant is maintained for any two compo-
nents C, and C, different from C. Moreover, if C,, = C then
our choice of the edge to insert guarantees that min(k(C),
KC)) = k(C) = k(e) = Ite) = I(C, C)), implying that the
invariant continues to hold. =

The invariant leads to a proof of correctness.

Theorem 1. The implementation selects an edge with the smallest
addition time in every iteration.

Proof. In each iteration of the algorithm, we must find the
edge with the smallest addition time. Let # denote the small-
est addition time of this iteration, and let ¢ be the edge at the
top of the queue. We will show that whenever k(e) = le)
then l{e) = 4 and thus the algorithm correctly selects edge e.
Whenever k(e) < I(e) we replace the queue element ¢ with
another edge ¢’ such that k(e') = I(e’). Such a replacement
does not affect the distances between components or the
other key values in the queue, so we can replace at most [
number of edges before we must reach the case that k(e) =
I(e) for the top element e of the queue.

Suppose k(e) = I(e). By the invariant, for any C,, C, € 6,
we have min(k(C,,), k(C,',)) s i(CP, C,). But since ¢ is the edge
at the top of the queue, k(e) = k(C) for all C € € and, thus,
kie) = I(C,, C,). The fact that I(¢) = k(¢) now implies that I(¢)
= IC,, C,) for any C,, C, € ‘6. In other words, e is an edge
with smallest addition time. =

We now evaluate the worst-case number of queue oper-
ations. The argument of the theorem shows that we perform
at most O(n) queue operations for each edge selection. This
implies that the algorithm performs a total of O(n”) queue
operations.

In order to complete the description of our implementa-
tion, we must describe how to find an edge e that represents
the nearest neighbor of a component C under addition time.
To do this, we use k-d trees of Friedman, Bentley, and
Finkel! as described in Bentley."! A k-d tree is a binary tree
that corresponds to a partitioning of a given set of points in
d-dimensional space; here we use d = 2. The tree is con-
structed by determining whether the points are spread out
most in the x or y direction, then finding the vertical or
horizontal line that splits the points in half that direction.
The line determines an internal node of the tree, and the
procedure is performed recursively on each half until the
number of points remaining is below a certain threshold
(usually 5 or 6). Hence each leaf in the tree corresponds to a
bucket containing at most a certain number of points. The
tree can be used to perform a search for the nearest neighbor
of a given point under a number of norms (including L, I,
and [.): at each internal node we first search the subtree
containing the given point, then search the other tree if the
nearest neighbor found so far is no closer than the distance
from the given point to the line determining the internal
node. Friedman et al. show experimentally that this search
takes O(log ) expected time, and Bentley'*! gives a bot-
tom-up variation that seems to take O(1) expected time.
Notice that this search method also lends itself to searching
for the nearest neighbor within a certain radius.

To find the nearest neighbor of a component C under

&j

Figure 2. The four quadrants around v,

addition time, we iterate through the vertices in C to find the
smallest edge (under addition time) from the vertex to a
vertex not in C. We use the smallest edge found so far to
bound the search on the next vertex. Let v; denote the point
in the Euclidean plane corresponding to vertex i, and let
[o; = o] denote the distance between vertices i and j, and
hence the cost of edge (i, j). Suppose we are searching from
vertex i in component C, the current time is T, and the
smallest edge found so far has addition time a. Thus any
potentially smaller edge ¢ = (i, j) must satisfy T + (c.
— d(i) — d(j)) /(p(C) + p(C")) = a, which implies that ¢, —
di) = T =@ — TpC) + 1) since d(j) = T forall j € V and
p(C") = 1. Therefore j must be within distance (@ — T){(p(C) +
D +d@ + T.

As one might suspect, the time spent performing these
searches dominates all other operations in our implementa-
tion. Therefore, we introduce a few tricks for speeding up
these searches. The first trick is that whenever we notice that
all the vertices in a subtree of the k-d tree belong to the same
component, we label the subtree with the name of that
component. Then whenever we search for the nearest neigh-
bor of a vertex in C, we ignore all subtrees labeled C. This
trick is useful as C becomes large and most of the neighbor-
ing vertices of a given vertex in C are also in C.

Another trick we use is that when searching for the near-
est neighbor of a vertex i in C, we can sometimes infer when
possible nearest neighbor candidates will be closer to an-
other vertex j in C than i. We say that i is shadowed by j. Thus
we can disregard these nearest neighbor candidates. To be
more formal, consider the four quadrants of the plane
formed by using ©v; as the origin. Let (x,, y) denote the
coordinates of v,. Let n, be the Euclidean point (x, + d(1), y.)
and let ¢; be the point (x, y; + d(i) (see Figure 2).
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Illustration of the case in which v, is in

Figure 3.
quadrant L.

Theorem 2. Suppose there is some other vertex | in C such that |
is not in quadrant 11 (i.e. j is such that x; = x; or y; = y,), and

i — vl = d(j) and [le; = o] = d(j).

Then, for any vertex q in quadrant [ (x, = x;and y_ = y,) that is
in component C' # C, vertex j is at least as close to vertex q under
addition times as is vertex I.

Proof. To show this, we will prove that [|v, — ¢/ — d(j) =
lo, = v/ — d(i). From this it will follow that T + (Jo,
— ol — dj) — d@n/(plCQ) + pC) = T + (o,
= ol = dli) — dig) /(p(C) + p(C").

We consider two cases. First suppose that v, is in quadrant
[. Because vertex g is not in component C, it cannot lie inside
the triangle defined by v, n,, and e,. Furthermore, v, cannot
lie inside the triangle defined by v;, n; and ¢, since both #,
and ¢; are within distance d(j) of v, As a result, the line
segment (v, v,) must intersect either the line segment (n;, v))
or the line segment (v, ¢;) (see Figure 3). Assume the former
(the other case is similar), and let m be the intersection point.
Then

”Ul' - t"u" + ”P; - ”F”
= o = m|l + llm = n| + [lo, — ml + [lm — v

[,

which implies that [[v, — o] + d() = [jo, — v + d(), as
desired.

Now suppose that v; is in quadrant IV (the case for II is
similar). Since [[v; — v = [n; — vj| = d(j) and v, is not in the
same component as v; and v, v, cannot be in the triangle
defined by v;, v, and n,. Hence, the line segments (v,, v,) and (1,

v,) must intersect. Then the proof is the same as above. ®

= |lo, = n + |lv, — v

Thus if vertex i is shadowed as in the statement of the
theorem, we need not look for nearest neighbors of i in
quadrant I. Obviously, shadowing is symmetric with respect
to quadrants. Once the size of a component has increased by
a certain amount, we sweep through the component, deter-
mining in which quadrants each vertex is shadowed. We
store this information in four bits for each vertex and use it
when we perform nearest neighbor searches to cut down the
scope of the search for each vertex. If a vertex is shadowed
in all four quadrants, then we do not perform a search on it
at all.

3. Probabilistic Analysis of Euclidean Functionals

A great deal is known about the behavior of randomly
distributed Euclidean instances of combinatorial optimiza-
tion problems. In the basic version of the Euclidean model, the
vertices of the problem instance are distributed indepen-
dently and uniformly in the unit square [0, 1]* and the
Euclidean metric plays the role of cost function. The furic-
tionals of interest are typically the values of combinatorial
optimization problems (such as the traveling salesman,
matching or minimum spanning tree problems) on these
randomly distributed points. The behavior of these function-
als is somewhat independent of the functional itself and, for
these reasons, we briefly review some of these probabilistic
results for the most studied problem, the traveling salesman
problem. We also indicate results likely to hold, although
they have never been proved. For a more detailed picture of
the field, the reader is referred to [23, 15, 21, 27].

The asymptotic behavior of the value of the traveling
salesman problem was first studied in the pioneering paper
of Beardwood, Halton, and Hammersley."*! They prove the
existence of a constant B, such that

TSP,
lim —
s \.’ n

(1)

= Bysp almost surely

where TSP, denotes the value of the optimal tour on X, X,
... X, with the X/'s being an infinite sequence of indepen-
dently and uniformly distributed vertices from [0, 1]*. Steele
has shown that TSP,/Vn converges completely to fqp
rather than almost surely [22]. We should point out that the
exact value of Bysp is not known. More recently, a careful
analysis of the functional has led to the following results
and/or conjectures. It is known that Var TSP, is uPper
bounded by a constant (see Steele'*): Var TSP, = == +
O(1/n). Quoting Steele,*"!

... it seems inevitable that one has a genuine limit, lim,,__,
Var TSP, = o > 0. It is less certain but (still very likely) that
one has a central limit theorem TSP, — E[TSP,] ~ N(0, 7).

Rhee and Talagrand® have proved a first step towards this
central limit theorem by showing that the tails of TSP, are
Gaussian or subGaussian: there exists K such that, for all t,
Pr ([TSP, — EITSP, )| > B) < Ke " /K. From the knowledge of
E[TSP, ] for a finite value of #, one can derive a bound on the
limiting constant B¢, Indeed (see Jaillet!'?), there exists a
constant yygp < 9.5 such that, for all n, |[E[TSP,] — ByspVi| =
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Table I. Experimental Results on TSPLIB Instances
Problem Name Norm LBGAP OPTGAP Time AC Time
r1002 Ly 4.59 1.54 357 2.69
r2392 Iy 3.57 .98 7.38 11.51
pcb3038 I, 2.98 .93 30.32 22.26
rl5934 i) 2.37 93 326.30 119.85
pla739% I, 1.72 94 461.25 203.11
rl11848 I, 2.87 1.18 944.60 229.82
di18512 i 3.57 1.64 3651.13 664.93
r20726 L 4.40 1.88 718.95 4636.06
pla33810 L 2.14 1.69 24687.20 1704.09
pla85900 L. 1.52 1.34 107653.81 6202.22
Table II. Experimental Results on Random Instances Using the [, Norm

Ave. Ave, Max. Max. Ave.
Size Trials LBGAP OPTGAP LBGAP OPTGAP Ave. Time Speedup
210 989 3.69 1.59 5.87 3.46 — -
210 64 3.69 1.58 6.15 3.67 5.09 92
a1 64 3.69 1.60 4.86 245 21.60 92
P2 32 3.72 1.65 5.00 2.65 79.75 112
g8 32 3.61 1.57 434 2.08 261.59 1.72
it 16 3.68 1.63 3.90 1.89 1330.69 217
pI5 16 3.71 1.65 4.00 1.89 7533.67 2.00
i 8 3.70 1.64 3.79 1.79 32942.70 2.00
12 4 3.74 1.63 3.83 1.70 200820.00 1.87

Yrsp Furthermore, it seems likely that there exists a limit agp
such that lim,__|E[TSP,] — ByspVH| = aysp.

Some of these results also hold for other functionals; see
Steele,”! Yukich,®! and the references above. For the min-
imum-cost perfect matching problem and its associated
functional M, the asymptotic behavior (1) is known to hold
(Papadimitriou''®!), and has also been strengthened to com-
plete convergence (Redmond and Yukich'”)). The other re-
sults and /or conjectures seem likely to be true as well.

From these results and /or conjectures, we shall implicitly
assume for our experimental study that, for several func-
tionals L, L, is normally distributed with mean g,V + a;
and variance of. These functionals are the values of the
minimum-cost perfect matching, and also of F', the perfect
matching and the dual solution returned by our approxima-
tion algorithm. We shall denote these additional functionals
by F', P (for primal), and D (for dual).

Functionals of a more structural nature have also been
studied. For example, Steele et al."**! have shown that there
exist constants v, such that the number of degree k vertices
in a minimum spanning tree divided by » is almost surely
equal to v. It is known that v, = 0 for k = 6.

4. Results
We summarize our main experimental results in a sequence
of tables. Table 1 contains our results on the TSPLIB exam-

ples. Tables II and III contain our results on random in-
stances; the first table is for instances using the I, norm, and
the second is for instances using the I, norm. The columns
LBGAP and OPTGAP give the percentage excess of the
approximate matching over the cost of the dual lower bound
and over the cost of an optimal matching respectively. For
instance, the approximate matching found for the r1002
TSPLIB instance was 4.59% more than the cost of the dual
lower bound, and 1.54% more than the cost of the optimal
matching. The Time column specifies the running time of the
approximation algorithm, while the AC Time column spec-
ifies the running time of the Applegate and Cook algorithm
for finding optimal matchings. We used the variation of the
Applegate and Cook code which begins with a fractional 10
nearest neighbor graph. All running times are in CPU sec-
onds on a Silicon Graphics Challenge machine with eight
100 Mhz MIPS R4400 processors. The Speedup column gives
the ratio of the running time of Applegate and Cook'’s algo-
rithm to the running time of the approximation algorithm.
We summarize our estimates of the parameters B and « in
Table IV. We include for comparison parameters given for
other matching heuristics. Finally, some asymptotic esti-
mates of structural properties of the solutions are given in
Table V. Each of these tables is discussed in the following
paragraphs. Some sample runs of the algorithm are shown
in Figures 4 to 7.
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Table III. Experimental Results on Random Instances Using the [, Norm

Ave. Ave. Max. Max. Ave.
Size Trials LBGAP OPTGAP LBGAP OPTGAP Ave. Time Speedup
210 64 4.40 1.90 6.44 3.82 4.04 73
201 64 4.40 1.97 5.64 2.89 14.86 .87
or 32 4.40 2.01 5.26 2.65 53.15 1.27
FH3 32 4.40 1.97 5.14 2.54 246.27 1.73
P14 16 433 1.95 4.56 2.22 885.21 2.79
A 16 4.35 1.96 452 213 4577 .87 2.95
e 8 446 2.05 4.70 2.23 28017.50 2.16
27 4 445 1.97 4.51 2.03 150841.00 3.19

Table IV. Estimates of Matching Constants for Our Approximation Algorithm (Adjusted for the Unit Square) and
Other Heuristics

[, norm 1, norm
B Std. Err. & Std. Err. B Std. Err. & Std. Err.

Cost of F’ 3363 0002 2720 0236 2989 0002 2248 0207
Approx. Matching (P) 3154 .0001 2327 0150 2807 .0001 2038 0149
Opt. Matching (M) 3103 .0001 2357 0127 2752 0001 2052 0129
Lower bound (D) 3041 .0001 2298 0121 2688 0001 1978 0123
Serpentine''?! 585 545

Spiral-rack''?! 495 450

Rectangular'®® ! 5164 4288

Strip!2®! A74 436

MST-H2> 141 358 —

pusT!! 338 —

Greedy"™ 385 A7 =

Greedy + 2-opt™ 326 24 —

The estimates on Rectangular and Strip are analytically determined.

The structured examples in Table I were taken from the
TSPLIB.""® The number in the problem name indicates the
number of vertices in the problem. We attempted to use the
same procedure as given in Applegate and Cook''’; namely,
if the example contained an odd number of points, we sorted
by x and y coordinates, then deleted the last point. We also
attempted as much as possible to run the same suite of
examples as given in [1].

The random examples in Tables II and III were generated
on a 2*° by 2*° grid using the UNIX random( ) function. A
single seed was used to generate all the instances of a given
size. The first entry of Table I comes from a sequence of
1000 experiments run separately on a VAX 9000 (11 data
peints had to be omitted). We used these experiments to get
an upper bound on the variance of the matching parameters
for F', P, D, and M on the unit square. Using the parameter
with the largest variance (F'), we obtained an upper bound
of .05399. This information was used to decide the number
of experiments to perform in order to obtain small confi-
dence intervals on the parameters 8. We did not use the 1000
experiments in these parameter estimations.

We summarize our findings on the matching parameters
in Table IV. Parameters were estimated using a least-squares
fit. The “Std Err” column gives the standard error s, or the
estimated standard deviation, of the estimated parameter.
At 99% confidence, the actual parameter is within £2.576 s,
of the estimated parameter; for example, with 99% confi-
dence B, is between .31 and .3106. To allow comparisons
with our algorithm, we include the B coefficient of several
other Euclidean matching heuristics from the literature, in-
cluding the Serpentine and Spiral-rack heuristics of Iri, Mu-
rota, and Matsui,""? the Rectangle and Strip heuristics of
Supowit, Plaisted, and Reingold,'™' the MST heuristic of
Papadimitriou as given in Supowit et al. (and tested in [14]),
the DUST heuristic of Jiinger and Pulleyblank,"*! and two
versions of a greedy algorithm as implemented by Bent-
ley."! All of these heuristics run in O(n log 1) time, except for
the first two, which require O(n) time, and the last two,
which run in O(n log n) observed time. The table shows that
for these random instances the approximation algorithm
generates solutions that on average are significantly closer to
optimal than the other heuristics. If the estimates of B are in
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Table V. Estimates of Asymptotic Properties of Solutions

I, norm .. norm

F F' F F
Vertices of degree 1 311n + 36 954n .320n + 20 950n
Vertices of degree 2 508 — 21 0 494n — 12 0
Vertices of degree 3 Jd66n — 12 046n d67n — 8 .050n
Vertices of degree 4 0l4n —2 0 018n =1 0
Vertices of degree 5 001n =() 001n =)
Number of edges 931n 5461 936n 550n
Number of components .057n + 26 A454n .057n -+ 15 450n
Components of size 2 — Alén = 4091
Components of size 4 — 032n — 034n
Components of size 6 — .005x1 — .006n
Components of size 8 — .001n — 001n
Components of size 10 — =0 — =0

Figure 4. Snapshot of the algorithm working on a
random instance of 500 wvertices. The circle around each
vertex i is of radius d(i). Intuitively the algorithm expands
these circles by € in each iteration, causing two circles to
toi.lch.g"he edge (i, /) corresponding to these circles is then
selected.

fact correct, then we expect the approximation algorithm to
deliver solutions of value no more than (B, — By)/Ba =
1.6% away from optimal as n tends toward infinity. Simi-
larly, the value of the dual constructed by the approximation
algorithm is also expected to be a good bound on the value
of the optimal solution.

The value of B, is affected by the implementation of the

Figure 5. The forest F produced by the algorithm for the
500 vertex random instance.

final step of the algorithm (step 13), which changes even-
sized components into a perfect matching. As we noted
before, we find the minimum-cost perfect matching on every
component of at most 10 vertices. We will see below that
most components fall in this range. Some small-scale testing
shows that this change improves the quality of the matching
on random instances by 1.2%; that is, the value of the ap-
proximate matching is about 2.8% from optimal if the dou-
bling-and-shortcutting method is used on all components.
We should mention that there have been other efforts to
estimate the matching parameter B, where the cost of the



37

Large-Scale Euclidean Matching Instances

. _-_.—-\H—" * ! N S
H\{, 1 X ' .\“ /< —"\‘\\I
1 .
AP B L,
1l

o ~ /. /\\/f’\ ;)\ -

\ S5 \ a___\ - R
= ] k

Y1ONYS s N L - 5

T L Vi -

S B Y Wi ~\

5 VAN N /
s ! ! !

) s E / / ' <
y \ IS : % \

/\f e > o

. g\/ P - 'I.I \ \“/\
cMop T

| T s . - I/

\\\ "‘?\ /,-..\]‘\ N A

Figure 6. The forest F' produced by the algorithm for the
500 vertex random instance.
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Figure 7. Final matching produced by the algorithm for
the 500 vertex random instance.

matching was assumed to be B,,Vn, rather than B,,Vn +
@, Papadimitriou'® conjectured that B,, = .35, based on
some experiments that had at most 200 vertices. Iri et al.''?!
noted that their experiments on sizes up to 256 vertices
seemed to indicate that .32 = 8,, = .33 (note that this agrees
well with our predicted value for this value of n). Weber and

0.33 v T T T T T T T

With constant ——-
Withou! constant -~

©

T
°
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0.325

Q0.

0.315

031
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L
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I ! i
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I
B192

L
16384
Size

Figure 8. Scatterplot of n versus cost of optimal matching
scaled to the unit square and divided by Vn. Curves are
regressions of the data with and without a constant term
.

Liebling®*' obtained an estimate B,, ~ .3189; the largest

example used in their study was on 1,000 vertices. Because
of the omission of «,, term, we believe these previous esti-
mates are overestimates. (Note that the same may hold true
for the estimated behavior of the various matching heuristics
shown in Table IV). The influence of the a,, term is espe-
cially strong if the maximum number of vertices in the
experiments is small. Figure 8 is a scatterplot of 1 versus the
cost of the matching scaled to the unit square divided by
V. Two curves are shown: one of an estimated curve
BV and one of an estimated curve By, Vi + ayy. Clearly
the curve with the constant gives the better fit.

We also include scatterplots of n versus the scaled cost of
the approximate matching and the scaled cost of the lower
bound in Figures 9 and 10, respectively. Comparing these
figures to Figure 8 it seems reasonable to believe that our
assumptions about the cost of the approximate matching
and the lower bound are correct; namely, that they also are
distributed around a mean of B\n + a with constant vari-
ance.

In Table V, we list some asymptotic estimates of the
structural properties of solutions. Data on the fraction of
vertices of degree k in F and F’ are shown in Figures 11 and
12. All structural properties listed in the table appear to be
linear in 1, and we modeled them either as yi or yn + 7 for
some constants vy, . The choice of which model to use was
based on whether the residuals of the estimation were
skewed for low values of n in the yn model: if so, the
additive constant was included. For the most part, the vari-
ance of properties associated with the set of edges F tended
to be quite high, growing with n* while the variance of
properties associated with F' tended to be low, growing
with V. We judged the order of growth of the variance for
each property by looking at its relative increase from in-
stances of size 2" to instances of size 2"7'. We used this
judgment to properly adjust the least-squares estimation
(least-squares requires constant variance in the observa-
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tions). The data in the table indicates that the behavior of the
algorithm shown in Figures 5 and 6 is typical: namely, in
both F and F', almost half the components are matched
vertices, and most components are not much larger, except
that in F there is one giant component. Furthermore, most
vertices are of low degree in both F and F".

Looking at Figures 11 and 12, it seems plausible that as in
the case of the minimum-cost spanning tree, the fraction of
vertices of degree k in the forests F and F' is almost surely
some constant v, In looking at the data we observed that
unlike the minimum-cost spanning tree it is possible to have
vertices of degree 6 or 7 in F, but vertices of degree 7 are
extremely rare, and we saw no vertices of degree 8. Simi-
larly, vertices of degree 5 in F’ are also extremely rare, and
we saw no vertices of higher degree.

We conclude with some observations about the estimated
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Figure 11. Plot of size of instance versus average fraction
of vertices of degree kin F, 1 = k = 5.
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Figure 12. Plot of size of instance versus average fraction
of vertices of degree kin F', 1 = k = 5.

behavior of our implementation. Modeling the number of
queue operations as An"e (where € is assumed to be a nor-
mally distributed error term), we obtained an estimate of fu
= 1.006, with a standard error small enough to reject the
hypothesis that the exponent is 1. The total number of calls
to the routine to find the nearest neighbor of a vertex had an
exponent i = 2.002 for the [, norm instances and i = 1.901
for the I, instances. The running time of the implementation
is highly correlated to the number of calls to this routine. We
presume this fact leads to a running time of @(n* log i) for
our implementation. Modeling the running time of Apple-
gate and Cook’s code as An*e gave an estimate of j = 2.29
for the I, instances and fi = 2.41 for the . instances. We note
that the variances of the running times for both algorithms
increased significantly with n, making it difficult to say
anything intelligible about asymptotic running times. As an
illustration of this, Figure 13 shows the running times of the
algorithms on the eight instances of size 65536.
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Figure 13. Comparison of the running time of our
algorithm versus the Applegate-Cook algorithm on the eight
instances of size 65536. Note the large variance in running
times and the seeming lack of correlation between the times
taken by the two algorithms.

5. Concluding Remarks

Empirically, our approximation algorithm seems to deliver
perfect matchings which are very close to optimal. As with
any computational study, one might argue that the observed
behavior is dependent on the classes of instances being
considered. However, in this case, the knowledge of the
worst-case performance gives us some peace of mind: our
algorithm will never perform embarrassingly poorly.

This study shows several directions for future research.
We would like to be able to prove something about the
algorithm’s behavior on random instances on the unit
square; for instance, it would be nice to prove that the
solution converges almost surely to BVn, or that the fraction
of vertices of degree k in F' converges almost surely to »,.
This would seem to be a difficult task, however. With regard
to practicality, we see that further enhancements in the
implementation are necessary in order to be competitive
with the best implementation of Edmonds’ algorithm. These
implementations, including the Applegate-Cook implemen-
tation, usually solve the instance on a sparse subgraph first,
then correct the solution afterwards; it might be possible to
do something similar with the approximation algorithm.
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