We have shown that any solution to Kirchhoff’s laws and boundary values is unique, and defined such a solution in terms of probabilities. Now we define one in terms of the number of spanning trees in the graph.

A **tree** is a graph in which there is exactly one simple path between any two vertices, i.e. a connected graph with no cycles.

A **spanning tree** of a graph \(G = (V, E) \) is a subgraph of \(G \) that is a tree and contains all of \(V \). A graph may have many spanning trees.

Given an electrical network \(G = (V, E) \) with all conductances = 1 (result generalizes to arbitrary conductances) and \(s, t \in V \).

Let \(N(s, a, b, t) = \) the number of spanning trees with a path from \(s \) to \(t \) that traverses edge \((a, b) \) from \(a \) to \(b \) and \(N \) be the total number of spanning trees of \(G \).

Thm: The current \(i_{ab} = \frac{1}{N}(N(s, a, b, t) - N(s, b, a, t)) \forall (a, b) \in E \) defines a unit flow from \(s \) to \(t \) that satisfies Kirchhoff’s laws.

Note that this is like \(i_{ab} = Pr_T \{ T \text{ has a path from } s \text{ to } t \text{ traversing } (a, b) \text{ from } a \text{ to } b \} - Pr_T \{ T \text{ has a path from } s \text{ to } t \text{ traversing } (a, b) \text{ from } b \text{ to } a \} \).

The number of spanning trees relating to current then has implications for uniformly generating a random spanning tree from a graph. The probability over all spanning trees of an edge \((a, b) \) being in a tree is \(i_{ab} \). So include an \((a, b) \) in the spanning tree with probability \(i_{ab} \). Once a decision has been made for an edge, if it is not put in the tree, it can be deleted from the graph and a spanning tree generated for the remaining graph. If it is put in the tree, \(a \) and \(b \) can be combined into one node and a spanning tree generated for this new graph.