QUIZ 1

You can have one single-sided handwritten sheet of paper with anything you want on it. You can write your solutions on this exam. The last question is most likely the most difficult.

1. Find a minimum vertex cover C in the following graph (list the vertices in C). Argue why it is optimum.

2. Suppose you are given a (not necessarily bipartite) graph $G=(V, E)$ and a matching M. Explain what would be a short proof of (i) M is maximum, and (ii) M is not maximum.
3. Consider the partition matroid $M=(E, \mathcal{I})$ defined by $E=E_{1} \cup E_{2} \cup E_{3}, E_{1}=\{1,2,3\}$, $E_{2}=\{4,5,6,7\}, E_{3}=\{8,9,10\}, \mathcal{I}=\left\{S \subseteq E:\left|S \cap E_{i}\right| \leq 2\right.$ for $\left.i=1,2,3\right\}$.
(a) Give 2 different bases of M.
(b) Give 2 different circuits of M.
(c) Given the following weights for all elements of $E\left(c_{i}=i-5\right)$, find among all independent sets I of cardinality precisely 5 one of maximum total weight.

i	1	2	3	4	5	6	7	8	9	10
c_{i}	-4	-3	-2	-1	0	1	2	3	4	5

4. The matching polytope $P \subseteq \mathbb{R}^{|E|}$ of a (not necessarily bipartite) graph $G=(V, E)$ is the convex hull of incidence vectors of all (not necessarily perfect) matchings in G. Argue that the dimension of P is $|E|$.
5. Consider a directed graph $G=(V, A)$. A 1-factor is a subset of arcs (i.e. directed edges) of G such that the indegree (the number of incoming edges) and outdegree (the number of outgoing edges) of every vertex is at most 1 . Here is an example of a 1 -factor (the thick edges).

(a) Give a directed graph G (a few vertices are enough) for which its 1-factors do not form the collection of independent sets of a matroid, and explain why they don't.
(b) Show that the 1-factors of a directed graph G can be seen as the common independent sets to two matroids M_{1} and M_{2} on the ground set E.
6. Given a bipartite graph $G=(V, E)$ with bipartition $V=A \cup B$ and given an integer k, consider the set of all matchings of cardinality at most k. We know that if there was no constraint on the cardinality (for example, if $k \geq|V| / 2$) then the convex hull P of all (incidence vectors of) matchings would be given by

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{|E|}: \sum_{j \in B:(i, j) \in E} x_{i j} \leq 1 \quad i \in A\right. \\
& \left.x_{i j} \geq 0 \quad(i, j) \in E\right\}
\end{aligned}
$$

In this exercise, you will show that the convex hull P_{k} of all matchings of cardinality at most k is given by

$$
\left.\begin{array}{rl}
P_{k}=\left\{x \in \mathbb{R}^{|E|}:\right. & \sum_{j \in B:(i, j) \in E} x_{i j} \leq 1 \quad i \in A \\
& \sum_{i \in A:(i, j) \in E} x_{i j} \leq 1 \quad j \in B \\
& \sum_{(i, j) \in E} x_{i j} \leq k \\
& x_{i j} \geq 0
\end{array} \quad(i, j) \in E\right\}
$$

Here are two ways to prove it. Use either way for full credit (or both ways for a smiley face).
(a) Show that the underlying matrix A is totally unimodular, where $P_{k}=\{x: A x \leq$ $b, x \geq 0\}$. If you use this way, first define what a totally unimodular matrix is, and specify what the matrix A look like. Once you have shown that A is totally unimodular, you do not need to continue (saying how this implies that the vertices correspond to matchings of cardinality at most k).
(b) Consider any vertex x^{*} of P_{k}. First argue that x^{*} is in an edge (a face of dimension 1) of P (the matching polytope without restriction on the cardinality), i.e. x^{*} can be seen as a convex combination of incidence vectors of two adjacent matchings M_{1} and M_{2} of G. Then state (without proof) the condition for two matchings M_{1} and M_{2} to be adjacent on P. Finally conclude that x^{*} must have been the incidence vector of either M_{1} or M_{2}.

