Problem set 3

This problem set is due in class on Friday March 13th, 2009.

1. Exercise 3-16 from the notes on polyhedral theory.
2. Exercise 3-17 from the notes on polyhedral theory.
3. (Optional for undergraduates.) Consider the bipartite matching polytope. Show that any edge of this polytope (a face of dimension 1) connects two matchings M_{1} and M_{2} such that $M_{1} \Delta M_{2}$ has only one connected component (it is either an alternating path or an alternating cycle).
4. Given a bipartite graph G and given an integer k, let S_{k} be the set of all incidence vectors of matchings with at most k edges. We are interested in finding a description of $P_{k}=\operatorname{conv}\left(S_{k}\right)$ as a system of linear inequalities. More precisely, you'll show that $\operatorname{conv}\left(S_{k}\right)$ is given by:

$$
\begin{array}{lll}
P_{k}=\{x: & \sum_{j} x_{i j} \leq 1 & \forall i \in A \\
& \sum_{i} x_{i j} \leq 1 & \forall j \in B \\
& \sum_{i} \sum_{j} x_{i j} \leq k & \\
& x_{i j} \geq 0 & i \in A, j \in B\} .
\end{array}
$$

Without the last constraint, we have shown in lecture that the resulting matrix is totally unimodular.
(a) With the additional constraint, is the resulting matrix totally unimodular? Either prove it or disprove it.
(b) Show that P_{k} indeed equals $\operatorname{conv}\left(S_{k}\right)$.
(Hint: If you haven't shown that the matrix is TUM, you could focus on a vertex of P_{k} and use the fact that it must belong to a face of dimension 1 (an edge) of the bipartite matching polytope (without the additional cardinality constraint), and then use the previous optional exercise (without proving it).)
(c) Suppose now that instead of a cardinality constraint on all the edges, our edges are partitioned into E_{1} and E_{2} and we only impose that our matching has at most k edges from E_{1} (and as many as we'd like from E_{2}). Is it still true that the convex hull of all such matchings is given by simply replacing $\sum_{i} \sum_{j} x_{i j} \leq k$ by

$$
\sum_{i} \sum_{j:(i, j) \in E_{1}} x_{i j} \leq k ?
$$

