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Embedding series-parallel graphs into `1

1 Introduction

Recall that a series-parallel graph consists of an edge, or of two series-parallel graphs connected
in series or in parallel. A graph can be decomposed into series-parallel blocks if and only if it has
treewidth 2. It is easy to see that these graphs cannot, in general, be embedded isometrically into `1:
consider, for example, the n-cycle. In this lecture, we shall show two different constant-distortion
embeddings of series-parallel graphs into `1, both due to [2].

2 Direct construction

Theorem 1 (Main theorem, [2]). Let G = (V,E) be a weighted graph with treewidth 2, and let d
be the corresponding metric. Then there exists a map f : V → `1 and a constant c < 14 such that
for every u, v ∈ V ,

1
c
d(u, v) ≤ ‖f(u) − f(v)‖1 ≤ d(u, v).

Moreover, this embedding preserves the lengths of edges and can be computed in polynomial time.

We shall use the following characterization of treewidth-2 graphs while proving theorem 1.

Fact 1. Any treewidth-2 graph can be constructed as follows: start with a single edge e0, and
repeatedly attach a new vertex x to both endpoints of an arbitrary edge (s, t) in the existing graph
(this edge is said to be the parent of x). Finally, delete some set of edges.

It is no loss of generality to assume that no edges are deleted, because we can replace any deleted
edge with an edge whose length equals the distance between its endpoints in the graph metric. In
constructing the embedding, we shall consider the sequence of graphs e0 = G2, G3, . . . , Gn = G
occurring during the composition procedure described above.

Observe that the metric induced by each of these intermediate graphs agrees with the metric in
the final graph, i.e., dGi = d|Gi . Therefore, to prove the theorem, it suffices to show how to extend
an `1-embedding of Gi into one for Gi+1.

Proof of theorem 1. In the base case G2 = (u, v), embed u and v as 0 and d(u, v), respectively.
For the inductive case, assume that we have a map g : Gi−1 → `d

1 satisfying the conditions of
the theorem, and that Gi is obtained by attaching a new vertex x to the endpoints of the edge
(s, t). Consider the following three embeddings of Gi

Gi−1 7→ g(Gi−1) Gi−1 7→ g(Gi−1) Gi−1 7→ 0

x 7→ g(s) x 7→ g(t) x 7→ 1

Each of these is an `1 embedding, and therefore, any weighted sum of them is also an l1-embedding.
In order to preserve edge distances in Gi−1 we must assign weights Ps and Pt to the first two
embeddings such that Ps + Pt = 1. Call the weight for the cut metric embedding δ. Imposing the
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conditions that the lengths of the edges (x, s) and (x, t) are preserved, we can compute all these
weights:

Ps =
−d(s, x) + d(t, x) + d(s, t)

2d(s, t)
Pt =

d(s, x) − d(t, x) + d(s, t)

2d(s, t)
δ =

d(s, x) + d(t, x) − d(s, t)

2
.

Observe that all these quantities are nonnegative. Since this embedding preserves edge distances,
it is clearly nonexpanding. By Lemma 2 below, the contraction is at most 14.

Before stating and proving a bound on the edge contraction, we introduce a new interpretation
of the weights described above. Instead of composing the graph starting from one edge, we can
think of decomposing the graph by deleting vertices in the opposite order. To delete a vertex x
with parent edge (s, t), we take away the cut metric separating x from the remaining graph, and
then ‘collapse’ x to s or t, with probabilities Ps and Pt respectively.

Lemma 2 (Bounding the contraction). Let x, y ∈ G. Then for any constant ξ ∈ (1/2, 1), we have

‖f(x) − f(y)‖1 ≥ (1−ξ)(2ξ−1)
1+ξ

d(x, y).

In particular, for ξ = 3/4, the contraction is at most 14.

Proof. An edge e is said to be an ancestor of a vertex x if it is either the parent edge (s, t) of x,
or it is an ancestor of either s or t. We shall prove this lemma first in the special case when y is
incident on an ancestor edge of x, and then in the general case.

When y is incident on an ancestor edge of x, view this embedding as a random process
as described earlier, and consider the sequence of parent edges (s1, t1), . . . , (sk, tk) involved in
collapsing x to y = sk. For notational convenience, denote s0 = t0 = x. Define

Li = d(si, ti) αi = d(si−1, si) βi = d(ti−1, ti),

let P i−1
s and P i−1

t be the collapse probabilities at the ith step, and let ∆i denote the expected sum
of the weights of the cut metrics removed while collapsing x to (si, ti).

We shall analyze the case when ti = ti−1 but si 6= si−1 (the other possibility is symmetric).
Then the following claim holds:

Claim 3. Under the above conditions,

(a) if P i−1
s ≥ ξ, then ‖f(x) − f(si)‖1 ≥ ‖f(x) − f(si−1)‖1 + (2ξ − 1)αi.

(b) if P i−1
t ≥ ξ, then ‖f(x) − f(si)‖1 ≥ ‖f(x) − f(ti−1)‖1 + (2ξ − 1)Li.

(c) otherwise, ‖f(x) − f(si)‖1 + 2ξ
1−ξ

(∆i − ∆i−1) ≥ ‖f(x) − f(si−1)‖1 + αi.

We shall construct a path π from sk to s0 as follows: suppose we have reached vertex si 6= si−1

(other cases similar). If P i−1
t > ξ, then add (si, ti−1) to π, otherwise, add (si, si−1) to the path

instead. On reaching s1 or t1, add one more edge to reach x = s0 and end the path.
For every edge (πj−1, πj) in this path, claim 3 tells us that

‖f(x) − f(πj)‖1 − ‖f(x) − f(πj−1)‖1 + 2ξ
1−ξ

(∆πj
− ∆πj−1

) ≥ (2ξ − 1)d(πj−1, πj)

2



(here, ∆πj
is defined to be ∆i, where i is the least index such that πj ∈ {si, ti}). Summing these

inequalities along the path, we get

‖f(x) − f(y)‖1 + 2ξ
1−ξ

∆k ≥ (2ξ − 1)(path length) ≥ (2ξ − 1)d(x, y). (1)

The result follows, because ‖f(x) − f(y)‖1 ≥ ∆k.
In the general case, let f = (s, t) be the last common ancestor of x and y. Then either (A)

f separates x and y (i.e., every x − y path passes through either s or t), or (B) there is a vertex q
whose parent is (s, t) such that (s, q) is an ancestor of x and (t, q) is an ancestor of y.

For sub-case (A), let Ps and Pt denote the probabilities that x collapses to s and t respectively,
and let ∆ denote the expected weight of the cut metrics removed in the collapse. Let P ′

s, P
′
t , and

∆′ denote the corresponding quantities for y. Then

‖f(x) − f(y)‖1 = ∆ + ∆′ + (PsP
′
t + PtP

′
s)d(s, t).

We can check (by elementary computations) that PsP
′
t + PtP

′
s ≥ 1

2 min{Ps + P ′
s, Pt + P ′

t}. Using
this fact and assuming without loss of generality that the minimum is achieved at t, we get

‖f(x) − f(y)‖1 ≥ 1
2(‖f(x) − f(s)‖1 + ∆) + 1

2(‖f(y) − f(s)‖1 + ∆′).

But it follows from our path-length inequality (1) that

1
2(‖f(x) − f(s) + ∆) ≥ (1−ξ)(2ξ−1)

1+ξ
d(x, s),

and a similar result holds for y. This lets us reduce the distortion of the x − y distance to the
previous case.

The proof for case (B) is a simple modification of this argument, and will not be pursued in
these notes.

Proof of claim 3. In all three cases, we have

‖f(x) − f(si−1)‖1 = ∆i−1 + P i−1
t Li−1;

‖f(x) − f(ti−1)‖1 = ∆i−1 + P i−1
s Li−1;

‖f(x) − f(si)‖1 = ∆i−1 + P i−1
t Li + P i−1

s αi.

For case (a), rewrite the last of these as

‖f(x) − f(si)‖1 = ∆i−1 + P i−1
t (Li + αi) + (P i−1

s − P i−1
t )αi

≥ ∆i−1 + P i−1
t Li−1 + (P i−1

s − P i−1
t )αi

= ‖f(x) − f(si−1)‖1 + (2ξ − 1)αi.

The argument for (b) is very similar. For (c), let δi−1 be the weight of the cut removed while
collapsing si−1 to (si, ti). Then

∆i − ∆i−1 = P i−1
s δi−1 + P i−1

s

αi + Li−1 − Li

2
,
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and it follows that

‖f(x) − f(si)‖1 +
2P i−1

t

P i−1
s

(∆i − ∆i−1 = [∆i−1 + P i−1
t Li + P i−1

s αi] + [P i−1
t (αi + Li−1 − Li)]

= ‖f(x) − f(si−1)‖1 + αi.

We note that due to a recent tighter analysis by William Evans and MohammadAli Safari, it
can be shown that this embedding actually achieves a distortion of at most 6 [1].

3 Embedding into tree metrics

The previous section discussed how to embed series-parallel graphs into `1 directly. Here we dis-
cuss an alternative approach inspired by a constant-distortion embedding of outerplanar graphs
into probability distributions over dominating tree metrics. As tree metrics are isometrically em-
beddable into `1, providing low-distortion embeddings into tree metrics also provides low-distortion
embeddings into `1.

Definition 1. A mapping f from a metric space (X, d) to another metric space (X ′, d′) is said
to be an embedding into a dominating tree metric if (X ′, d′) is a tree metric and d(x, y) ≤
d′(f(x), f(y)) for all x, y ∈ X. A probability distribution F over embeddings into dominating
tree metrics D-approximates (X, d) if each f ∈ F is an embedding into a dominating tree metric
and Ef∈F [d′(f(x), f(y))] ≤ D · d(x, y) for all x, y ∈ X.

When (X, d) is a metric supported by some graph G and the support of F only contains spanning
trees of G, the expansion of distances is maximized over some edge. Thus the condition that no pair
of vertices has its distance expanded by a factor of more than D can be replaced by the condition
that no edge is expanded by a factor of more than D. In our applications we will always be dealing
with distributions over spanning trees of graph metrics.

Definition 2. A graph is said to be outerplanar if every vertex of the graph lies on the outside
face. An outerplanar graph G can be constructed by repeatedly applying one of the following two
composition rules to create Gi from Gi−1 starting from a path or cycle that we refer to as G0 and
ending with Gm = G.

• Choose an edge ei on the outer face of Gi−1 and attach a path Pi to both of ei’s endpoints.

• Choose a vertex ui on the outer face of Gi−1 and attach a path Pi to ui.

We add the further restriction that each edge e has at most one path joined to its ends throughout
the course of the composition procedure.

In the above definition, a path Pi is called slack if either Pi is attached to a single vertex, or the
edge ei it is attached to has at most half the length of Pi. A slack composition of G is a composition
for G where every Pi is slack.

Lemma 4. If G is an outerplanar graph with a slack composition then there is a distribution of
embeddings into dominating tree metrics that 4-approximates G.
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Proof. The distribution is over spanning trees of G and is defined inductively. Recall by an earlier
argument that we need only bound the expected expansion on edges of G. Let G0 = P0, P1, . . . , Pm

be a slack composition.
If G0 is a path, then the distribution contains only one tree (G0). If G0 is a cycle then we

randomly delete an edge from G0 where each edge is deleted with probability proportional to its
weight. If an edge (u, v) has weight w and the total weight of all edges in the cycle is W , then the
expected distance between u and v in the resulting path is

w

W
· (W − w) +

W − w

W
· w = 2w − 2

w2

W
≤ 2w

Now when going from Gi to Gi+1, if Pi attaches to a single vertex then we include all of Pi in
our tree with probability 1. Otherwise, we delete an edge from Pi with probability proportional to
its weight. If the edge Pi is attached to has weight d in G, we can inductively assume its expected
distance in the distribution over trees thus far is at most 4d. Let w be the weight of an edge e of
Pi and W be the total weight of Pi. Then the expected distance between the endpoints of e in the
tree distribution is at most

w

W
· (4d + W − w) +

W − w

W
· w ≤ w

(

4 ·
d

W
+ 2

)

Using that the composition is slack, we have d/W ≤ 1/2, giving that the expected distance between
the endpoints of the edge is at most 4w.

Lemma 5. For any outerplanar graph G, there is an outerplanar graph H with slack composition
such that G embeds into H with distortion at most 2.

Proof. Let G0 = P0, P1, . . . , Pm be a composition procedure for G. We show a procedure for
gradually modifying the Pi so that we end with a slack composition for an outerplanar graph H
dominated by G where no distances shrink by a factor more than 2.

We initially set the composition procedure for H to be H0 = Q0, Q1, . . . , Qm with Qi = Pi for
each i. We then visit the Qi in order for i = 1, 2, . . . ,m. If Qi is slack or connects to a single
vertex, we continue to Qi+1. Otherwise, Qi is attached to some edge e with weight w(e) and the
length L of Qi satisfies w(e) ≤ L < 2w(e). We multiply the weight of every edge of Qi by w(e)/L
to obtain a new path Q′

k with length w(e). Now we remove Qi from the composition procedure
from H, and if e was added to H by the path Qk then we modify Qk to use Q′

k in place of e. Since
the only path adjoined to e was Qi, our composition procedure for H remains valid. Now, suppose
e′ is an edge of Qi that has just been shrunk in weight. There may be edges added in future paths
that now have weights larger than the distance between their endpoints in H. For all such edges
we decrease their weights to match the new shortest path lengths. This changing of edge weights
has no actual effect on the shortest path metric.

In this procedure edges either are removed or are decreased in weight, so G dominates H. Since
each edge has its weight altered in a way that affects the shortest path metric at most once, is
never increased, and is decreased by a factor of at most 2, it follows that distances in G are at most
twice those in H.

Combining lemmas 4 and 5 shows that any outerplanar graph is 8-approximated by a distribu-
tion of embeddings into dominating tree metrics.
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4 Using bundles to embed treewidth-2 graphs into `1

Definition 3. A graph is said to be biconnected if every two edges in the graph lie on a common
simple cycle (here simple refers to edges not being repeated, but vertices may repeat themselves).
The maximal biconnected subgraphs of a graph G are called its blocks or biconnected components.

Lemma 6. If for each block Bi of a connected graph G we can embed the metric supported by Bi

into (X, d) with no contraction and distortion at most Di, then we can embed the metric supported
by G into (X, d) with distortion at most maxi{Di}.

Proof. We are given that for each Bi there is an embedding fi into (X, d) with distortion Di. We
extend each fi to an embedding f̃i on all vertices of G by setting f̃i(x) = fi(y), where y is the
vertex of Bi closest to x in G.

Also, we imagine a tree where each Bi is represented by a node and there is an edge from one
node to another if there is a an edge between the corresponding blocks. For each edge between
blocks we define a cut metric between the nodes on opposite ends of the edge, and the weight
of this cut metric will be the weight of that edge in G. Our final embedding for G is then the
concatenation of all these cut metric embeddings together with all the f̃i.

Bundles are a special type of series-parallel graph which will be useful for embedding general
treewidth-2 graphs into `1. Recall that treewidth-2 graphs are those whose biconnected components
are series-parallel, so by Lemma 6 it suffices to only consider embeddings of series-parallel graphs.
We then show how to embed a series-parallel graph under constant approximation into a distribution
over graphs whose biconnected components are bundles, then how to embed bundles into `1 with
distortion 2.

Definition 4. A bundle is a series-parallel graph such that any path between its terminals has the
same length. A bundle then has a well-defined length which is the length of any path between its
terminals.

Lemma 7. If G is a bundle then G can be embedded into `1 with distortion at most 2.

Proof. We use the embedding from Lemma 2. The analysis is similar but simpler. In the case
where node s is an ancestor of node x, there is no distortion. This can be proved by induction,
noticing that the cut metrics defined in the embedding have 0 weight for bundles. The result for
this case then carries over using exactly the same proof technique to the case where neither vertex
is on an ancestor edge of the other to give a distortion of 2 in that case.

Now we introduce a relaxed composition procedure that also can be used to create any treewidth-
2 graph. We first start with P0 a path, and at each step we are allowed to add a new path Pi either
to an existing vertex or to the endpoints of an existing edge. This is identical to the composition
procedure for outerplanar graphs, except it is not required that the vertices of the new path are on
the outer face.

Recall that a slack path is a path added to either a vertex or to an edge of at most half its length.
A taut path is a path adjoined to an edge of length equal to the path’s length. If a series-parallel
graph has a slack-taut composition, i.e. a composition where each added path is slack or taut, we
can reinterpret the composition as being slack where we add bundles at each step instead of paths.
When a taut path is attached to an edge, we can incorporate the path into the bundle already
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containing that edge. Slack paths in the composition give us the starts of new bundles. Now, in a
similar vein to outerplanar graphs, when adding a slack bundle of length L with terminals s, t we
choose a number r ∈ [0, L] uniformly at random and remove all edges from the bundle crossing the
point at a distance r from s. This gives us an embedding of slack-taut graphs into graphs whose
biconnected components are bundles, and the analysis is identical to that in the outerplanar case,
giving a distortion upper bound of 4. The bundles can then be embedded into `1 with distortion
at most 2 and we apply Lemma 6.

What’s left to show is that we can embed any series-parallel graph into a series-parallel graph
with slack-taut composition. Using a proof similar to that of Lemma 5, we can obtain such an
embedding with distortion at most 2. In fact, the only difference in the proof is that when a
path in the composition is not slack, we cannot remove the edge it is attached to after scaling the
path’s length downward. This is because, unlike in outerplanar graph compositions, series-parallel
graph compositions may attach many paths to a single edge. Thus, deleting an edge may make
our composition procedure invalid. Instead we observe that keeping the edge present makes the
scaled-down path taut, and so we still maintain that our composition is slack-taut. We can thus
state the following theorem.

Theorem 8. Metrics supported by treewidth-2 graphs embed into `1 with distortion at most 16.
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