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Lecture 18

In today’s lecture, we present some of the results contained in [1, 2].

1 Good news: A general theorem on embeddings with slack

We will show how to obtain embeddings into `p with small dimension where all but an ε-fraction of
the embedded distances have small distortion. This result has various applications in networking.
The embedding is achieved by randomly choosing a small set of beacons, constructing a good
embedding for these nodes (using, e.g., Borgain’s embedding), and then extending this embedding
to the remaining nodes. Thus, we need the following definition:

Definition 1. A family X of metrics is subset-closed if any metric in X restricted to any subset

of nodes is also in X .

Definition 2. Given ε, an embedding ϕ : V → V ′ has distortion D with ε-slack if a set of all but

an ε-fraction of edges has distortion at most D under ϕ.

Theorem 1. Consider a fixed space `p, p ≥ 1. Let X be a subset-closed family of finite metric

spaces such that for any n ≥ 1 and any n-point metric space X ∈ X there exists an embedding

ϕX : X ↪→ `p with distortion α(n) and dimension β(n).
Then there exists a universal constant C > 0 such that for any metric space X ∈ X and any

ε > 0 we have an embedding into `p with ε-slack, distortion α(C
ε log 1

ε ) and dimension β(C
ε log 1

ε ) +
C log 1

ε .

A (modified) Bourgain’s theorem gives α(n) = O(log n) and β(n) = O(log2 n). Using an
improved result by Bartal gives the following corollary.

Corollary 2. Any metric space X ∈ X can be embedded into `p with ε-slack, distortion O(log 1
ε )

and dimension O(log 1
ε ).

Proof. Consider some metric X = (V, d) ∈ X , where V is a set of n nodes. Given ε > 0 let ε̂ = ε/20,
and t = 100 log 1

ε̂ . The first step is to sample t
ε̂ beacons, B, uniformly at random from V .

Let g be a contracting embedding from B into `p with distortion α( t
ε̂) and dimension β( t

ε̂). We
will extend g to all of V by defining, ∀u ∈ V , f(u) = g(b), where b ∈ B is the beacon closest to
node u. Also, let

{σj(u)|u ∈ V, 1 ≤ j ≤ t} (1)

be independently sampled {0, 1}-valued Bernoulli random variables. For all u ∈ V and j = 1, . . . , t,
define the function

hj(u) = σj(u)ρu(ε̂)t−1/p. (2)

Definition 3. Let ρu(ε) be the radius of the smallest ball around u that contains at least εn nodes.
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The embedding ϕ(u) will be the concatenation of f(u) and (h1(u), . . . , ht(u)), giving a dimension
of β( t

ε̂) + t.
Let E be the set of all unordered node pairs. We will remove from consideration three sets D1,

D2, and D3 of “difficult” node pairs, whose distortion we will not bound, and will show that they
are of size only O(ε).

D1 = {(u, v)|d(u, v) < max{ρu(ε̂), ρv(ε̂)}} (3)

D2 = {(u, v)|d(u,B) ≥ ρu(ε̂) ∨ d(v,B) ≥ ρv(ε̂)}. (4)

At an intuitive level, D1 is the set of node pairs that are too close together, and D2 is the set of
node pairs that are too far from the beacons. The third set, D3, will be given later. Note that
|D1| ≤ ε̂n2, since for any node u ∈ V there are at most ε̂n nodes in the ball of radius ρu(ε̂) around
u. Also, for any node v ∈ V we have:

Pr[d(u,B) ≥ ρu(ε̂)] ≤ Pr[∀v ∈ Bρu(ε̂)(u), v 6∈ B] ≤
(

1 −
(

t

ε̂

)

1

n

)ε̂n

≤ e−t ≤ ε̂, (5)

so E[|D2|] ≤ ε̂n2 and by Markov’s inequality we have |D2| ≤ 2ε̂n2 with probability at least 1/2.

1.1 Upper Bound on d(ϕ(u), ϕ(v))

Let G′ = E\(D1 ∪D2). We will now upper bound d(ϕ(u), ϕ(v)) for all (u, v) ∈ G′. Since G′ ⊆ D1,
d(u, v) > ρu(ε̂) and d(u, v) > ρv(ε̂). Since G′ ⊆ D2, d(u,B) < ρu(ε̂) and d(v,B) < ρv(ε̂). Together
these imply that d(u,B) < d(u, v) and d(v,B) < d(u, v). We thus have:

||ϕ(u) − ϕ(v)||pp = ||f(u) − f(v)||pp +
t

∑

j=1

|hj(u) − hj(v)|p

= ||g(bu) − g(bv)||pp +

t
∑

j=1

|hj(u) − hj(v)|p

≤ (d(bu, bv))
p +

t
∑

j=1

|hj(u) − hj(v)|p

≤ (d(bu, u) + d(u, v) + d(v, bv))
p +

t
∑

j=1

|hj(u) − hj(v)|p

< (3d(u, v))p +

t
∑

j=1

|t−1/p max{ρu(ε̂), ρv(ε̂)} − 0|p

< (3p + 1)(d(u, v))p. (6)

Where we used the fact that g is a contractive embedding, and the notation bu refers to the node
in B which is closest to u.

All that remains is to give a lower bound on d(ϕ(u), ϕ(v)). We consider two separate cases:

G1 = {(u, v) ∈ G′ : max{ρu(ε̂), ρv(ε̂)} ≥ d(u, v)/4} (7)

G2 = G′\G1. (8)
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1.2 Lower Bound on d(ϕ(u), ϕ(v)) for G1

Since for all edges in G1 either ρu(ε̂) or ρv(ε̂) is Ω(d(u, v)), the hj coordinates will provide the
desired lower bound. The σj random variables help ensure that in some non-negligible fraction of
the dimensions we get ρu(ε̂) + ρv(ε̂). More concretely, consider an edge (u, v) ∈ G1, and without
loss of generality assume ρu(ε̂) ≥ ρv(ε̂), so that ρu(ε̂) ≥ d(u, v)/4).

Let Ej(u, v) be the event that σj(v) = 0 and σj(v) = 1. This event happens with probability 1
4 .

Let A(u, v) =
∑t

j=1 1Ej(u,v). Then E[A(u, v)] = t/4, and by Chernoff’s bound we have:

Pr

[

A(u, v) ≤ E[A(u, v)]

2

]

≤ e−t/50 ≤ ε̂. (9)

We now define D3, the third set to be removed:

D3 = {(u, v) ∈ G1|A(u, v) ≤ t/8} (10)

Note that there is nothing inherently difficult about the edges in D3 – we were just unlucky with
the coin tosses. By Markov’s inequality, |D3| ≤ 2ε̂n2 with probability ≥ 1/2.

We now get the desired lower bound for (u, v) ∈ G1\D3:

||ϕ(u) − ϕ(v)||pp ≥
t

∑

j=1

|hj(u) − hj(v)|p

=

t
∑

j=1

|σj(u)ρu(ε̂)t−1/p − σj(v)ρv(ε̂)t
−1/p|p

≥ t

8

(

ρu(ε̂)t−1/p
)p

≥ 1

8

(

1

4
d(u, v)

)p

. (11)

1.3 Lower Bound on d(ϕ(u), ϕ(v)) for G2

Recall that bu refers to the beacon in B which is closest to u. Since G2 ⊆ D2, d(u,B) < ρu(ε̂) and
d(v,B) < ρv(ε̂). Since G2 ⊆ G1, d(u, v)/4 > ρu(ε̂) and d(u, v)/4 > ρv(ε̂). Together these imply
that d(u,B) < d(u, v)/4 and d(v,B) < d(u, v)/4. Applying the triangle inequality,

d(bu, bv) ≥ d(u, v) − d(u, bu) − d(v, bv)

> d(u, v) − d(u, v)/4 − d(u, v)/4 = d(u, v)/2. (12)

We thus have the following lower bound for (u, v) ∈ G2:

||ϕ(u) − ϕ(v)||pp ≥ ||f(u) − f(v)||pp
= ||g(bu) − g(bv)||pp
≥ 1

α( t
ε̂)

· d(bu, bv)

≥ d(u, v)

2α( t
ε̂ )
. (13)
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To finish the proof, note that D2 and D3 are independent (D3 is a function of the σj random
variables). Thus, in total fromD1, D2, andD3 we have removed at most 5ε̂n2 nodes with probability
at least 1

4 . Let G = E\(D1 ∪ D2 ∪ D3) be the set of edges whose distortion we bounded in the
previous two sections. We conclude that, with probability ≥ 1

4 ,

|G| ≥
(

n

2

)

− 5ε̂n2 ≥
(

n

2

)

− εn2

4
≥ (1 − ε)

(

n

2

)

. (14)

2 Bad news: Lower bounds for embedding with slack

2.1 Why distortion Ω(log 1
ε
) is necessary

Theorem 3. There exists a finite metric (X, d) on arbitrary many nodes that requires distortion

Ω(1
p log 1

ε ) for embedding with ε-slack into `p, where p ≥ 1.

Proof. Suppose that for every finite metric, there exists an embedding into `p with ε-slack and
distortion D. We will show that D = Ω( 1

p log 1
ε ).

Suppose without loss of generality that 0 < ε ≤ 1/4. Let k be 1/(2
√
ε). Let G = (V,E) be

a constant-degree expander on k nodes, and (V,distG) be the corresponding shortest-path metric.
For each node v in V , create a new path on n/k = 2

√
εn nodes, and attach one of its ends to v.

This way we get a graph on n nodes. Let δ such that δ ·D ≤ 1/3 be the length of each attached
path. The new weighted graph H = (V ′, E′) induces the shortest-path metric (V ′,distH).

There exists an embedding φ of (V ′,distH) into `p with ε-slack and distortion D. We can assume
without loss of generality that

distH(v, w) ≤ ||φ(v) − φ(w)||p ≤ D · distH(v, w) (15)

for all but an ε-fraction of pairs v and w. Let I be the set of the pairs for which the above inequality
does not hold. We have |I| ≤ εn2/2.

We will show that the expander metric (V,distG) embeds into `p with distortion 3D in the
standard sense (i.e. with 0-slack). Remove from H nodes that belong to at least

√
εn pairs in I.

There are at most
√
εn such nodes, which means that at least

√
εn nodes survive in each path

that was attached to the expander. For each node v of the expander choose a node v? in the path
attached to v that survived, and define an embedding ψ of (V,distG) into `p as

ψ(v)
def
=φ(v?). (16)

Let v and w be two different nodes in V . An easy counting argument shows that there exists a
node u ∈ V ′ that belongs to the path that was attached to v, and such that neither (v?, u) nor
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(w?, u) belongs to I, the set of “bad” pairs. We have

||ψ(v) − ψ(w)||p = ||φ(v?) − φ(w?)||p
≤ ||φ(v?) − φ(u)||p + ||φ(u) − φ(w?)||p
≤ D · distH(v?, u) +D · distH(u,w?)

≤ D · distH(v, w) + 3Dδ

≤ D · distG(v, w) + 1

≤ D · distG(v, w) + distG(v, w)

≤ 2D · distG(v, w), (17)

and also

||ψ(v) − ψ(w)||p = ||φ(v?) − φ(w?)||p
≥ ||φ(u) − φ(w?)||p − ||φ(u) − φ(v?)||p
≥ distH(u,w?) −D · distH(u, v?)

≥ distH(v, w) −Dδ

≥ distG(v, w) − 1/3

≥ distG(v, w) − 1/3 · distG(v, w)

≥ 2/3 · distG(v, w), (18)

which implies that ψ is an embedding of the expander metric into `p with distortion 3D. It is known
that to embed a bounded-degree expander metric on k nodes into `p we need distortion Ω( 1

p log k)

([3], see Lecture 3 for a proof of distortion Ω(log k) for `2). This implies that D = Ω( 1
p log 1

ε ).

2.2 Contracting embeddings with slack

Suppose we wanted to construct a contracting embedding φ with ε-slack of a finite metric into `p,
that, is a contracting embedding such that φ contracts by at most D on all but an ε-fraction of the
pairs. What D can we hope for? It turns out that for bounded-degree expanders this still implies
distortion Ω(log n), that is, we do not gain anything over the standard notion of an embedding.

Theorem 4. A contracting embedding of a bounded-degree expander on n nodes into `p requires

distortion Ω( 1
p log n) even with 1/2-slack.

We will only prove it for p = 2, using our knowledge from Lecture 3.

Theorem 5. Let ε be a fixed constant in (0, 1). A contracting embedding of a constant-degree

expander on n nodes into `2 with ε-slack requires distortion Ω(log n).

Proof. Let G = (V,E) be an r-regular expander, where r is a constant, and let φ be a contracting
embedding with ε-slack and distortion D.

We know that µ2(G) = Θ(1), and in Lecture 3 in the proof of Theorem 4 we showed that for
any embedding φ of G into `2, we have

∑

(v,w)∈E

||φ(v) − φ(w)||2 ≥ µ2(G)

n

∑

(v,w)∈(V

2
)

||φ(v) − φ(w)||2. (19)
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Note that because the embedding is contracting, we have

∑

(v,w)∈E

||φ(v) − φ(w)||2 ≤ r

2
n, (20)

and it follows from the last two equations that

∑

(v,w)∈(V

2
)

||φ(v) − φ(w)||2 = O(n2). (21)

On the other hand, for all but an ε-fraction of pairs v and w, it holds

||φ(v) − φ(w)||2 ≥ dist2G(v, w)

D2
. (22)

For all but an o(1)-fraction of pairs v and w, we have distG(v, w) = Θ(log n), and therefore, even
if the embedding completely contracts the distance on some ε-fraction of pairs, we still have

∑

(v,w)∈(V

2
)

||φ(v) − φ(w)||2 = Ω

(

n2 log2 n

D2

)

, (23)

which means that D = Ω(log n).
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