Massachusetts Institute of TechnologyMichel X. Goemans18.409: Topics in TCS: Embeddings of Finite Metric SpacesNovember 15, 2006Presentation and notes by David Sontag and Krzysztof Onak

Lecture 18

In today's lecture, we present some of the results contained in [1, 2].

1 Good news: A general theorem on embeddings with slack

We will show how to obtain embeddings into ℓ_p with small dimension where all but an ϵ -fraction of the embedded distances have small distortion. This result has various applications in networking. The embedding is achieved by randomly choosing a small set of beacons, constructing a good embedding for these nodes (using, e.g., Borgain's embedding), and then extending this embedding to the remaining nodes. Thus, we need the following definition:

Definition 1. A family \mathcal{X} of metrics is subset-closed if any metric in \mathcal{X} restricted to any subset of nodes is also in \mathcal{X} .

Definition 2. Given ϵ , an embedding $\varphi : V \to V'$ has distortion D with ϵ -slack if a set of all but an ϵ -fraction of edges has distortion at most D under φ .

Theorem 1. Consider a fixed space ℓ_p , $p \ge 1$. Let \mathcal{X} be a subset-closed family of finite metric spaces such that for any $n \ge 1$ and any n-point metric space $X \in \mathcal{X}$ there exists an embedding $\varphi_X : X \hookrightarrow \ell_p$ with distortion $\alpha(n)$ and dimension $\beta(n)$.

Then there exists a universal constant C > 0 such that for any metric space $X \in \mathcal{X}$ and any $\epsilon > 0$ we have an embedding into ℓ_p with ϵ -slack, distortion $\alpha(\frac{C}{\epsilon} \log \frac{1}{\epsilon})$ and dimension $\beta(\frac{C}{\epsilon} \log \frac{1}{\epsilon}) + C \log \frac{1}{\epsilon}$.

A (modified) Bourgain's theorem gives $\alpha(n) = O(\log n)$ and $\beta(n) = O(\log^2 n)$. Using an improved result by Bartal gives the following corollary.

Corollary 2. Any metric space $X \in \mathcal{X}$ can be embedded into ℓ_p with ϵ -slack, distortion $O(\log \frac{1}{\epsilon})$ and dimension $O(\log \frac{1}{\epsilon})$.

Proof. Consider some metric $X = (V, d) \in \mathcal{X}$, where V is a set of n nodes. Given $\epsilon > 0$ let $\hat{\epsilon} = \epsilon/20$, and $t = 100 \log \frac{1}{\hat{\epsilon}}$. The first step is to sample $\frac{t}{\hat{\epsilon}}$ beacons, B, uniformly at random from V.

Let g be a contracting embedding from B into ℓ_p with distortion $\alpha(\frac{t}{\hat{\epsilon}})$ and dimension $\beta(\frac{t}{\hat{\epsilon}})$. We will extend g to all of V by defining, $\forall u \in V$, f(u) = g(b), where $b \in B$ is the beacon closest to node u. Also, let

$$\{\sigma_j(u)|u \in V, 1 \le j \le t\}$$

$$\tag{1}$$

be independently sampled $\{0, 1\}$ -valued Bernoulli random variables. For all $u \in V$ and j = 1, ..., t, define the function

$$h_j(u) = \sigma_j(u)\rho_u(\hat{\epsilon})t^{-1/p}.$$
(2)

Definition 3. Let $\rho_u(\epsilon)$ be the radius of the smallest ball around u that contains at least ϵn nodes.

The embedding $\varphi(u)$ will be the concatenation of f(u) and $(h_1(u), \ldots, h_t(u))$, giving a dimension of $\beta(\frac{t}{\hat{\epsilon}}) + t$.

Let E be the set of all unordered node pairs. We will remove from consideration three sets D_1 , D_2 , and D_3 of "difficult" node pairs, whose distortion we will not bound, and will show that they are of size only $O(\epsilon)$.

$$D_1 = \{(u, v) | d(u, v) < \max\{\rho_u(\hat{\epsilon}), \rho_v(\hat{\epsilon})\}\}$$
(3)

$$D_2 = \{(u,v)|d(u,B) \ge \rho_u(\hat{\epsilon}) \lor d(v,B) \ge \rho_v(\hat{\epsilon})\}.$$
(4)

At an intuitive level, D_1 is the set of node pairs that are too close together, and D_2 is the set of node pairs that are too far from the beacons. The third set, D_3 , will be given later. Note that $|D_1| \leq \hat{\epsilon}n^2$, since for any node $u \in V$ there are at most $\hat{\epsilon}n$ nodes in the ball of radius $\rho_u(\hat{\epsilon})$ around u. Also, for any node $v \in V$ we have:

$$\Pr[d(u,B) \ge \rho_u(\hat{\epsilon})] \le \Pr[\forall v \in B_{\rho_u(\hat{\epsilon})}(u), v \notin B] \le \left(1 - \left(\frac{t}{\hat{\epsilon}}\right)\frac{1}{n}\right)^{\hat{\epsilon}n} \le e^{-t} \le \hat{\epsilon},\tag{5}$$

so $\mathbb{E}[|D_2|] \leq \hat{\epsilon}n^2$ and by Markov's inequality we have $|D_2| \leq 2\hat{\epsilon}n^2$ with probability at least 1/2.

1.1 Upper Bound on $d(\varphi(u), \varphi(v))$

Let $G' = E \setminus (D_1 \cup D_2)$. We will now upper bound $d(\varphi(u), \varphi(v))$ for all $(u, v) \in G'$. Since $G' \subseteq \overline{D_1}$, $d(u, v) > \rho_u(\hat{\epsilon})$ and $d(u, v) > \rho_v(\hat{\epsilon})$. Since $G' \subseteq \overline{D_2}$, $d(u, B) < \rho_u(\hat{\epsilon})$ and $d(v, B) < \rho_v(\hat{\epsilon})$. Together these imply that d(u, B) < d(u, v) and d(v, B) < d(u, v). We thus have:

$$\begin{aligned} ||\varphi(u) - \varphi(v)||_{p}^{p} &= ||f(u) - f(v)||_{p}^{p} + \sum_{j=1}^{t} |h_{j}(u) - h_{j}(v)|^{p} \\ &= ||g(b_{u}) - g(b_{v})||_{p}^{p} + \sum_{j=1}^{t} |h_{j}(u) - h_{j}(v)|^{p} \\ &\leq (d(b_{u}, b_{v}))^{p} + \sum_{j=1}^{t} |h_{j}(u) - h_{j}(v)|^{p} \\ &\leq (d(b_{u}, u) + d(u, v) + d(v, b_{v}))^{p} + \sum_{j=1}^{t} |h_{j}(u) - h_{j}(v)|^{p} \\ &< (3d(u, v))^{p} + \sum_{j=1}^{t} |t^{-1/p} \max\{\rho_{u}(\hat{\epsilon}), \rho_{v}(\hat{\epsilon})\} - 0|^{p} \\ &< (3^{p} + 1)(d(u, v))^{p}. \end{aligned}$$
(6)

Where we used the fact that g is a contractive embedding, and the notation b_u refers to the node in B which is closest to u.

All that remains is to give a lower bound on $d(\varphi(u), \varphi(v))$. We consider two separate cases:

$$G_{1} = \{(u, v) \in G' : \max\{\rho_{u}(\hat{\epsilon}), \rho_{v}(\hat{\epsilon})\} \ge d(u, v)/4\}$$

$$G_{2} = G' \setminus G_{1}.$$
(8)

1.2 Lower Bound on $d(\varphi(u), \varphi(v))$ for G_1

Since for all edges in G_1 either $\rho_u(\hat{\epsilon})$ or $\rho_v(\hat{\epsilon})$ is $\Omega(d(u, v))$, the h_j coordinates will provide the desired lower bound. The σ_j random variables help ensure that in some non-negligible fraction of the dimensions we get $\rho_u(\hat{\epsilon}) + \rho_v(\hat{\epsilon})$. More concretely, consider an edge $(u, v) \in G_1$, and without loss of generality assume $\rho_u(\hat{\epsilon}) \ge \rho_v(\hat{\epsilon})$, so that $\rho_u(\hat{\epsilon}) \ge d(u, v)/4$).

Let $\mathcal{E}_j(u, v)$ be the event that $\sigma_j(v) = 0$ and $\sigma_j(v) = 1$. This event happens with probability $\frac{1}{4}$. Let $A(u, v) = \sum_{j=1}^t \mathbf{1}_{\mathcal{E}_j(u,v)}$. Then $\mathbb{E}[A(u, v)] = t/4$, and by Chernoff's bound we have:

$$\Pr\left[A(u,v) \le \frac{\mathbb{E}[A(u,v)]}{2}\right] \le e^{-t/50} \le \hat{\epsilon}.$$
(9)

We now define D_3 , the third set to be removed:

$$D_3 = \{(u,v) \in G_1 | A(u,v) \le t/8\}$$
(10)

Note that there is nothing inherently difficult about the edges in D_3 – we were just unlucky with the coin tosses. By Markov's inequality, $|D_3| \leq 2\hat{\epsilon}n^2$ with probability $\geq 1/2$.

We now get the desired lower bound for $(u, v) \in G_1 \setminus D_3$:

$$\begin{aligned} ||\varphi(u) - \varphi(v)||_{p}^{p} &\geq \sum_{j=1}^{t} |h_{j}(u) - h_{j}(v)|^{p} \\ &= \sum_{j=1}^{t} |\sigma_{j}(u)\rho_{u}(\hat{\epsilon})t^{-1/p} - \sigma_{j}(v)\rho_{v}(\hat{\epsilon})t^{-1/p}|^{p} \\ &\geq \frac{t}{8} \left(\rho_{u}(\hat{\epsilon})t^{-1/p}\right)^{p} \geq \frac{1}{8} \left(\frac{1}{4}d(u,v)\right)^{p}. \end{aligned}$$
(11)

1.3 Lower Bound on $d(\varphi(u), \varphi(v))$ for G_2

Recall that b_u refers to the beacon in B which is closest to u. Since $G_2 \subseteq \overline{D_2}$, $d(u, B) < \rho_u(\hat{\epsilon})$ and $d(v, B) < \rho_v(\hat{\epsilon})$. Since $G_2 \subseteq \overline{G_1}$, $d(u, v)/4 > \rho_u(\hat{\epsilon})$ and $d(u, v)/4 > \rho_v(\hat{\epsilon})$. Together these imply that d(u, B) < d(u, v)/4 and d(v, B) < d(u, v)/4. Applying the triangle inequality,

$$d(b_u, b_v) \geq d(u, v) - d(u, b_u) - d(v, b_v) > d(u, v) - d(u, v)/4 - d(u, v)/4 = d(u, v)/2.$$
(12)

We thus have the following lower bound for $(u, v) \in G_2$:

$$\begin{aligned} |\varphi(u) - \varphi(v)||_{p}^{p} &\geq ||f(u) - f(v)||_{p}^{p} \\ &= ||g(b_{u}) - g(b_{v})||_{p}^{p} \\ &\geq \frac{1}{\alpha(\frac{t}{\hat{\epsilon}})} \cdot d(b_{u}, b_{v}) \\ &\geq \frac{d(u, v)}{2\alpha(\frac{t}{\hat{\epsilon}})}. \end{aligned}$$
(13)

To finish the proof, note that D_2 and D_3 are independent (D_3 is a function of the σ_j random variables). Thus, in total from D_1, D_2 , and D_3 we have removed at most $5\hat{\epsilon}n^2$ nodes with probability at least $\frac{1}{4}$. Let $G = E \setminus (D_1 \cup D_2 \cup D_3)$ be the set of edges whose distortion we bounded in the previous two sections. We conclude that, with probability $\geq \frac{1}{4}$,

$$|G| \ge \binom{n}{2} - 5\hat{\epsilon}n^2 \ge \binom{n}{2} - \frac{\epsilon n^2}{4} \ge (1-\epsilon)\binom{n}{2}.$$
(14)

2 Bad news: Lower bounds for embedding with slack

2.1 Why distortion $\Omega(\log \frac{1}{\epsilon})$ is necessary

Theorem 3. There exists a finite metric (X, d) on arbitrary many nodes that requires distortion $\Omega(\frac{1}{p}\log\frac{1}{\epsilon})$ for embedding with ϵ -slack into ℓ_p , where $p \ge 1$.

Proof. Suppose that for every finite metric, there exists an embedding into ℓ_p with ϵ -slack and distortion D. We will show that $D = \Omega(\frac{1}{p} \log \frac{1}{\epsilon})$.

Suppose without loss of generality that $0 < \epsilon \leq 1/4$. Let k be $1/(2\sqrt{\epsilon})$. Let G = (V, E) be a constant-degree expander on k nodes, and $(V, \operatorname{dist}_G)$ be the corresponding shortest-path metric. For each node v in V, create a new path on $n/k = 2\sqrt{\epsilon n}$ nodes, and attach one of its ends to v. This way we get a graph on n nodes. Let δ such that $\delta \cdot D \leq 1/3$ be the length of each attached path. The new weighted graph H = (V', E') induces the shortest-path metric $(V', \operatorname{dist}_H)$.

There exists an embedding ϕ of $(V', \operatorname{dist}_H)$ into ℓ_p with ϵ -slack and distortion D. We can assume without loss of generality that

$$\operatorname{dist}_{H}(v,w) \le ||\phi(v) - \phi(w)||_{p} \le D \cdot \operatorname{dist}_{H}(v,w)$$
(15)

for all but an ϵ -fraction of pairs v and w. Let I be the set of the pairs for which the above inequality does not hold. We have $|I| \leq \epsilon n^2/2$.

We will show that the expander metric $(V, \operatorname{dist}_G)$ embeds into ℓ_p with distortion 3D in the standard sense (i.e. with 0-slack). Remove from H nodes that belong to at least $\sqrt{\epsilon n}$ pairs in I. There are at most $\sqrt{\epsilon n}$ such nodes, which means that at least $\sqrt{\epsilon n}$ nodes survive in each path that was attached to the expander. For each node v of the expander choose a node v^* in the path attached to v that survived, and define an embedding ψ of $(V, \operatorname{dist}_G)$ into ℓ_p as

$$\psi(v) \stackrel{\text{def}}{=} \phi(v^{\star}). \tag{16}$$

Let v and w be two different nodes in V. An easy counting argument shows that there exists a node $u \in V'$ that belongs to the path that was attached to v, and such that neither (v^*, u) nor

 (w^{\star}, u) belongs to I, the set of "bad" pairs. We have

$$\begin{aligned} |\psi(v) - \psi(w)||_{p} &= ||\phi(v^{\star}) - \phi(w^{\star})||_{p} \\ &\leq ||\phi(v^{\star}) - \phi(u)||_{p} + ||\phi(u) - \phi(w^{\star})||_{p} \\ &\leq D \cdot \operatorname{dist}_{H}(v^{\star}, u) + D \cdot \operatorname{dist}_{H}(u, w^{\star}) \\ &\leq D \cdot \operatorname{dist}_{H}(v, w) + 3D\delta \\ &\leq D \cdot \operatorname{dist}_{G}(v, w) + 1 \\ &\leq D \cdot \operatorname{dist}_{G}(v, w) + \operatorname{dist}_{G}(v, w) \\ &\leq 2D \cdot \operatorname{dist}_{G}(v, w), \end{aligned}$$
(17)

and also

$$\begin{aligned} ||\psi(v) - \psi(w)||_{p} &= ||\phi(v^{\star}) - \phi(w^{\star})||_{p} \\ &\geq ||\phi(u) - \phi(w^{\star})||_{p} - ||\phi(u) - \phi(v^{\star})||_{p} \\ &\geq \operatorname{dist}_{H}(u, w^{\star}) - D \cdot \operatorname{dist}_{H}(u, v^{\star}) \\ &\geq \operatorname{dist}_{H}(v, w) - D\delta \\ &\geq \operatorname{dist}_{G}(v, w) - 1/3 \\ &\geq \operatorname{dist}_{G}(v, w) - 1/3 \cdot \operatorname{dist}_{G}(v, w) \\ &\geq 2/3 \cdot \operatorname{dist}_{G}(v, w), \end{aligned}$$
(18)

which implies that ψ is an embedding of the expander metric into ℓ_p with distortion 3D. It is known that to embed a bounded-degree expander metric on k nodes into ℓ_p we need distortion $\Omega(\frac{1}{p}\log k)$ ([3], see Lecture 3 for a proof of distortion $\Omega(\log k)$ for ℓ_2). This implies that $D = \Omega(\frac{1}{p}\log \frac{1}{\epsilon})$. \Box

2.2 Contracting embeddings with slack

Suppose we wanted to construct a contracting embedding ϕ with ϵ -slack of a finite metric into ℓ_p , that, is a contracting embedding such that ϕ contracts by at most D on all but an ϵ -fraction of the pairs. What D can we hope for? It turns out that for bounded-degree expanders this still implies distortion $\Omega(\log n)$, that is, we do not gain anything over the standard notion of an embedding.

Theorem 4. A contracting embedding of a bounded-degree expander on n nodes into ℓ_p requires distortion $\Omega(\frac{1}{p}\log n)$ even with 1/2-slack.

We will only prove it for p = 2, using our knowledge from Lecture 3.

Theorem 5. Let ϵ be a fixed constant in (0,1). A contracting embedding of a constant-degree expander on n nodes into ℓ_2 with ϵ -slack requires distortion $\Omega(\log n)$.

Proof. Let G = (V, E) be an r-regular expander, where r is a constant, and let ϕ be a contracting embedding with ϵ -slack and distortion D.

We know that $\mu_2(G) = \Theta(1)$, and in Lecture 3 in the proof of Theorem 4 we showed that for any embedding ϕ of G into ℓ_2 , we have

$$\sum_{(v,w)\in E} ||\phi(v) - \phi(w)||^2 \ge \frac{\mu_2(G)}{n} \sum_{(v,w)\in \binom{V}{2}} ||\phi(v) - \phi(w)||^2.$$
(19)

Note that because the embedding is contracting, we have

$$\sum_{(v,w)\in E} ||\phi(v) - \phi(w)||^2 \le \frac{r}{2}n,$$
(20)

and it follows from the last two equations that

$$\sum_{(v,w)\in\binom{V}{2}} ||\phi(v) - \phi(w)||^2 = O(n^2).$$
(21)

On the other hand, for all but an ϵ -fraction of pairs v and w, it holds

$$||\phi(v) - \phi(w)||^2 \ge \frac{\operatorname{dist}_G^2(v, w)}{D^2}.$$
 (22)

For all but an o(1)-fraction of pairs v and w, we have $dist_G(v, w) = \Theta(\log n)$, and therefore, even if the embedding completely contracts the distance on some ϵ -fraction of pairs, we still have

$$\sum_{(v,w)\in\binom{V}{2}} ||\phi(v) - \phi(w)||^2 = \Omega\left(\frac{n^2 \log^2 n}{D^2}\right),\tag{23}$$

which means that $D = \Omega(\log n)$.

References

- Ittai Abraham, Yair Bartal, T.-H. Hubert Chan, Kedar Dhamdhere, Anupam Gupta, Jon M. Kleinberg, Ofer Neiman, and Aleksandrs Slivkins. Metric embeddings with relaxed guarantees. In *FOCS*, pages 83–100. IEEE Computer Society, 2005.
- [2] T.-H. Hubert Chan, Kedar Dhamdhere, Anupam Gupta, Jon M. Kleinberg, and Aleksandrs Slivkins. Metric embeddings with relaxed guarantees. Full version of the FOCS paper. Available at http://www.cs.brown.edu/people/slivkins/focs05_full.pdf.
- [3] Jiří Matoušek. On embedding expanders into ℓ_p spaces. Israel J. Math., 102:189–197, 1997.