Massachusetts Institute of TechnologyMichel X. Goemans18.409: Topics in TCS: Embeddings of Finite Metric SpacesNovember 8, 2006Presentation and notes by Shubhangi Saraf and Adriana Lopez

Lecture 16

In this lecture we will discuss several results on Lipschitz extensions of mappings. In particular we'll prove the Kirszbraun extension theorem for mappings of subsets of ℓ_2^n to ℓ_2^m . The book [4] gives a complete account of the proof and many other related results. We'll also present a result by Johnson and Lindenstrauss [2] on extensions of mappings from finite subsets of arbitrary metric spaces into ℓ_2^m . Finally, we will present a nice application of the Kirszbraun extension theorem in showing that embedding spheres into the plane requires $\Omega(\sqrt{n})$ distortion. We also show that this bound is tight.

1 Lipschitz Extensions of Mappings

Definition 1. Let X and Y be metric spaces. Let $f: X \to Y$. If

$$L = \sup_{x_i, x_j \in X} \frac{d_Y(f(x_i), f(x_j))}{d_X(x_i, x_j)} < \infty.$$

we say that f is a Lipschitz map. We define the Lipschitz constant of f, $|f|_{lip}$ to be L.

Recall: Distortion $(f) = |f|_{lip} |f^{-1}|_{lip}$. We will prove the results for mappings into ℓ_2^n . All the results hold for ℓ_2 as well.

The basic questions that we want to ask about Lipschitz extensions are the following. Let X, Y be given metric spaces, $M \subseteq X$, and $f: M \to Y$ be a Lipschitz map.

- 1. Can we extend f to a Lipschitz map on all of X? I.e. when does there exist $\tilde{f}: X \to Y$ such that $\tilde{f}|_M = f$ and \tilde{f} is also Lipschitz?
- 2. If such a function \tilde{f} exists, can we find any bound on \tilde{f} ?

In the case when $X = \ell_2^n$ and $Y = \ell_2^m$, we have the following result:

Theorem 1. Kirszbraun Extension Theorem Let $X = \ell_2^n$ and $Y = \ell_2^m$ for some $m, n \in \mathbb{N}$. Let $M \subseteq X$ and let $f : M \to Y$ be a Lipschitz map. Then, there exists $\tilde{f} : X \to Y$ such that $\tilde{f}|_M = f$ and $|\tilde{f}|_{lip} = |f|_{lip}$.

Proof. Without loss of generality, we can assume that $|f|_{lip} = 1$ since we can scale f appropriately, and this wouldn't change the result. Hence, we have that f is non-expanding.

Claim: If $M \neq X$, it suffices to be able to extend f to at least one more point. (Informally, consider the largest subset of X that we can extend f to, and if it isn't all of X, then we can extend it be one more point and contradict maximality.) Zorn's Lemma takes care of formalizing this notion.

Let
$$M = \{x_i | i \in I\}$$
. Let $f(x_i) = y_i$. Let $x \in X - M$ and let $||x - x_i|| = r_i$. Then

$$x \in \bigcap_{i \in I} B(x_i, r_i).$$

To extend f be one more point, we need to find $y \in Y$ such that $||y - y_i|| \le r_i$; $\forall i \in I$. That is, we want to show that $\bigcap_{i \in I} B(y_i, r_i) \ne \phi$.

Definition 2. We say that the pair of metric spaces (X, Y) has Property [K] if whenever $\{B(x_i, r_i) | i \in$ I} and $\{B(y_i, r_i) | i \in I\}$ are two families of closed balls in X and Y indexed over I, and $d_Y(y_i, y_j) \leq I$ $d_X(x_i, x_j); \forall i, j \in I, then$

$$\bigcap_{i \in I} B(x_i, r_i) \neq \phi \Rightarrow \bigcap_{i \in I} B(y_i, r_i) \neq \phi.$$

What remains to show is that (ℓ_2^n, ℓ_2^m) has Property [K]. It is enough to prove it for the case when I is a finite set, since by compactness arguments we can extend it to the case of arbitrary collections of sets. Here we use the fact that if we have a collection of compact sets such that every finite sub-collection has non-empty intersection, then the intersection of all the sets is nonempty.

Let $\{B(x_i, r_i)\}$ be a finite set of balls indexed by $i = 1, 2, \ldots, k$. $\bigcap_{i \in I} B(x_i, r_i) \neq \phi$. Now consider $\bigcap_{i \in I} B(y_i, r_i)$ To show this is nonempty, it suffices to find $y \in Y$ such that $\frac{\|y-y_i\|}{r_i} \leq 1$ for $1 \leq i \leq k$.

Let q defined on Y be the following function:

$$g(t) = \max_{i} \left\{ \frac{\|t - y_i\|}{r_i} \right\}.$$

g is a continuous function, and g assumes lower values in some closed, bounded region of Y. Since such a region is compact, g attains its minimum at some point say y. Let $g(y) = \lambda$. Therefore,

$$\max_{i} \left\{ \frac{\|y - y_i\|}{r_i} \right\} = \lambda.$$

Let $||y - y_i|| = \lambda ||x - x_i||$ for $1 \le i \le l$, and let $||y - y_i|| < \lambda ||x - x_i||$ for i > l.

Claim: y must lie in the convex hull C of y_1, y_2, \ldots, y_l . If it did not, then there would exist a hyperplane π separating y from C. Then, by displacing y by a small amount in the direction of π , we would reduce the distance of y to y_i , for $1 \le i \le l$, and preserve the other strict inequalities, thus contradict the minimality of λ . Hence y is some convex combination of y_1, y_2, \ldots, y_l . Let a_1, a_2, \dots, a_l be such that $a_i \ge 0$, $\sum a_i = 1$ and $\sum_{i=1}^l a_i y_i = y$. Consider $1 \le i, j \le l$. Since $||y_i - y_j||^2 \le ||x_i - x_j||^2$, we get

$$||y_i - y_j||^2 = ||(y_i - y) + (y - y_j)||^2 \le ||x_i - x_j||^2$$

This gives us $||y_i - y||^2 + ||y - y_j||^2 + 2\langle y_i - y, y - y_j \rangle \le ||x_i - x_j||^2$, thus implying $\lambda ||x_i - x||^2 + 2\langle y_i - y, y - y_j \rangle \le ||x_i - x_j||^2$ $\lambda \|x_j - x\|^2 \le \|x_i - x_j\|^2 + 2\langle y_i - y, y_j - y \rangle.$

Assume that $\lambda > 1$. Then we have

$$||x_i - x||^2 + ||x_j - x||^2 \le ||x_i - x_j||^2 + 2\langle y_i - y, y_j - y \rangle.$$

Multiplying throughout by $a_i a_j$ and summing over all $1 \le i, j \le l$, we get

$$\sum_{i,j} a_i a_j (\|x_i - x\|^2 + \|x_j - x\|^2 - \|x_i - x_j\|^2) < 2 \sum_{i,j} a_i a_j \langle y_i - y, y_j - y \rangle.$$

Since $\sum_{i=1}^{l} a_i y_i = y$, the R.H.S. sums to 0. Also, assuming without loss of generality that $x \equiv 0$ and simplifying the L.H.S., we deduce that $\|\sum a_i x_i\|^2 < 0$, which is a contradiction. Hence $\lambda \leq 1$. This implies $y \in \bigcap_{i \in I} B(y_i, r_i)$, and this completes the proof of the Kirszbraun Extension Theorem. \Box **Theorem 2. Johnson and Lindenstrauss:** Let X be an arbitrary metric space, and let $M \subseteq X$ be a finite subset of X such that |M| = n. Let $f : M \to \ell_2^m$ be given. Then, there exists $\tilde{f} : X \to \ell_2^m$ satisfying $\tilde{f}|_M = f$ and $|\tilde{f}|_{lip} \leq O(\sqrt{\log n})|f|_{lip}$.

We will need the following lemma:

Lemma 3. For any metric space X, the pair (X, ℓ_{∞}^d) has Property [K].

Proof. (sketch) Let $\{B(x_i, r_i) | i \in I\}$ and $\{B(y_i, r_i) | i \in I\}$ be given. Let $\|y_i - y_j\|_{\infty} \leq d_X(x_i, x_j); \forall i, j \in I$ and let $\bigcap_{i \in I} B(x_i, r_i) \neq \phi$.

We first observe that $B(x_i, r_i) \cap B(x_j, r_j) \neq \phi \Rightarrow r_i + r_j \geq d_X(x_i, x_j)$. Since $||y_i - y_j||_{\infty} \leq d_X(x_i, x_j)$, therefore $||y_i - y_j||_{\infty} \leq r_i + r_j$ which implies $B(y_i, r_i) \cap B(y_j, r_j) \neq \phi$. Thus, we have a collection of balls in ℓ_{∞}^d that intersect pairwise. We observe that ℓ_{∞}^d has the property that if a collection of balls in ℓ_{∞}^d intersect pairwise, then they all have a common point of intersection. We can see that this is true by projecting to each coordinate of ℓ_{∞}^d , taking the point of intersection there (of the corresponding intervals), and then concatenating them all back together. Hence, $\bigcap_{i \in I} B(y_i, r_i) \neq \phi$.

Proof. (Johnson-Lindenstrauss Theorem)

Given X, and $M \subseteq X$ with |M| = n, and $f : M \to \ell_2^m$. Let A = f(M). By the Johnson-Lindenstrauss dimension reduction lemma in ℓ_2 , there exists a 1-1 function g such that $g(A) \subseteq \ell_2^k$, where $k = O(\log n)$; and $\text{Dist}(g) \leq 2$ (say). (Note: the J-L lemma says we can get distortion $1 + \epsilon$ for any ϵ .) Since $\text{Dist}(g) = |g|_{lip}|g^{-1}|_{lip}$, we get $|g|_{lip}|g^{-1}|_{lip} \leq 2$. By scaling the function suitably we can assume without loss of generality that $|g|_{lip} \leq 1$ and $|g^{-1}|_{lip} \leq 2$.

Let I be the formal identity map from ℓ_2^k to ℓ_∞^k . Clearly $|I|_{lip} = 1$ and $|I^{-1}|_{lip} = \sqrt{k}$.

$$M \xrightarrow{f} A_{\subseteq \ell_2^m} \xrightarrow{g} g(A)_{\subseteq \ell_2^k} \xrightarrow{I} \ell_{\infty}^k$$

The map $I \circ g \circ f = h : M \to \ell_{\infty}^k$ has $|h|_{lip} \leq |f|_{lip}$. By the previous lemma, since $(X, \ell_{\infty}k)$ has Property [K], we can extend h to $\tilde{h} : X \to \ell_{\infty}^k$) such that $|\tilde{h}|_{lip} \leq |f|_{lip}$.

Now, we have a map $g^{-1}: g(A) \to A$. By the Kirszbraun Theorem, this map can be extended to $\tilde{g^{-1}}: \ell_2^k \to \ell_2^m$ such that $|\tilde{g^{-1}}|_{lip} = |g^{-1}|_{lip}$.

Then, $\tilde{f} = \tilde{g^{-1}} \circ I^{-1} \circ \tilde{h}$ is a map such that $\tilde{f} : X \to \ell_2^m$; $\tilde{f}|_M = f$ and $|\tilde{f}|_{lip} \leq 2\sqrt{k}|f|_{lip} = O(\sqrt{\log n})|f|_{lip}$.

2 Embeddings Spheres into the Plane

Theorem 4. There exists a metric space in ℓ_2^3 induced by an n-point set X on the unit sphere S^2 such that any mapping $f: X \to \mathbb{R}^2$ has distortion $\Omega(\sqrt{n})$.

To prove theorem 4 we will have to use the Borsuk-Ulam theorem. We will state it here without proof (see [3] for proof and further discussion).

Theorem 5 (Borsuk-Ulam). Every continuous map $f : S^n \to \mathbb{R}^n$ must identify a pair of antipodal points.

Definition 3. Suppose (S, δ) is a metric space and let $\epsilon > 0$. A subset $N \subset S$ is an ϵ -net for S if, for all $x \in S$, there exists $y \in N$ such that $d(x, y) < \epsilon$.

Proof. (Theorem 4) Let X be a set of n points in S^2 that form a $O(1/\sqrt{n})$ -net of S^2 (it is easy to see that there exists such a net of size O(n)). Let $f: X \to \mathbb{R}^2$ be a non-contracting embedding, so that $\forall x, y \in X$ we have $||f(x) - f(y)||_2 \leq ||x - y||_2$. Since $X \subset S^2 \subset \mathbb{R}^3$, by the Kirszbraun extension theorem we know that there exists a continuous mapping $f': S^2 \to \mathbb{R}^2$ such that $\forall x \in X$ we have f'(x) = f(x) and $\forall x, y \in S^2$ we have $||f(x) - f(y)||_2 \leq ||x - y||_2$. By the Borsuk-Ulam theorem, we know that there exist antipodal points p and q such that f'(p) = f'(q). Since we chose X to be an $O(1/\sqrt{n})$ -net, we know there exist points $p', q' \in X$ such that $||p - p'||_2 = O(1/\sqrt{n})$ and $||q - q'||_2 = O(1/\sqrt{n})$. Thus,

$$\begin{aligned} \left| \left| f(p') - f(q') \right| \right|_{2} &= \left| \left| f'(p') - f'(q') \right| \right|_{2} \\ &\leq \left| \left| f'(p') - f'(p) \right| \right|_{2} + \left| \left| f'(p) - f'(q) \right| \right|_{2} + \left| \left| f'(q) - f'(q') \right| \right|_{2} \\ &\leq \left| \left| p - p' \right| \right|_{2} + \left| \left| q - q' \right| \right|_{2} \\ &= O(1/\sqrt{n}) \end{aligned}$$
(1)

By the triangle inequality we get

$$\begin{aligned} ||p' - q'||_2 + ||p' - p||_2 + ||q' - q||_2 &\ge ||p - q||_2 = 2\\ ||p' - q'||_2 &\ge 2 - O(1/\sqrt{n}) \ge 2 - \frac{c}{\sqrt{n}} \end{aligned}$$

and therefore

$$||p' - q'||_2 = \Omega(1).$$
 (2)

Let D be the distortion of f. Since f is non-contracting, we know that

$$D \ge \frac{||p-q||_2}{||f(p) - f(q)||_2}$$

From equations (1) and (2), we get

$$\frac{||p-q||_2}{||f(p)-f(q)||_2} \ge \frac{\Omega(1)}{O(1/\sqrt{n})} = \Omega(\sqrt{n})$$

which means that $D = \Omega(\sqrt{n})$.

We now prove that the bound given in theorem 4 is tight. Recall that for a metric space $M = (X, \delta), c_p^d(M)$ denotes the minimum distortion of any embedding of M into l_p^d .

Theorem 6. If $M = (X, \delta)$ is a metric in ℓ_2^3 induced by an n-point subset X of the unit sphere S^2 , then $c_2^2 = O(\sqrt{n})$.

Proof. Let K be a cap of S^2 such that the size of K is $\Omega(1/n)$ and $K \cap X = \emptyset$ (such a cap must exist since caps of size less than $4\pi/n$ centered at all points in X do not cover fully S^2). Let p_0 be the center of K and let p'_0 be its antipode in S^2 . Without loss of generality, assume $p_0 = (0, 0, 1)$ and $p'_0 = (0, 0, -1)$. Define $f: X \to \mathbb{R}^2$ as follows: for $p = (x, y, z) \in X$,

$$f(p) = \begin{cases} \left(\rho_{S^2}(p, p'_0) \frac{x}{\sqrt{x^2 + y^2}}, \rho_{S^2}(p, p'_0) \frac{y}{\sqrt{x^2 + y^2}} \right) & \text{if } p \neq p_0 \text{ and } p \neq p'_0 \\ (0, 0) & \text{if } p = p_0 \text{ or } p = p'_0 \end{cases}$$

where $\rho_{S^2}(u, v)$ denotes the geodesic distance between u and v in S^2 , that is, $\rho_{S^2}(u, v) = \arccos(\langle u, v \rangle)$.

Informally, think of $f(S^2)$ in the following way: cut K off S^2 and unfold what is left into the xy-plane. If we see it this way, it is clear that f is non-contracting. It is also easy to see that the expansion of f is maximized for points p, q on the perimeter of K that are antipodals with respect to K. (For a formal proof of this, see [1]).

So pick points p and q on the perimeter of K such that they are antipodals with respect to K, and let ϕ_K be the angle of K (if O denotes the origin, $\phi_K = \angle pOq$). Let $r_K = \frac{\phi_K}{2}$. Then

$$||f(p) - f(q)||_2 = ||f(p)||_2 + ||f(q)||_2 = (\pi - r_K) + (\pi - r_K) = 2\pi - 2r_K$$

Moreover, $||p - q||_2 = 2 \sin r_K$, so the expansion of f for p and q is

$$\frac{||f(p) - f(q)||_2}{||p - q||_2} = \frac{2\pi - 2r_K}{2\sin r_K} = \frac{\pi - r_K}{\sin r_K}$$

and this is the maximum expansion for all points in X.

Since f is non-contracting, we have that for all $x, y \in X$

$$||x - y||_2 \le ||f(x) - f(y)||_2 \le \left(\frac{\pi - r_K}{\sin r_K}\right) ||x - y||_2$$

Now, since K is of size $\Omega(1/n)$, we must have that $r_K = \Omega(1/\sqrt{n})$. We can also assume that $r_K \leq \frac{\pi}{2}$ because otherwise, we can let K be a smaller cap. We know the function $g(\theta) = \frac{\sin\theta}{\theta}$ is decreasing in the interval $(0, \frac{\pi}{2}]$. Thus, for $0 < \theta \leq \frac{\pi}{2}$ we have $\frac{\sin\theta}{\theta} \geq \frac{2}{\pi}$. In particular, we have $\sin r_K \geq \frac{2r_K}{\pi}$. Therefore,

$$\frac{\pi - r_K}{\sin r_K} \le \frac{\pi (\pi - r_K)}{2r_K} < \frac{\pi^2}{2r_K} = O(\sqrt{n})$$

We can thus conclude that f has distortion $O(\sqrt{n})$.

References

- M. Bădoiu, K. Dhamdhere, A. Gupta et al. Approximation Algorithms for Low-Distortion Embeddings Into Low Dimensional Spaces SODA 2005
- [2] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189-206. Amer. Math. Soc., Providence, RI, 1984.
- [3] J. Matoušek, A. Bjorner, G. Ziegler Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry Springer-Verlag, Berlin 2003
- [4] J. H. Wells and L. R. Williams. *Embeddings and extensions in analysis*. Springer-Verlag, New York, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84.