### 18.409: Topics in TCS: Embeddings of Finite Metric Spaces

## Lecture 16

In this lecture we will discuss several results on Lipschitz extensions of mappings. In particular we'll prove the Kirszbraun extension theorem for mappings of subsets of $\ell_{2}^{n}$ to $\ell_{2}^{m}$. The book [4] gives a complete account of the proof and many other related results. We'll also present a result by Johnson and Lindenstrauss [2] on extensions of mappings from finite subsets of arbitrary metric spaces into $\ell_{2}^{m}$. Finally, we will present a nice application of the Kirszbraun extension theorem in showing that embedding spheres into the plane requires $\Omega(\sqrt{n})$ distortion. We also show that this bound is tight.

## 1 Lipschitz Extensions of Mappings

Definition 1. Let $X$ and $Y$ be metric spaces. Let $f: X \rightarrow Y$. If

$$
L=\sup _{x_{i}, x_{j} \in X} \frac{d_{Y}\left(f\left(x_{i}\right), f\left(x_{j}\right)\right)}{d_{X}\left(x_{i}, x_{j}\right)}<\infty,
$$

we say that $f$ is a Lipschitz map. We define the Lipschitz constant of $f,|f|_{\text {lip }}$ to be L.
Recall: Distortion $(f)=|f|_{l i p}\left|f^{-1}\right|_{\text {lip }}$. We will prove the results for mappings into $\ell_{2}^{n}$. All the results hold for $\ell_{2}$ as well.

The basic questions that we want to ask about Lipschitz extensions are the following. Let $X, Y$ be given metric spaces, $M \subseteq X$, and $f: M \rightarrow Y$ be a Lipschitz map.

1. Can we extend $f$ to a Lipschitz map on all of $X$ ? I.e. when does there exist $\tilde{f}: X \rightarrow Y$ such that $\left.\tilde{f}\right|_{M}=f$ and $\tilde{f}$ is also Lipschitz?
2. If such a function $\tilde{f}$ exists, can we find any bound on $\tilde{f}$ ?

In the case when $X=\ell_{2}^{n}$ and $Y=\ell_{2}^{m}$, we have the following result:
Theorem 1. Kirszbraun Extension Theorem Let $X=\ell_{2}^{n}$ and $Y=\ell_{2}^{m}$ for some $m, n \in \mathbb{N}$. Let $M \subseteq \underset{\tilde{X}}{ }$ and let $f: M \rightarrow Y$ be a Lipschitz map. Then, there exists $\tilde{f}: X \rightarrow Y$ such that $\left.\tilde{f}\right|_{M}=f$ and $|\tilde{f}|_{\text {lip }}=|f|_{\text {lip }}$.
Proof. Without loss of generality, we can assume that $|f|_{l i p}=1$ since we can scale $f$ appropriately, and this wouldn't change the result. Hence, we have that $f$ is non-expanding.

Claim: If $M \neq X$, it suffices to be able to extend $f$ to at least one more point. (Informally, consider the largest subset of $X$ that we can extend $f$ to, and if it isn't all of $X$, then we can extend it be one more point and contradict maximality.) Zorn's Lemma takes care of formalizing this notion.

Let $M=\left\{x_{i} \mid i \in I\right\}$. Let $f\left(x_{i}\right)=y_{i}$. Let $x \in X-M$ and let $\left\|x-x_{i}\right\|=r_{i}$. Then

$$
x \in \bigcap_{i \in I} B\left(x_{i}, r_{i}\right) .
$$

To extend $f$ be one more point, we need to find $y \in Y$ such that $\left\|y-y_{i}\right\| \leq r_{i} ; \forall i \in I$. That is, we want to show that $\bigcap_{i \in I} B\left(y_{i}, r_{i}\right) \neq \phi$.

Definition 2. We say that the pair of metric spaces $(X, Y)$ has Property $[\mathrm{K}]$ if whenever $\left\{B\left(x_{i}, r_{i}\right) \mid i \in\right.$ $I\}$ and $\left\{B\left(y_{i}, r_{i}\right) \mid i \in I\right\}$ are two families of closed balls in $X$ and $Y$ indexed over $I$, and $d_{Y}\left(y_{i}, y_{j}\right) \leq$ $d_{X}\left(x_{i}, x_{j}\right) ; \forall i, j \in I$, then

$$
\bigcap_{i \in I} B\left(x_{i}, r_{i}\right) \neq \phi \Rightarrow \bigcap_{i \in I} B\left(y_{i}, r_{i}\right) \neq \phi .
$$

What remains to show is that $\left(\ell_{2}^{n}, \ell_{2}^{m}\right)$ has Property [K]. It is enough to prove it for the case when $I$ is a finite set, since by compactness arguments we can extend it to the case of arbitrary collections of sets. Here we use the fact that if we have a collection of compact sets such that every finite sub-collection has non-empty intersection, then the intersection of all the sets is nonempty.

Let $\left\{B\left(x_{i}, r_{i}\right)\right\}$ be a finite set of balls indexed by $i=1,2, \ldots, k$. $\bigcap_{i \in I} B\left(x_{i}, r_{i}\right) \neq \phi$. Now consider $\bigcap_{i \in I} B\left(y_{i}, r_{i}\right)$ To show this is nonempty, it suffices to find $y \in Y$ such that $\frac{\left\|y-y_{i}\right\|}{r_{i}} \leq 1$ for $1 \leq i \leq k$.

Let $g$ defined on $Y$ be the following function:

$$
g(t)=\max _{i}\left\{\frac{\left\|t-y_{i}\right\|}{r_{i}}\right\} .
$$

$g$ is a continuous function, and $g$ assumes lower values in some closed, bounded region of $Y$. Since such a region is compact, $g$ attains its minimum at some point say $y$. Let $g(y)=\lambda$. Therefore,

$$
\max _{i}\left\{\frac{\left\|y-y_{i}\right\|}{r_{i}}\right\}=\lambda .
$$

Let $\left\|y-y_{i}\right\|=\lambda\left\|x-x_{i}\right\|$ for $1 \leq i \leq l$, and let $\left\|y-y_{i}\right\|<\lambda\left\|x-x_{i}\right\|$ for $i>l$.
Claim: y must lie in the convex hull $C$ of $y_{1}, y_{2}, \ldots, y_{l}$. If it did not, then there would exist a hyperplane $\pi$ separating $y$ from $C$. Then, by displacing $y$ by a small amount in the direction of $\pi$, we would reduce the distance of $y$ to $y_{i}$, for $1 \leq i \leq l$, and preserve the other strict inequalities, thus contradict the minimality of $\lambda$. Hence $y$ is some convex combination of $y_{1}, y_{2}, \ldots, y_{l}$. Let $a_{1}, a_{2}, \ldots, a_{l}$ be such that $a_{i} \geq 0, \sum a_{i}=1$ and $\sum_{i=1}^{l} a_{i} y_{i}=y$.

Consider $1 \leq i, j \leq l$. Since $\left\|y_{i}-y_{j}\right\|^{2} \leq\left\|x_{i}-x_{j}\right\|^{2}$, we get

$$
\left\|y_{i}-y_{j}\right\|^{2}=\left\|\left(y_{i}-y\right)+\left(y-y_{j}\right)\right\|^{2} \leq\left\|x_{i}-x_{j}\right\|^{2} .
$$

This gives us $\left\|y_{i}-y\right\|^{2}+\left\|y-y_{j}\right\|^{2}+2\left\langle y_{i}-y, y-y_{j}\right\rangle \leq\left\|x_{i}-x_{j}\right\|^{2}$, thus implying $\lambda\left\|x_{i}-x\right\|^{2}+$ $\lambda\left\|x_{j}-x\right\|^{2} \leq\left\|x_{i}-x_{j}\right\|^{2}+2\left\langle y_{i}-y, y_{j}-y\right\rangle$.

Assume that $\lambda>1$. Then we have

$$
\left\|x_{i}-x\right\|^{2}+\left\|x_{j}-x\right\|^{2} \leq\left\|x_{i}-x_{j}\right\|^{2}+2\left\langle y_{i}-y, y_{j}-y\right\rangle .
$$

Multiplying throughout by $a_{i} a_{j}$ and summing over all $1 \leq i, j \leq l$, we get

$$
\sum_{i, j} a_{i} a_{j}\left(\left\|x_{i}-x\right\|^{2}+\left\|x_{j}-x\right\|^{2}-\left\|x_{i}-x_{j}\right\|^{2}\right)<2 \sum_{i, j} a_{i} a_{j}\left\langle y_{i}-y, y_{j}-y\right\rangle .
$$

Since $\sum_{i=1}^{l} a_{i} y_{i}=y$, the R.H.S. sums to 0 . Also, assuming without loss of generality that $x \equiv 0$ and simplifying the L.H.S., we deduce that $\left\|\sum a_{i} x_{i}\right\|^{2}<0$, which is a contradiction. Hence $\lambda \leq 1$. This implies $y \in \bigcap_{i \in I} B\left(y_{i}, r_{i}\right)$, and this completes the proof of the Kirszbraun Extension Theorem.

Theorem 2. Johnson and Lindenstrauss: Let $X$ be an arbitrary metric space, and let $M \subseteq X$ be a finite subset of $X$ such that $|M|=n$. Let $f: M \rightarrow \ell_{2}^{m}$ be given. Then, there exists $\tilde{f}: X \rightarrow \ell_{2}^{m}$ satisfying $\left.\tilde{f}\right|_{M}=f$ and $|\tilde{f}|_{l i p} \leq O(\sqrt{\log n})|f|_{\text {lip }}$.

We will need the following lemma:
Lemma 3. For any metric space $X$, the pair $\left(X, \ell_{\infty}^{d}\right)$ has Property $[K]$.
Proof. (sketch) Let $\left\{B\left(x_{i}, r_{i}\right) \mid i \in I\right\}$ and $\left\{B\left(y_{i}, r_{i}\right) \mid i \in I\right\}$ be given. Let $\left\|y_{i}-y_{j}\right\|_{\infty} \leq d_{X}\left(x_{i}, x_{j}\right) ; \forall i, j \in$ $I$ and let $\bigcap_{i \in I} B\left(x_{i}, r_{i}\right) \neq \phi$.

We first observe that $B\left(x_{i}, r_{i}\right) \bigcap B\left(x_{j}, r_{j}\right) \neq \phi \Rightarrow r_{i}+r_{j} \geq d_{X}\left(x_{i}, x_{j}\right)$. Since $\left\|y_{i}-y_{j}\right\|_{\infty} \leq$ $d_{X}\left(x_{i}, x_{j}\right)$, therefore $\left\|y_{i}-y_{j}\right\|_{\infty} \leq r_{i}+r_{j}$ which implies $B\left(y_{i}, r_{i}\right) \bigcap B\left(y_{j}, r_{j}\right) \neq \phi$. Thus, we have a collection of balls in $\ell_{\infty}^{d}$ that intersect pairwise. We observe that $\ell_{\infty}^{d}$ has the property that if a collection of balls in $\ell_{\infty}^{d}$ intersect pairwise, then they all have a common point of intersection. We can see that this is true by projecting to each coordinate of $\ell_{\infty}^{d}$, taking the point of intersection there (of the corresponding intervals), and then concatenating them all back together. Hence, $\bigcap_{i \in I} B\left(y_{i}, r_{i}\right) \neq \phi$.
Proof. (Johnson-Lindenstrauss Theorem)
Given $X$, and $M \subseteq X$ with $|M|=n$, and $f: M \rightarrow \ell_{2}^{m}$. Let $A=f(M)$. By the JohnsonLindenstrauss dimension reduction lemma in $\ell_{2}$, there exists a $1-1$ function $g$ such that $g(A) \subseteq \ell_{2}^{k}$, where $k=O(\log n)$; and $\operatorname{Dist}(g) \leq 2$ (say). (Note: the J-L lemma says we can get distortion $1+\epsilon$ for any $\epsilon$.) Since $\operatorname{Dist}(g)=|g|_{l i p}\left|g^{-1}\right|_{l i p}$, we get $|g|_{l i p}\left|g^{-1}\right|_{l i p} \leq 2$. By scaling the function suitably we can assume without loss of generality that $|g|_{l i p} \leq 1$ and $\left|g^{-1}\right|_{l i p} \leq 2$.

Let $I$ be the formal identity map from $\ell_{2}^{k}$ to $\ell_{\infty}^{k}$. Clearly $|I|_{l i p}=1$ and $\left|I^{-1}\right|_{l i p}=\sqrt{k}$.

$$
M \xrightarrow{f} A_{\subseteq \ell_{2}^{m}} \xrightarrow{g} g(A)_{\subseteq \ell_{2}^{k}} \xrightarrow{I} \ell_{\infty}^{k}
$$

The map $I \circ g \circ f=h: M \rightarrow \ell_{\infty_{\sim}}^{k}$ has $|h|_{\text {lip }} \leq|f|_{\text {lip }}$. By the previous lemma, since $\left(X, \ell_{\infty} k\right)$ has Property $[\mathrm{K}]$, we can extend $h$ to $\left.\tilde{h}: X \rightarrow \ell_{\infty}^{k}\right)$ such that $|\tilde{h}|_{\text {lip }} \leq|f|_{\text {lip }}$.

Now, we have a map $g^{-1}: g(A) \rightarrow A$. By the Kirszbraun Theorem, this map can be extended to $g^{-1}: \ell_{2}^{k} \rightarrow \ell_{2}^{m}$ such that $\left|g^{\tilde{-} 1}\right|_{l i p}=\left|g^{-1}\right|_{l i p}$.

Then, $\tilde{f}=g^{-1} \circ I^{-1} \circ \tilde{h}$ is a map such that $\tilde{f}: X \rightarrow \ell_{2}^{m} ;\left.\tilde{f}\right|_{M}=f$ and $|\tilde{f}|_{l i p} \leq 2 \sqrt{k}|f|_{l i p}=$ $O(\sqrt{\log n})|f|_{\text {lip }}$.

## 2 Embeddings Spheres into the Plane

Theorem 4. There exists a metric space in $\ell_{2}^{3}$ induced by an n-point set $X$ on the unit sphere $S^{2}$ such that any mapping $f: X \rightarrow \mathbb{R}^{2}$ has distortion $\Omega(\sqrt{n})$.

To prove theorem 4 we will have to use the Borsuk-Ulam theorem. We will state it here without proof (see [3] for proof and further discussion).

Theorem 5 (Borsuk-Ulam). Every continuous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ must identify a pair of antipodal points.

Definition 3. Suppose $(S, \delta)$ is a metric space and let $\epsilon>0$. A subset $N \subset S$ is an $\epsilon$-net for $S$ if, for all $x \in S$, there exists $y \in N$ such that $d(x, y)<\epsilon$.

Proof. (Theorem 4) Let $X$ be a set of $n$ points in $S^{2}$ that form a $O(1 / \sqrt{n})$-net of $S^{2}$ (it is easy to see that there exists such a net of size $O(n))$. Let $f: X \rightarrow \mathbb{R}^{2}$ be a non-contracting embedding, so that $\forall x, y \in X$ we have $\|f(x)-f(y)\|_{2} \leq\|x-y\|_{2}$. Since $X \subset S^{2} \subset \mathbb{R}^{3}$, by the Kirszbraun extension theorem we know that there exists a continuous mapping $f^{\prime}: S^{2} \rightarrow \mathbb{R}^{2}$ such that $\forall x \in X$ we have $f^{\prime}(x)=f(x)$ and $\forall x, y \in S^{2}$ we have $\|f(x)-f(y)\|_{2} \leq\|x-y\|_{2}$. By the Borsuk-Ulam theorem, we know that there exist antipodal points $p$ and $q$ such that $f^{\prime}(p)=f^{\prime}(q)$. Since we chose $X$ to be an $O(1 / \sqrt{n})$-net, we know there exist points $p^{\prime}, q^{\prime} \in X$ such that $\left\|p-p^{\prime}\right\|_{2}=O(1 / \sqrt{n})$ and $\left\|q-q^{\prime}\right\|_{2}=O(1 / \sqrt{n})$. Thus,

$$
\begin{align*}
\left\|f\left(p^{\prime}\right)-f\left(q^{\prime}\right)\right\|_{2} & =\left\|f^{\prime}\left(p^{\prime}\right)-f^{\prime}\left(q^{\prime}\right)\right\|_{2} \\
& \leq\left\|f^{\prime}\left(p^{\prime}\right)-f^{\prime}(p)\right\|_{2}+\left\|f^{\prime}(p)-f^{\prime}(q)\right\|_{2}+\left\|f^{\prime}(q)-f^{\prime}\left(q^{\prime}\right)\right\|_{2} \\
& \leq\left\|p-p^{\prime}\right\|_{2}+\left\|q-q^{\prime}\right\|_{2} \\
& =O(1 / \sqrt{n}) \tag{1}
\end{align*}
$$

By the triangle inequality we get

$$
\begin{gathered}
\left\|p^{\prime}-q^{\prime}\right\|_{2}+\left\|p^{\prime}-p\right\|_{2}+\left\|q^{\prime}-q\right\|_{2} \geq\|p-q\|_{2}=2 \\
\left\|p^{\prime}-q^{\prime}\right\|_{2} \geq 2-O(1 / \sqrt{n}) \geq 2-\frac{c}{\sqrt{n}}
\end{gathered}
$$

and therefore

$$
\begin{equation*}
\left\|p^{\prime}-q^{\prime}\right\|_{2}=\Omega(1) . \tag{2}
\end{equation*}
$$

Let $D$ be the distortion of $f$. Since $f$ is non-contracting, we know that

$$
D \geq \frac{\|p-q\|_{2}}{\|f(p)-f(q)\|_{2}} .
$$

From equations (1) and (2), we get

$$
\frac{\|p-q\|_{2}}{\|f(p)-f(q)\|_{2}} \geq \frac{\Omega(1)}{O(1 / \sqrt{n})}=\Omega(\sqrt{n})
$$

which means that $D=\Omega(\sqrt{n})$.
We now prove that the bound given in theorem 4 is tight. Recall that for a metric space $M=(X, \delta), c_{p}^{d}(M)$ denotes the minimum distortion of any embedding of $M$ into $l_{p}^{d}$.

Theorem 6. If $M=(X, \delta)$ is a metric in $\ell_{2}^{3}$ induced by an n-point subset $X$ of the unit sphere $S^{2}$, then $c_{2}^{2}=O(\sqrt{n})$.

Proof. Let $K$ be a cap of $S^{2}$ such that the size of $K$ is $\Omega(1 / n)$ and $K \cap X=\emptyset$ (such a cap must exist since caps of size less than $4 \pi / n$ centered at all points in $X$ do not cover fully $S^{2}$ ). Let $p_{0}$ be the center of $K$ and let $p_{0}^{\prime}$ be its antipode in $S^{2}$. Without loss of generality, assume $p_{0}=(0,0,1)$ and $p_{0}^{\prime}=(0,0,-1)$. Define $f: X \rightarrow \mathbb{R}^{2}$ as follows: for $p=(x, y, z) \in X$,

$$
f(p)= \begin{cases}\left(\rho_{S^{2}}\left(p, p_{0}^{\prime}\right) \frac{x}{\sqrt{x^{2}+y^{2}}}, \rho_{S^{2}}\left(p, p_{0}^{\prime}\right) \frac{y}{\sqrt{x^{2}+y^{2}}}\right) & \text { if } p \neq p_{0} \text { and } p \neq p_{0}^{\prime} \\ (0,0) & \text { if } p=p_{0} \text { or } p=p_{0}^{\prime}\end{cases}
$$

where $\rho_{S^{2}}(u, v)$ denotes the geodesic distance between $u$ and $v$ in $S^{2}$, that is, $\rho_{S^{2}}(u, v)=\arccos (\langle u, v\rangle)$.
Informally, think of $f\left(S^{2}\right)$ in the following way: cut $K$ off $S^{2}$ and unfold what is left into the $x y$-plane. If we see it this way, it is clear that $f$ is non-contracting. It is also easy to see that the expansion of $f$ is maximized for points $p, q$ on the perimeter of $K$ that are antipodals with respect to $K$. (For a formal proof of this, see [1]).

So pick points $p$ and $q$ on the perimeter of $K$ such that they are antipodals with respect to $K$, and let $\phi_{K}$ be the angle of $K$ (if $O$ denotes the origin, $\phi_{K}=\angle p O q$ ). Let $r_{K}=\frac{\phi_{K}}{2}$. Then

$$
\|f(p)-f(q)\|_{2}=\|f(p)\|_{2}+\|f(q)\|_{2}=\left(\pi-r_{K}\right)+\left(\pi-r_{K}\right)=2 \pi-2 r_{K}
$$

Moreover, $\|p-q\|_{2}=2 \sin r_{K}$, so the expansion of $f$ for $p$ and $q$ is

$$
\frac{\|f(p)-f(q)\|_{2}}{\|p-q\|_{2}}=\frac{2 \pi-2 r_{K}}{2 \sin r_{K}}=\frac{\pi-r_{K}}{\sin r_{K}}
$$

and this is the maximum expansion for all points in $X$.
Since $f$ is non-contracting, we have that for all $x, y \in X$

$$
\|x-y\|_{2} \leq\|f(x)-f(y)\|_{2} \leq\left(\frac{\pi-r_{K}}{\sin r_{K}}\right)\|x-y\|_{2}
$$

Now, since $K$ is of size $\Omega(1 / n)$, we must have that $r_{K}=\Omega(1 / \sqrt{n})$. We can also assume that $r_{K} \leq \frac{\pi}{2}$ because otherwise, we can let $K$ be a smaller cap. We know the function $g(\theta)=\frac{\sin \theta}{\theta}$ is decreasing in the interval $\left(0, \frac{\pi}{2}\right]$. Thus, for $0<\theta \leq \frac{\pi}{2}$ we have $\frac{\sin \theta}{\theta} \geq \frac{2}{\pi}$. In particular, we have $\sin r_{K} \geq \frac{2 r_{K}}{\pi}$. Therefore,

$$
\frac{\pi-r_{K}}{\sin r_{K}} \leq \frac{\pi\left(\pi-r_{K}\right)}{2 r_{K}}<\frac{\pi^{2}}{2 r_{K}}=O(\sqrt{n})
$$

We can thus conclude that $f$ has distortion $O(\sqrt{n})$.

## References

[1] M. Bădoiu, K. Dhamdhere, A. Gupta et al. Approximation Algorithms for Low-Distortion Embeddings Into Low Dimensional Spaces SODA 2005
[2] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189-206. Amer. Math. Soc., Providence, RI, 1984.
[3] J. Matoušek, A. Bjorner, G. Ziegler Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry Springer-Verlag, Berlin 2003
[4] J. H. Wells and L. R. Williams. Embeddings and extensions in analysis. Springer-Verlag, New York, 1975. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84.

