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Lecture 16

In this lecture we will discuss several results on Lipschitz extensions of mappings. In particular
we’ll prove the Kirszbraun extension theorem for mappings of subsets of `n

2 to `m
2 . The book [4]

gives a complete account of the proof and many other related results. We’ll also present a result by
Johnson and Lindenstrauss [2] on extensions of mappings from finite subsets of arbitrary metric
spaces into `m

2 . Finally, we will present a nice application of the Kirszbraun extension theorem in
showing that embedding spheres into the plane requires Ω(

√
n) distortion. We also show that this

bound is tight.

1 Lipschitz Extensions of Mappings

Definition 1. Let X and Y be metric spaces. Let f : X → Y . If

L = sup
xi,xj∈X

dY (f(xi), f(xj))

dX(xi, xj)
< ∞,

we say that f is a Lipschitz map. We define the Lipschitz constant of f , |f |lip to be L.

Recall: Distortion(f) = |f |lip|f−1|lip. We will prove the results for mappings into `n
2 . All the results

hold for `2 as well.
The basic questions that we want to ask about Lipschitz extensions are the following. Let X,Y

be given metric spaces, M ⊆ X, and f : M → Y be a Lipschitz map.

1. Can we extend f to a Lipschitz map on all of X? I.e. when does there exist f̃ : X → Y such
that f̃ |M = f and f̃ is also Lipschitz?

2. If such a function f̃ exists, can we find any bound on f̃?

In the case when X = `n
2 and Y = `m

2 , we have the following result:

Theorem 1. Kirszbraun Extension Theorem Let X = `n
2 and Y = `m

2 for some m,n ∈ N. Let
M ⊆ X and let f : M → Y be a Lipschitz map. Then, there exists f̃ : X → Y such that f̃ |M = f
and |f̃ |lip = |f |lip.
Proof. Without loss of generality, we can assume that |f |lip = 1 since we can scale f appropriately,
and this wouldn’t change the result. Hence, we have that f is non-expanding.

Claim: If M 6= X, it suffices to be able to extend f to at least one more point. (Informally,
consider the largest subset of X that we can extend f to, and if it isn’t all of X, then we can
extend it be one more point and contradict maximality.) Zorn’s Lemma takes care of formalizing
this notion.

Let M = {xi|i ∈ I}. Let f(xi) = yi. Let x ∈ X − M and let ‖x − xi‖ = ri. Then

x ∈
⋂

i∈I

B(xi, ri).

To extend f be one more point, we need to find y ∈ Y such that ‖y − yi‖ ≤ ri;∀i ∈ I. That is, we
want to show that

⋂

i∈I B(yi, ri) 6= φ.
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Definition 2. We say that the pair of metric spaces (X,Y ) has Property [K] if whenever {B(xi, ri)|i ∈
I} and {B(yi, ri)|i ∈ I} are two families of closed balls in X and Y indexed over I, and dY (yi, yj) ≤
dX(xi, xj);∀i, j ∈ I, then

⋂

i∈I

B(xi, ri) 6= φ ⇒
⋂

i∈I

B(yi, ri) 6= φ.

What remains to show is that (`n
2 , `m

2 ) has Property [K]. It is enough to prove it for the case
when I is a finite set, since by compactness arguments we can extend it to the case of arbitrary
collections of sets. Here we use the fact that if we have a collection of compact sets such that every
finite sub-collection has non-empty intersection, then the intersection of all the sets is nonempty.

Let {B(xi, ri)} be a finite set of balls indexed by i = 1, 2, . . . , k.
⋂

i∈I B(xi, ri) 6= φ. Now

consider
⋂

i∈I B(yi, ri) To show this is nonempty, it suffices to find y ∈ Y such that ‖y−yi‖
ri

≤ 1 for
1 ≤ i ≤ k.

Let g defined on Y be the following function:

g(t) = max
i

{‖t − yi‖
ri

}

.

g is a continuous function, and g assumes lower values in some closed, bounded region of Y . Since
such a region is compact, g attains its minimum at some point say y. Let g(y) = λ. Therefore,

max
i

{‖y − yi‖
ri

}

= λ.

Let ‖y − yi‖ = λ‖x − xi‖ for 1 ≤ i ≤ l, and let ‖y − yi‖ < λ‖x − xi‖ for i > l.
Claim: y must lie in the convex hull C of y1, y2, . . . , yl. If it did not, then there would exist a

hyperplane π separating y from C. Then, by displacing y by a small amount in the direction of π,
we would reduce the distance of y to yi, for 1 ≤ i ≤ l, and preserve the other strict inequalities,
thus contradict the minimality of λ. Hence y is some convex combination of y1, y2, . . . , yl. Let
a1, a2, . . . , al be such that ai ≥ 0,

∑

ai = 1 and
∑l

i=1
aiyi = y.

Consider 1 ≤ i, j ≤ l. Since ‖yi − yj‖2 ≤ ‖xi − xj‖2, we get

‖yi − yj‖2 = ‖(yi − y) + (y − yj)‖2 ≤ ‖xi − xj‖2.

This gives us ‖yi − y‖2 + ‖y − yj‖2 + 2 〈yi − y, y − yj〉 ≤ ‖xi − xj‖2, thus implying λ‖xi − x‖2 +
λ‖xj − x‖2 ≤ ‖xi − xj‖2 + 2 〈yi − y, yj − y〉 .

Assume that λ > 1. Then we have

‖xi − x‖2 + ‖xj − x‖2 ≤ ‖xi − xj‖2 + 2 〈yi − y, yj − y〉 .

Multiplying throughout by aiaj and summing over all 1 ≤ i, j ≤ l, we get

∑

i,j

aiaj(‖xi − x‖2 + ‖xj − x‖2 − ‖xi − xj‖2) < 2
∑

i,j

aiaj 〈yi − y, yj − y〉 .

Since
∑l

i=1
aiyi = y, the R.H.S. sums to 0. Also, assuming without loss of generality that x ≡ 0 and

simplifying the L.H.S., we deduce that ‖∑

aixi‖2 < 0, which is a contradiction. Hence λ ≤ 1. This
implies y ∈ ⋂

i∈I B(yi, ri), and this completes the proof of the Kirszbraun Extension Theorem.
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Theorem 2. Johnson and Lindenstrauss: Let X be an arbitrary metric space, and let M ⊆ X
be a finite subset of X such that |M | = n. Let f : M → `m

2 be given. Then, there exists f̃ : X → `m
2

satisfying f̃ |M = f and |f̃ |lip ≤ O(
√

log n)|f |lip.

We will need the following lemma:

Lemma 3. For any metric space X, the pair (X, `d
∞) has Property [K].

Proof. (sketch) Let {B(xi, ri)|i ∈ I} and {B(yi, ri)|i ∈ I} be given. Let ‖yi−yj‖∞ ≤ dX(xi, xj);∀i, j ∈
I and let

⋂

i∈I B(xi, ri) 6= φ.
We first observe that B(xi, ri)

⋂

B(xj , rj) 6= φ ⇒ ri + rj ≥ dX(xi, xj). Since ‖yi − yj‖∞ ≤
dX(xi, xj), therefore ‖yi − yj‖∞ ≤ ri + rj which implies B(yi, ri)

⋂

B(yj, rj) 6= φ. Thus, we have
a collection of balls in `d

∞ that intersect pairwise. We observe that `d
∞ has the property that if a

collection of balls in `d
∞ intersect pairwise, then they all have a common point of intersection. We

can see that this is true by projecting to each coordinate of `d
∞, taking the point of intersection

there (of the corresponding intervals), and then concatenating them all back together. Hence,
⋂

i∈I B(yi, ri) 6= φ.

Proof. (Johnson-Lindenstrauss Theorem)
Given X, and M ⊆ X with |M | = n, and f : M → `m

2 . Let A = f(M). By the Johnson-
Lindenstrauss dimension reduction lemma in `2, there exists a 1−1 function g such that g(A) ⊆ `k

2 ,
where k = O(log n); and Dist(g) ≤ 2 (say). (Note: the J-L lemma says we can get distortion 1 + ε
for any ε.) Since Dist(g) = |g|lip|g−1|lip, we get |g|lip|g−1|lip ≤ 2. By scaling the function suitably
we can assume without loss of generality that |g|lip ≤ 1 and |g−1|lip ≤ 2.

Let I be the formal identity map from `k
2 to `k

∞. Clearly |I|lip = 1 and |I−1|lip =
√

k.

M
f−→ A⊆`m

2

g−→ g(A)⊆`k
2

I−→ `k
∞

The map I ◦ g ◦ f = h : M → `k
∞ has |h|lip ≤ |f |lip. By the previous lemma, since (X, `∞k) has

Property [K], we can extend h to h̃ : X → `k
∞) such that |h̃|lip ≤ |f |lip.

Now, we have a map g−1 : g(A) → A. By the Kirszbraun Theorem, this map can be extended

to ˜g−1 : `k
2 → `m

2 such that | ˜g−1|lip = |g−1|lip.
Then, f̃ = ˜g−1 ◦ I−1 ◦ h̃ is a map such that f̃ : X → `m

2 ; f̃ |M = f and |f̃ |lip ≤ 2
√

k|f |lip =
O(

√
log n)|f |lip.

2 Embeddings Spheres into the Plane

Theorem 4. There exists a metric space in `3
2 induced by an n-point set X on the unit sphere S2

such that any mapping f : X → R
2 has distortion Ω(

√
n).

To prove theorem 4 we will have to use the Borsuk-Ulam theorem. We will state it here without
proof (see [3] for proof and further discussion).

Theorem 5 (Borsuk-Ulam). Every continuous map f : Sn → R
n must identify a pair of antipodal

points.

Definition 3. Suppose (S, δ) is a metric space and let ε > 0. A subset N ⊂ S is an ε-net for S if,
for all x ∈ S, there exists y ∈ N such that d(x, y) < ε.
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Proof. (Theorem 4) Let X be a set of n points in S2 that form a O(1/
√

n)-net of S2 (it is easy to
see that there exists such a net of size O(n)). Let f : X → R

2 be a non-contracting embedding,
so that ∀x, y ∈ X we have ||f(x) − f(y)||

2
≤ ||x − y||

2
. Since X ⊂ S2 ⊂ R

3, by the Kirszbraun
extension theorem we know that there exists a continuous mapping f ′ : S2 → R

2 such that ∀x ∈ X
we have f ′(x) = f(x) and ∀x, y ∈ S2 we have ||f(x) − f(y)||

2
≤ ||x − y||

2
. By the Borsuk-Ulam

theorem, we know that there exist antipodal points p and q such that f ′(p) = f ′(q). Since we chose
X to be an O(1/

√
n)-net, we know there exist points p′, q′ ∈ X such that ||p − p′||

2
= O(1/

√
n)

and ||q − q′||
2

= O(1/
√

n). Thus,

∣

∣

∣

∣f(p′) − f(q′)
∣

∣

∣

∣

2
=

∣

∣

∣

∣f ′(p′) − f ′(q′)
∣

∣

∣

∣

2

≤
∣

∣

∣

∣f ′(p′) − f ′(p)
∣

∣

∣

∣

2
+

∣

∣

∣

∣f ′(p) − f ′(q)
∣

∣

∣

∣

2
+

∣

∣

∣

∣f ′(q) − f ′(q′)
∣

∣

∣

∣

2

≤
∣

∣

∣

∣p − p′
∣

∣

∣

∣

2
+

∣

∣

∣

∣q − q′
∣

∣

∣

∣

2

= O(1/
√

n) (1)

By the triangle inequality we get

∣

∣

∣

∣p′ − q′
∣

∣

∣

∣

2
+

∣

∣

∣

∣p′ − p
∣

∣

∣

∣

2
+

∣

∣

∣

∣q′ − q
∣

∣

∣

∣

2
≥ ||p − q||

2
= 2

∣

∣

∣

∣p′ − q′
∣

∣

∣

∣

2
≥ 2 − O(1/

√
n) ≥ 2 − c√

n

and therefore
∣

∣

∣

∣p′ − q′
∣

∣

∣

∣

2
= Ω(1). (2)

Let D be the distortion of f . Since f is non-contracting, we know that

D ≥ ||p − q||
2

||f(p) − f(q)||
2

.

From equations (1) and (2), we get

||p − q||
2

||f(p) − f(q)||
2

≥ Ω(1)

O(1/
√

n)
= Ω(

√
n)

which means that D = Ω(
√

n).

We now prove that the bound given in theorem 4 is tight. Recall that for a metric space
M = (X, δ), cd

p(M) denotes the minimum distortion of any embedding of M into ldp.

Theorem 6. If M = (X, δ) is a metric in `3
2 induced by an n-point subset X of the unit sphere

S2, then c2
2 = O(

√
n).

Proof. Let K be a cap of S2 such that the size of K is Ω(1/n) and K ∩ X = ∅ (such a cap must
exist since caps of size less than 4π/n centered at all points in X do not cover fully S 2). Let p0 be
the center of K and let p′0 be its antipode in S2. Without loss of generality, assume p0 = (0, 0, 1)
and p′0 = (0, 0,−1). Define f : X → R

2 as follows: for p = (x, y, z) ∈ X,

f(p) =







(

ρS2(p, p′0)
x√

x2+y2
, ρS2(p, p′0)

y√
x2+y2

)

if p 6= p0 and p 6= p′0

(0, 0) if p = p0 or p = p′0
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where ρS2(u, v) denotes the geodesic distance between u and v in S2, that is, ρS2(u, v) = arccos (〈u, v〉).
Informally, think of f(S2) in the following way: cut K off S2 and unfold what is left into the

xy-plane. If we see it this way, it is clear that f is non-contracting. It is also easy to see that the
expansion of f is maximized for points p, q on the perimeter of K that are antipodals with respect
to K. (For a formal proof of this, see [1]).

So pick points p and q on the perimeter of K such that they are antipodals with respect to K,
and let φK be the angle of K (if O denotes the origin, φK = ∠pOq). Let rK = φK

2
. Then

||f(p) − f(q)||
2

= ||f(p)||
2
+ ||f(q)||

2
= (π − rK) + (π − rK) = 2π − 2rK

Moreover, ||p − q||
2

= 2 sin rK , so the expansion of f for p and q is

||f(p) − f(q)||
2

||p − q||
2

=
2π − 2rK

2 sin rK

=
π − rK

sin rK

and this is the maximum expansion for all points in X.
Since f is non-contracting, we have that for all x, y ∈ X

||x − y||
2
≤ ||f(x) − f(y)||

2
≤

(

π − rK

sin rK

)

||x − y||
2
.

Now, since K is of size Ω(1/n), we must have that rK = Ω(1/
√

n). We can also assume that
rK ≤ π

2
because otherwise, we can let K be a smaller cap. We know the function g(θ) = sin θ

θ
is

decreasing in the interval (0, π
2
]. Thus, for 0 < θ ≤ π

2
we have sinθ

θ
≥ 2

π
. In particular, we have

sin rK ≥ 2rK

π
. Therefore,

π − rK

sin rK

≤ π(π − rK)

2rK

<
π2

2rK

= O(
√

n)

We can thus conclude that f has distortion O(
√

n).
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