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Lecture 9

1 Planar Graph Decompositions

In this lecture, we prove the main technical theorem, which (as we saw last lecture) implies
that in any graph and for any ∆, we can either exhibit K3,3 as a minor or find a distribution
over subsets of vertices whose removal separates the graph into connected components with weak
diameter1 O(∆) and with any vertex v being at distance Ω(∆) from the removed vertices with
constant probability.

As we discussed last time, we are given a graph G = (V,E) with unit edge lengths and a given
∆ ∈ N. The construction goes as follows. We choose an arbitrary root a1 in the original vertex set
V1 = V . From a1 we do a breadth-first search and get a breadth-first search tree T1 starting from
a1. Look at the vertices at distance 1, distance 2 and so on. The jth level of T1 is the set of nodes
whose distance in G1 = G is j. We are going to remove a subset of vertices in particular levels. In
the stochastic construction, we choose k1 uniformly at random in {0, 1, · · · , δ−1}; as we have done
the probabilistic analysis last time, we can assume here that k1 is arbitrary with 0 ≤ k1 ≤ ∆− 1.
Then we remove all the vertices in the set F1 = {v ∈ V1 : dG1(a1, v) ≡ k1 mod ∆} from G1 and
get many connected components between adjacent levels k1 + j∆ and k1 + (j + 1)∆. We choose
a connected component from G\F1; let V2 be the new vertex set of the connected component we
choose, and let G2 = G[V2] be the graph induced by V2. We can continue this process twice.
Namely, we are going to choose ai for i = 2, 3, and then build a breadth-first search tree Ti from
ai. Define Fi = {v ∈ Vi : dGi(ai, v) ≡ ki mod ∆} where dGi(u, v) is the distance between u and v
in graph Gi. Again, ki is chosen uniformly at random, but here we just assume ki is completely
arbitrary. Then we remove Fi and get connected components. Let Vi+1 be one of the connected
components in Gi\Fi and Gi+1 is the graph induced by Vi+1. In the planar graph case, we do that
three times. After we have done the third time, we focus on one of the connected components, call
it V4.

We claim that any two vertices u an v in V4 are not far in the original graph if G does not
have K3,3 as a minor. Here is the precise statement; we should emphasize that d(u, v) denotes the
distance in the original graph.

Theorem 1. If G has no K3,3 minor, then ∀u, v ∈ V4, d(u, v) < 34∆.

Here we give a bit of history. The construction given here is from Klein, Plotkin and Rao [1].
They consider the case of graphs with no Kr,r minors and show there that r levels are sufficient
to get O(∆) weak diameters. This leads to approximation algorithms for the uniform sparsest cut
problem in graphs with no Kr,r minors with a guarantee of O(r3 log n). Their proof is along the
same lines as what we are going to do today, except that we focus on planar graphs. In 1999,
Rao [2] showed that the distortion can be reduced to O(r3

√
log n). Based on those results above,

in 2003, Fakcharoenphol and Talwar [3] gave an improved decomposition theorem and showed that
we can get the distortion down to O(r2

√
log n) if we choose the roots carefully. In the lecture notes

of courses on metric embeddings at CMU and Chicago, they prove that the r level decomposition
1the maximum distance in the original graph between any two vertices of the component.
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Figure 1: Path P from a4 to a5.

Figure 2: K3,3 minor.

method could still get distortion O(r2
√

log n) without choosing roots carefully. However, their
analysis has a flaw.

2 Preliminaries

Suppose there are two vertices a4 and a5 in V4 with original distance d(a4, a5) ≥ 34∆. a4 and
a5 are both in V4, but the shortest path in the original graph may go out and back in V4. As V4 is
a connected component, there must exist a path from a4 to a5 within this connected component.
Let’s look at a path P within G4 from a4 to a5. Along this path, we are going to select a vertex a6

on P such that d(a4, a6) ≥ 17∆ and d(a6, a5) ≥ 17∆, see Figure 1. Notice that we use the distance
in the original graph. This can be done by walking along the path and selecting the first vertex
that satisfies the above two inequalities.

To obtain a contradiction, we will exhibit a K3,3 minor (obtained by performing edge con-
tractions and deletions). We will construct 6 disjoint sets Ai for i = 1, · · · , 6; each Ai induces a
connected subgraph and contains ai. To get the minor, we will contract each Ai to ai and this will
result in a K3,3 with a1, a2, a3 on one side of the bipartition and a4, a5 and a6 on the other, see
Figure 2. We will also need to show that Ai and Aj for {1, 2, 3} and j ∈ {4, 5, 6} are connected
by an edge. To isolate the minor, we also delete all the other edges. Next we are going to show
how to find these Ai’s and to argue that they are disjoint. We are also going to show that they are
connected by edges.
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Figure 3: Vertex set and paths.

Before we begin our proof, we introduce some notations first. When we do the breadth-first
search from ai, i ∈ {1, 2, 3}, we get the breadth-first search tree Ti. Let’s look at the path Pi(u) in
Ti from ai to vertex u. We are going to partition the vertices of Pi(u) into two pieces, P+

i (u) and
P−i (u):

P+
i (u) = {v ∈ Pi(u) : dPi(u)(u, v) ≤ 4∆}

P−i (u) = {v ∈ Pi(u) : dPi(u)(u, v) > 4∆}

Now let’s show how to construct the six vertex sets A1, . . . , A6. Look at the first path from a3

to a4, which is P3(a4). Define h4 to be the vertex at distance 2∆ from a4 along this path P3(a4).
Next we do the same thing from a2 to h4. That is, we look at the 4∆ last edges along this path
P2(h4) and define i4 to be the vertex at distance 2∆ from h4. Then we look at the 4∆ last edges
along the path P1(i4) from a1 to i4. More generally, for j ∈ {4, 5, 6}, we define hj to be the vertex
on path P3(aj) such that dP3(aj)(aj , hj) = 2∆ and define ij to be the vertex on path P2(hj) such
that dP2(hj)(ij , hj) = 2∆.

Now let’s define what are those six vertex sets (see Figure 3):

• A1 = P−1 (i4) ∪ P−1 (i5) ∪ P−1 (i6)

• A2 = P−2 (h4) ∪ P−2 (h5) ∪ P−2 (h6)

• A3 = P−3 (a4) ∪ P−3 (a5) ∪ P−3 (a6)

• A4 = P+
3 (a4) ∪ P+

2 (h4) ∪ P+
1 (i4)

• A5 = P+
3 (a5) ∪ P+

2 (h5) ∪ P+
1 (i5)

3



• A6 = P+
3 (a6) ∪ P+

2 (h6) ∪ P+
1 (i6)

In the next section, we are going to show two things, namely that these six sets are disjoint and
that they are connected in a proper way.

3 Proof of the Main Theorem

To show that they are connected in a proper way is trivial. Why? Let’s take A3 and A4 as an
example. Obviously, A3 and A4 are connected by that edge between P+

3 (a4) and P−3 (a4). Similarly,
we can find other connecting edges. Hence, we know that for ∀i ∈ {1, 2, 3} and ∀j ∈ {4, 5, 6}, there
exists an edge between Ai and Aj . So the only thing that remains to show is that those Ai’s are
disjoint.

Claim 2. ∀v ∈ Ai, i ∈ {4, 5, 6}, d(v, ai) ≤ 8∆.

Proof. ∀v Ai, we can exhibit a path between v and ai and the distance is not large. Let’s take i = 4
as an example. For v ∈ P+

3 (a4), d(v, a4) ≤ 4∆; for v ∈ P+
2 (h4), d(v, a4) ≤ 6∆ and for v ∈ P+

1 (i4),
d(v, a4) ≤ 8∆. Similarly, we can prove that the inequalities hold for A5 and A6.

Since d(ai, aj) ≥ 17∆ holds for 4 ≤ i < j ≤ 6, we can get the following corollary.

Corollary 3. A4, A5 and A6 are disjoint.

Now we are going to show that A1, A2 and A3 are disjoint in the following way.

Claim 4. ∀i ∈ {1, 2, 3}, Ai ⊆ Vi\Vi+1.

Proof. Let’s take i = 3 as an example. We claim that A3 is in V3 but not in V4. Recall that the
paths P3(a4), P3(a5) and P3(a6) are obtained when we do breadth-first search in V3. T3 is the
corresponding breadth-first search tree and we can define the levels for vertices in T3. Recall that
V4 is one of the connected components in V3\F3, and the levels of vertices in V4 are between k3+j∆
and k3 + (j + 1)∆ for some integer j, as shown in Figure 4. Hence, the level difference between
every two vertices within V4 is at most ∆−1. If we trace back at least ∆ from any vertex in V4, we
are out of V4. Because the vertices in A3 are all ancestors of a4, a5 or a6 and they are at distance
at least 4∆ from a4 or a5 or a6 in T3, therefore cannot be within V4. In this way, we prove that
A3 ⊆ V3\V4.

The case of A2 is similar. We do breadth-first search in V2 and get the breadth-first search tree
T2. We know that h4, h5 and h6 are all in one connected component V3, so their level differences
in T2 are at most ∆ − 1. As we trace back ∆, we get out of V3. Hence, A3 ⊆ V2\V3. It is similar
for A1.

Therefore, Ai ⊆ Vi\Vi+1 holds for 1 ≤ i ≤ 3, which implies the following corollary.

Corollary 5. A1, A2 and A3 are disjoint.

In the following part, we are going to prove that some paths are disjoint which will help us show
that Ai is disjoint from Aj for i ≤ 3 and j ≥ 4. First, we consider the paths P+

3 (ai) and P−3 (aj)
with i 6= j and show that they are disjoint.
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Figure 4: Levels in V3.

Claim 6. P+
3 (ai) ∩ P−3 (aj) = ∅, i 6= j and i, j ∈ {4, 5, 6}.

Proof. Assume that i = 5 and j = 6; other choices are similar. Assume that there exists a vertex
v ∈ P−3 (a5) ∩ P+

3 (a6).
v ∈ P+

3 (a6) means that dG3(v, a6) ≤ 4∆ according to the definition of P+
3 (a6). Because a4

a5 and a6 are all in V4, their level differences are at most ∆ − 1 in T3. If v ∈ P−3 (a5), we can
derive that dG3(v, a5) ≤ 4∆ + (∆ − 1) = 5∆ − 1. By the triangle inequality, we get dG3(a5, a6) ≤
dG3(v, a5) + dG3(v, a6) ≤ 9∆− 1, which contradicts our assumption d(a5, a6) ≥ 17∆.

We prove an analogous statement for T2 first, and then T1 .

Claim 7. P+
2 (hi) ∩ P−2 (hj) = ∅, for i 6= j and i, j ∈ {4, 5, 6}.

Proof. If there exists a vertex v ∈ P+
2 (hi) ∩ P−2 (hj) for i 6= j and i, j ∈ {4, 5, 6}, we know that

dG2(v, hi) ≤ 4∆ which implies that dG2(v, ai) ≤ 4∆+2∆ = 6∆. Because hi and hj are both within
V3, their level difference is at most ∆ − 1 in T2. So we know that dG2(v, hj) ≤ 4∆ + (∆ − 1)
which implies that dG2(v, aj) ≤ 4∆ + (∆ − 1) + 2∆ = 7∆ − 1. By the triangle inequality, we
get dG2(ai, aj) ≤ 13∆ − 1 which contradicts our assumption d(ai, aj) ≥ 17∆ for i 6= j and i, j ∈
{4, 5, 6}.

Claim 8. P+
1 (ij) ∩ P−1 (ik) = ∅, for j 6= k and j, k ∈ {4, 5, 6}.

Proof. If there exists a vertex v ∈ P+
1 (ij) ∩ P−1 (ik), we know dG1(v, ij) ≤ 4∆ which implies that

dG1(v, aj) ≤ 8∆. As before, we also get dG1(v, ik) ≤ 4∆ + (∆− 1) which implies that dG1(v, ak) ≤
9∆− 1. Hence we get dG1(aj , ak) ≤ 17∆− 1 which contradicts our assumption.

This last claim justifies our choice of 34∆ for the weak diameter. Now we are going to show
that Ai is disjoint from A4, A5, A6, for each i = 1, 2, 3. We start with i = 1 as this is the easiest
case.

Claim 9. A1 is disjoint from Aj, j ∈ {4, 5, 6}.

Proof. First we show that A1 is disjoint from A4. Both of them consist of three paths:

A1 = P−1 (i4) ∪ P−1 (i5) ∪ P−1 (i6)

A4 = P+
3 (a4) ∪ P+

2 (h4) ∪ P+
1 (i4)

5



By definition, P+
1 (i4) ∩ P−1 (i4) = ∅. By Claim 8, P+

1 (i4) is disjoint from both P−1 (i5) and P−1 (i6).
Notice that P+

3 (a4) ∪ P+
2 (h4) ⊆ V2, and A1 ⊆ V1\V2 (shown in Claim 4), so we derive that

P+
3 (a4)∪ P+

2 (h4) is disjoint from A1. Hence we conclude that A1 is disjoint from A4. Similarly we
can prove that A1 is disjoint from A5 and A6.

Claim 10. A2 is disjoint from Aj, j ∈ {4, 5, 6}.

Proof. A2 = P−2 (h4) ∪ P−2 (h5) ∪ P−2 (h6). We will show that A2 is disjoint from A4, without loss
of generality. First P+

2 (h4) ∩ A2 = ∅ because of Claim 7. Secondly P+
3 (a4) ∩ A2 = ∅ because

A2 ⊆ V2\V3 and P+
3 (a4) ⊆ V3. Similarly, we can see that (P+

1 (i4)\V2) ∩ A2 = ∅. Finally, let’s
consider v ∈ P+

1 (i4) ∩ V2 and w ∈ A2, and we are going to show that v 6= w. Assume that
w ∈ P−2 (hk). We derive that

dG2(a2, v) ≥ dG2(a2, i4)− (∆− 1)
= dG2(a2, h4)− 2∆− (∆− 1)
= dG2(a2, h4)− 3∆ + 1
≥ dG2(a2, hk)− (∆− 1)− 3∆ + 1
≥ dG2(a2, w) + 2

the first inequality following from the fact that v ∈ P+
1 (i4)∩V2 implies that P+

1 (i4)\P+
1 (v) ⊆ V2, the

second inequality from the definition of V3, and the last inequality from the fact that w ∈ A2. The
fact that dG2(a2, v) ≥ dG2(a2, w)+2 means that v and w can not be equal, i.e, (P+

1 (i4)∩V2)∩A2 = ∅.
Similarly, we can show that A2 is disjoint from A5 and A6.

Let’s do the same thing for A3.

Claim 11. A3 is disjoint from Aj, j ∈ {4, 5, 6}.

Proof. Consider A3 = P−3 (a4)∪P−3 (a5)∪P−3 (a6) and A4 = P+
3 (a4)∪P+

2 (h4)∪P+
1 (i4) as an example.

According to Claim 6, we can get P+
3 (a4) ∩ A3 = ∅. For those vertices in P+

2 (h4)\V3, we can
see that they are disjoint from A3 because of A3 ⊆ V3. Now we consider P+

2 (h4) ∩ V3. Suppose v
is an arbitrary vertex in P+

2 (h4) ∩ V3, and u is an arbitrary vertex in P−3 (ak) ⊆ A3, see Figure 5.
As in the previous claim, we have:

dG3(a3, v) ≥ dG3(a3, h4)− (∆− 1)
= dG3(a3, a4)− 2∆− (∆− 1)
= dG3(a3, a4)− 3∆ + 1
≥ dG3(a3, ak)− (∆− 1)− 3∆ + 1
≥ dG3(a3, u) + 2

showing that u 6= v, i.e. (P2(h4) ∩ V3) ∩A3 = ∅.
The analysis for P1(i4) ∩ A3 = ∅ is similar. Hence, A3 is disjoint from A4. Similarly we can

prove that A3 is also disjoint from A5 and A6.

We have shown that these six sets are disjoint and they are connected by edges, which means
that we have found a K3,3 minor.
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Figure 5: A3 and A4.
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