18.409: Topics in TCS: Embeddings of Finite Metric Spaces

October 11, 2006
Scribe: Yingchao Zhao

Lecture 9

1 Planar Graph Decompositions

In this lecture, we prove the main technical theorem, which (as we saw last lecture) implies that in any graph and for any Δ, we can either exhibit $K_{3,3}$ as a minor or find a distribution over subsets of vertices whose removal separates the graph into connected components with weak diameter ${ }^{1} O(\Delta)$ and with any vertex v being at distance $\Omega(\Delta)$ from the removed vertices with constant probability.

As we discussed last time, we are given a graph $G=(V, E)$ with unit edge lengths and a given $\Delta \in \mathbb{N}$. The construction goes as follows. We choose an arbitrary root a_{1} in the original vertex set $V_{1}=V$. From a_{1} we do a breadth-first search and get a breadth-first search tree T_{1} starting from a_{1}. Look at the vertices at distance 1 , distance 2 and so on. The j th level of T_{1} is the set of nodes whose distance in $G_{1}=G$ is j. We are going to remove a subset of vertices in particular levels. In the stochastic construction, we choose k_{1} uniformly at random in $\{0,1, \cdots, \delta-1\}$; as we have done the probabilistic analysis last time, we can assume here that k_{1} is arbitrary with $0 \leq k_{1} \leq \Delta-1$. Then we remove all the vertices in the set $F_{1}=\left\{v \in V_{1}: d_{G_{1}}\left(a_{1}, v\right) \equiv k_{1} \bmod \Delta\right\}$ from G_{1} and get many connected components between adjacent levels $k_{1}+j \Delta$ and $k_{1}+(j+1) \Delta$. We choose a connected component from $G \backslash F_{1}$; let V_{2} be the new vertex set of the connected component we choose, and let $G_{2}=G\left[V_{2}\right]$ be the graph induced by V_{2}. We can continue this process twice. Namely, we are going to choose a_{i} for $i=2,3$, and then build a breadth-first search tree T_{i} from a_{i}. Define $F_{i}=\left\{v \in V_{i}: d_{G_{i}}\left(a_{i}, v\right) \equiv k_{i} \bmod \Delta\right\}$ where $d_{G_{i}}(u, v)$ is the distance between u and v in graph G_{i}. Again, k_{i} is chosen uniformly at random, but here we just assume k_{i} is completely arbitrary. Then we remove F_{i} and get connected components. Let V_{i+1} be one of the connected components in $G_{i} \backslash F_{i}$ and G_{i+1} is the graph induced by V_{i+1}. In the planar graph case, we do that three times. After we have done the third time, we focus on one of the connected components, call it V_{4}.

We claim that any two vertices u an v in V_{4} are not far in the original graph if G does not have $K_{3,3}$ as a minor. Here is the precise statement; we should emphasize that $d(u, v)$ denotes the distance in the original graph.

Theorem 1. If G has no $K_{3,3}$ minor, then $\forall u, v \in V_{4}, d(u, v)<34 \Delta$.
Here we give a bit of history. The construction given here is from Klein, Plotkin and Rao [1]. They consider the case of graphs with no $K_{r, r}$ minors and show there that r levels are sufficient to get $O(\Delta)$ weak diameters. This leads to approximation algorithms for the uniform sparsest cut problem in graphs with no $K_{r, r}$ minors with a guarantee of $O\left(r^{3} \log n\right)$. Their proof is along the same lines as what we are going to do today, except that we focus on planar graphs. In 1999, Rao [2] showed that the distortion can be reduced to $O\left(r^{3} \sqrt{\log n}\right)$. Based on those results above, in 2003, Fakcharoenphol and Talwar [3] gave an improved decomposition theorem and showed that we can get the distortion down to $O\left(r^{2} \sqrt{\log n}\right)$ if we choose the roots carefully. In the lecture notes of courses on metric embeddings at CMU and Chicago, they prove that the r level decomposition

[^0]

Figure 1: Path P from a_{4} to a_{5}.

Figure 2: $K_{3,3}$ minor.
method could still get distortion $O\left(r^{2} \sqrt{\log n}\right)$ without choosing roots carefully. However, their analysis has a flaw.

2 Preliminaries

Suppose there are two vertices a_{4} and a_{5} in V_{4} with original distance $d\left(a_{4}, a_{5}\right) \geq 34 \Delta$. a_{4} and a_{5} are both in V_{4}, but the shortest path in the original graph may go out and back in V_{4}. As V_{4} is a connected component, there must exist a path from a_{4} to a_{5} within this connected component. Let's look at a path P within G_{4} from a_{4} to a_{5}. Along this path, we are going to select a vertex a_{6} on P such that $d\left(a_{4}, a_{6}\right) \geq 17 \Delta$ and $d\left(a_{6}, a_{5}\right) \geq 17 \Delta$, see Figure 1 . Notice that we use the distance in the original graph. This can be done by walking along the path and selecting the first vertex that satisfies the above two inequalities.

To obtain a contradiction, we will exhibit a $K_{3,3}$ minor (obtained by performing edge contractions and deletions). We will construct 6 disjoint sets A_{i} for $i=1, \cdots, 6$; each A_{i} induces a connected subgraph and contains a_{i}. To get the minor, we will contract each A_{i} to a_{i} and this will result in a $K_{3,3}$ with a_{1}, a_{2}, a_{3} on one side of the bipartition and a_{4}, a_{5} and a_{6} on the other, see Figure 2. We will also need to show that A_{i} and A_{j} for $\{1,2,3\}$ and $j \in\{4,5,6\}$ are connected by an edge. To isolate the minor, we also delete all the other edges. Next we are going to show how to find these A_{i} 's and to argue that they are disjoint. We are also going to show that they are connected by edges.

Figure 3: Vertex set and paths.

Before we begin our proof, we introduce some notations first. When we do the breadth-first search from $a_{i}, i \in\{1,2,3\}$, we get the breadth-first search tree T_{i}. Let's look at the path $P_{i}(u)$ in T_{i} from a_{i} to vertex u. We are going to partition the vertices of $P_{i}(u)$ into two pieces, $P_{i}^{+}(u)$ and $P_{i}^{-}(u)$:

$$
\begin{aligned}
& P_{i}^{+}(u)=\left\{v \in P_{i}(u): d_{P_{i}(u)}(u, v) \leq 4 \Delta\right\} \\
& P_{i}^{-}(u)=\left\{v \in P_{i}(u): d_{P_{i}(u)}(u, v)>4 \Delta\right\}
\end{aligned}
$$

Now let's show how to construct the six vertex sets A_{1}, \ldots, A_{6}. Look at the first path from a_{3} to a_{4}, which is $P_{3}\left(a_{4}\right)$. Define h_{4} to be the vertex at distance 2Δ from a_{4} along this path $P_{3}\left(a_{4}\right)$. Next we do the same thing from a_{2} to h_{4}. That is, we look at the 4Δ last edges along this path $P_{2}\left(h_{4}\right)$ and define i_{4} to be the vertex at distance 2Δ from h_{4}. Then we look at the 4Δ last edges along the path $P_{1}\left(i_{4}\right)$ from a_{1} to i_{4}. More generally, for $j \in\{4,5,6\}$, we define h_{j} to be the vertex on path $P_{3}\left(a_{j}\right)$ such that $d_{P_{3}\left(a_{j}\right)}\left(a_{j}, h_{j}\right)=2 \Delta$ and define i_{j} to be the vertex on path $P_{2}\left(h_{j}\right)$ such that $d_{P_{2}\left(h_{j}\right)}\left(i_{j}, h_{j}\right)=2 \Delta$.

Now let's define what are those six vertex sets (see Figure 3):

- $A_{1}=P_{1}^{-}\left(i_{4}\right) \cup P_{1}^{-}\left(i_{5}\right) \cup P_{1}^{-}\left(i_{6}\right)$
- $A_{2}=P_{2}^{-}\left(h_{4}\right) \cup P_{2}^{-}\left(h_{5}\right) \cup P_{2}^{-}\left(h_{6}\right)$
- $A_{3}=P_{3}^{-}\left(a_{4}\right) \cup P_{3}^{-}\left(a_{5}\right) \cup P_{3}^{-}\left(a_{6}\right)$
- $A_{4}=P_{3}^{+}\left(a_{4}\right) \cup P_{2}^{+}\left(h_{4}\right) \cup P_{1}^{+}\left(i_{4}\right)$
- $A_{5}=P_{3}^{+}\left(a_{5}\right) \cup P_{2}^{+}\left(h_{5}\right) \cup P_{1}^{+}\left(i_{5}\right)$
- $A_{6}=P_{3}^{+}\left(a_{6}\right) \cup P_{2}^{+}\left(h_{6}\right) \cup P_{1}^{+}\left(i_{6}\right)$

In the next section, we are going to show two things, namely that these six sets are disjoint and that they are connected in a proper way.

3 Proof of the Main Theorem

To show that they are connected in a proper way is trivial. Why? Let's take A_{3} and A_{4} as an example. Obviously, A_{3} and A_{4} are connected by that edge between $P_{3}^{+}\left(a_{4}\right)$ and $P_{3}^{-}\left(a_{4}\right)$. Similarly, we can find other connecting edges. Hence, we know that for $\forall i \in\{1,2,3\}$ and $\forall j \in\{4,5,6\}$, there exists an edge between A_{i} and A_{j}. So the only thing that remains to show is that those A_{i} 's are disjoint.

Claim 2. $\forall v \in A_{i}, i \in\{4,5,6\}, d\left(v, a_{i}\right) \leq 8 \Delta$.
Proof. $\forall v A_{i}$, we can exhibit a path between v and a_{i} and the distance is not large. Let's take $i=4$ as an example. For $v \in P_{3}^{+}\left(a_{4}\right), d\left(v, a_{4}\right) \leq 4 \Delta$; for $v \in P_{2}^{+}\left(h_{4}\right), d\left(v, a_{4}\right) \leq 6 \Delta$ and for $v \in P_{1}^{+}\left(i_{4}\right)$, $d\left(v, a_{4}\right) \leq 8 \Delta$. Similarly, we can prove that the inequalities hold for A_{5} and A_{6}.

Since $d\left(a_{i}, a_{j}\right) \geq 17 \Delta$ holds for $4 \leq i<j \leq 6$, we can get the following corollary.
Corollary 3. A_{4}, A_{5} and A_{6} are disjoint.
Now we are going to show that A_{1}, A_{2} and A_{3} are disjoint in the following way.
Claim 4. $\forall i \in\{1,2,3\}, A_{i} \subseteq V_{i} \backslash V_{i+1}$.
Proof. Let's take $i=3$ as an example. We claim that A_{3} is in V_{3} but not in V_{4}. Recall that the paths $P_{3}\left(a_{4}\right), P_{3}\left(a_{5}\right)$ and $P_{3}\left(a_{6}\right)$ are obtained when we do breadth-first search in $V_{3} . T_{3}$ is the corresponding breadth-first search tree and we can define the levels for vertices in T_{3}. Recall that V_{4} is one of the connected components in $V_{3} \backslash F_{3}$, and the levels of vertices in V_{4} are between $k_{3}+j \Delta$ and $k_{3}+(j+1) \Delta$ for some integer j, as shown in Figure 4. Hence, the level difference between every two vertices within V_{4} is at most $\Delta-1$. If we trace back at least Δ from any vertex in V_{4}, we are out of V_{4}. Because the vertices in A_{3} are all ancestors of a_{4}, a_{5} or a_{6} and they are at distance at least 4Δ from a_{4} or a_{5} or a_{6} in T_{3}, therefore cannot be within V_{4}. In this way, we prove that $A_{3} \subseteq V_{3} \backslash V_{4}$.

The case of A_{2} is similar. We do breadth-first search in V_{2} and get the breadth-first search tree T_{2}. We know that h_{4}, h_{5} and h_{6} are all in one connected component V_{3}, so their level differences in T_{2} are at most $\Delta-1$. As we trace back Δ, we get out of V_{3}. Hence, $A_{3} \subseteq V_{2} \backslash V_{3}$. It is similar for A_{1}.

Therefore, $A_{i} \subseteq V_{i} \backslash V_{i+1}$ holds for $1 \leq i \leq 3$, which implies the following corollary.
Corollary 5. A_{1}, A_{2} and A_{3} are disjoint.
In the following part, we are going to prove that some paths are disjoint which will help us show that A_{i} is disjoint from A_{j} for $i \leq 3$ and $j \geq 4$. First, we consider the paths $P_{3}^{+}\left(a_{i}\right)$ and $P_{3}^{-}\left(a_{j}\right)$ with $i \neq j$ and show that they are disjoint.

Figure 4: Levels in V_{3}.

Claim 6. $P_{3}^{+}\left(a_{i}\right) \cap P_{3}^{-}\left(a_{j}\right)=\emptyset, i \neq j$ and $i, j \in\{4,5,6\}$.
Proof. Assume that $i=5$ and $j=6$; other choices are similar. Assume that there exists a vertex $v \in P_{3}^{-}\left(a_{5}\right) \cap P_{3}^{+}\left(a_{6}\right)$.
$v \in P_{3}^{+}\left(a_{6}\right)$ means that $d_{G_{3}}\left(v, a_{6}\right) \leq 4 \Delta$ according to the definition of $P_{3}^{+}\left(a_{6}\right)$. Because a_{4} a_{5} and a_{6} are all in V_{4}, their level differences are at most $\Delta-1$ in T_{3}. If $v \in P_{3}^{-}\left(a_{5}\right)$, we can derive that $d_{G_{3}}\left(v, a_{5}\right) \leq 4 \Delta+(\Delta-1)=5 \Delta-1$. By the triangle inequality, we get $d_{G_{3}}\left(a_{5}, a_{6}\right) \leq$ $d_{G_{3}}\left(v, a_{5}\right)+d_{G_{3}}\left(v, a_{6}\right) \leq 9 \Delta-1$, which contradicts our assumption $d\left(a_{5}, a_{6}\right) \geq 17 \Delta$.

We prove an analogous statement for T_{2} first, and then T_{1}.
Claim 7. $P_{2}^{+}\left(h_{i}\right) \cap P_{2}^{-}\left(h_{j}\right)=\emptyset$, for $i \neq j$ and $i, j \in\{4,5,6\}$.
Proof. If there exists a vertex $v \in P_{2}^{+}\left(h_{i}\right) \cap P_{2}^{-}\left(h_{j}\right)$ for $i \neq j$ and $i, j \in\{4,5,6\}$, we know that $d_{G_{2}}\left(v, h_{i}\right) \leq 4 \Delta$ which implies that $d_{G_{2}}\left(v, a_{i}\right) \leq 4 \Delta+2 \Delta=6 \Delta$. Because h_{i} and h_{j} are both within V_{3}, their level difference is at most $\Delta-1$ in T_{2}. So we know that $d_{G_{2}}\left(v, h_{j}\right) \leq 4 \Delta+(\Delta-1)$ which implies that $d_{G_{2}}\left(v, a_{j}\right) \leq 4 \Delta+(\Delta-1)+2 \Delta=7 \Delta-1$. By the triangle inequality, we get $d_{G_{2}}\left(a_{i}, a_{j}\right) \leq 13 \Delta-1$ which contradicts our assumption $d\left(a_{i}, a_{j}\right) \geq 17 \Delta$ for $i \neq j$ and $i, j \in$ $\{4,5,6\}$.

Claim 8. $P_{1}^{+}\left(i_{j}\right) \cap P_{1}^{-}\left(i_{k}\right)=\emptyset$, for $j \neq k$ and $j, k \in\{4,5,6\}$.
Proof. If there exists a vertex $v \in P_{1}^{+}\left(i_{j}\right) \cap P_{1}^{-}\left(i_{k}\right)$, we know $d_{G_{1}}\left(v, i_{j}\right) \leq 4 \Delta$ which implies that $d_{G_{1}}\left(v, a_{j}\right) \leq 8 \Delta$. As before, we also get $d_{G_{1}}\left(v, i_{k}\right) \leq 4 \Delta+(\Delta-1)$ which implies that $d_{G_{1}}\left(v, a_{k}\right) \leq$ $9 \Delta-1$. Hence we get $d_{G_{1}}\left(a_{j}, a_{k}\right) \leq 17 \Delta-1$ which contradicts our assumption.

This last claim justifies our choice of 34Δ for the weak diameter. Now we are going to show that A_{i} is disjoint from A_{4}, A_{5}, A_{6}, for each $i=1,2,3$. We start with $i=1$ as this is the easiest case.

Claim 9. A_{1} is disjoint from $A_{j}, j \in\{4,5,6\}$.
Proof. First we show that A_{1} is disjoint from A_{4}. Both of them consist of three paths:

$$
\begin{aligned}
& A_{1}=P_{1}^{-}\left(i_{4}\right) \cup P_{1}^{-}\left(i_{5}\right) \cup P_{1}^{-}\left(i_{6}\right) \\
& A_{4}=P_{3}^{+}\left(a_{4}\right) \cup P_{2}^{+}\left(h_{4}\right) \cup P_{1}^{+}\left(i_{4}\right)
\end{aligned}
$$

By definition, $P_{1}^{+}\left(i_{4}\right) \cap P_{1}^{-}\left(i_{4}\right)=\emptyset$. By Claim $8, P_{1}^{+}\left(i_{4}\right)$ is disjoint from both $P_{1}^{-}\left(i_{5}\right)$ and $P_{1}^{-}\left(i_{6}\right)$.
Notice that $P_{3}^{+}\left(a_{4}\right) \cup P_{2}^{+}\left(h_{4}\right) \subseteq V_{2}$, and $A_{1} \subseteq V_{1} \backslash V_{2}$ (shown in Claim 4), so we derive that $P_{3}^{+}\left(a_{4}\right) \cup P_{2}^{+}\left(h_{4}\right)$ is disjoint from A_{1}. Hence we conclude that A_{1} is disjoint from A_{4}. Similarly we can prove that A_{1} is disjoint from A_{5} and A_{6}.

Claim 10. A_{2} is disjoint from $A_{j}, j \in\{4,5,6\}$.
Proof. $A_{2}=P_{2}^{-}\left(h_{4}\right) \cup P_{2}^{-}\left(h_{5}\right) \cup P_{2}^{-}\left(h_{6}\right)$. We will show that A_{2} is disjoint from A_{4}, without loss of generality. First $P_{2}^{+}\left(h_{4}\right) \cap A_{2}=\emptyset$ because of Claim 7. Secondly $P_{3}^{+}\left(a_{4}\right) \cap A_{2}=\emptyset$ because $A_{2} \subseteq V_{2} \backslash V_{3}$ and $P_{3}^{+}\left(a_{4}\right) \subseteq V_{3}$. Similarly, we can see that $\left(P_{1}^{+}\left(i_{4}\right) \backslash V_{2}\right) \cap A_{2}=\emptyset$. Finally, let's consider $v \in P_{1}^{+}\left(i_{4}\right) \cap V_{2}$ and $w \in A_{2}$, and we are going to show that $v \neq w$. Assume that $w \in P_{2}^{-}\left(h_{k}\right)$. We derive that

$$
\begin{aligned}
d_{G_{2}}\left(a_{2}, v\right) & \geq d_{G_{2}}\left(a_{2}, i_{4}\right)-(\Delta-1) \\
& =d_{G_{2}}\left(a_{2}, h_{4}\right)-2 \Delta-(\Delta-1) \\
& =d_{G_{2}}\left(a_{2}, h_{4}\right)-3 \Delta+1 \\
& \geq d_{G_{2}}\left(a_{2}, h_{k}\right)-(\Delta-1)-3 \Delta+1 \\
& \geq d_{G_{2}}\left(a_{2}, w\right)+2
\end{aligned}
$$

the first inequality following from the fact that $v \in P_{1}^{+}\left(i_{4}\right) \cap V_{2}$ implies that $P_{1}^{+}\left(i_{4}\right) \backslash P_{1}^{+}(v) \subseteq V_{2}$, the second inequality from the definition of V_{3}, and the last inequality from the fact that $w \in A_{2}$. The fact that $d_{G_{2}}\left(a_{2}, v\right) \geq d_{G_{2}}\left(a_{2}, w\right)+2$ means that v and w can not be equal, i.e, $\left(P_{1}^{+}\left(i_{4}\right) \cap V_{2}\right) \cap A_{2}=\emptyset$. Similarly, we can show that A_{2} is disjoint from A_{5} and A_{6}.

Let's do the same thing for A_{3}.
Claim 11. A_{3} is disjoint from $A_{j}, j \in\{4,5,6\}$.
Proof. Consider $A_{3}=P_{3}^{-}\left(a_{4}\right) \cup P_{3}^{-}\left(a_{5}\right) \cup P_{3}^{-}\left(a_{6}\right)$ and $A_{4}=P_{3}^{+}\left(a_{4}\right) \cup P_{2}^{+}\left(h_{4}\right) \cup P_{1}^{+}\left(i_{4}\right)$ as an example.
According to Claim 6, we can get $P_{3}^{+}\left(a_{4}\right) \cap A_{3}=\emptyset$. For those vertices in $P_{2}^{+}\left(h_{4}\right) \backslash V_{3}$, we can see that they are disjoint from A_{3} because of $A_{3} \subseteq V_{3}$. Now we consider $P_{2}^{+}\left(h_{4}\right) \cap V_{3}$. Suppose v is an arbitrary vertex in $P_{2}^{+}\left(h_{4}\right) \cap V_{3}$, and u is an arbitrary vertex in $P_{3}^{-}\left(a_{k}\right) \subseteq A_{3}$, see Figure 5 .

As in the previous claim, we have:

$$
\begin{aligned}
d_{G_{3}}\left(a_{3}, v\right) & \geq d_{G_{3}}\left(a_{3}, h_{4}\right)-(\Delta-1) \\
& =d_{G_{3}}\left(a_{3}, a_{4}\right)-2 \Delta-(\Delta-1) \\
& =d_{G_{3}}\left(a_{3}, a_{4}\right)-3 \Delta+1 \\
& \geq d_{G_{3}}\left(a_{3}, a_{k}\right)-(\Delta-1)-3 \Delta+1 \\
& \geq d_{G_{3}}\left(a_{3}, u\right)+2
\end{aligned}
$$

showing that $u \neq v$, i.e. $\left(P_{2}\left(h_{4}\right) \cap V_{3}\right) \cap A_{3}=\emptyset$.
The analysis for $P_{1}\left(i_{4}\right) \cap A_{3}=\emptyset$ is similar. Hence, A_{3} is disjoint from A_{4}. Similarly we can prove that A_{3} is also disjoint from A_{5} and A_{6}.

We have shown that these six sets are disjoint and they are connected by edges, which means that we have found a $K_{3,3}$ minor.

Figure 5: A_{3} and A_{4}.

References

[1] Philip N. Klein, Serge A. Plotkin, Satish Rao, Excluded minors, network decomposition, and multicommodity flow, STOC 1993: 682-690.
[2] Satish Rao, Small distortion and volume preserving embeddings for planar and Euclidean metrics, Symposium on Computational Geometry 1999: 300-306.
[3] Jittat Fakcharoenphol, Kunal Talwar, An Improved Decomposition Theorem for Graphs Excluding a Fixed Minor, RANDOM-APPROX 2003: 36-46.

[^0]: ${ }^{1}$ the maximum distance in the original graph between any two vertices of the component.

