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Lecture 8

A lower-bound on `2 dimensionality reduction

The main focus of this lecture is a lower bound on the dimension when doing dimensionality
reduction with ε-distortion in `1 and `2. In particular, it will be shown that there exist graphs
requiring Ω(log n) dimensions to embed with any fixed desired distortion in Euclidean space. The
main technical result is:

Theorem 1 (Alon [1]). Let v1, . . . , vn+1 ∈ R
d and 1/

√
n ≤ ε < 1/3 be given, such that 1 ≤

‖vi − vj‖ ≤ 1 + ε for all i 6= j ∈ [n + 1]. Then the subspace spanned by v1, . . . , vn+1 has dimension

d = Ω
(

log n
ε2 log 1/ε

)

.

In particular, this theorem suggests that the n-dimensional simplex ∆n (on n + 1 vertices)
cannot be embedded with distortion 1 + ε in fewer than Ω(log n) dimensions.

We next proceed to the proof of the theorem. By translation we can assume that vn+1 = 0, and
therefore 1 ≤ ‖vi‖ ≤ 1 + ε by assumption. Further set v′

i = vi/‖vi‖, and note that:

∣

∣

∣
〈v′i, v′j〉 −

1

2

∣

∣

∣
= O(ε)

since 〈v′i, v′j〉 = cos ∠(vi, vj) ≤ 1/2 + ε + ε2/2 using the cosine rule (c2 = a2 + b2 − 2ab cos γ). Let us

then define matrix B ∈ Mn×n(R) with B =
[

〈v′i, v′j〉
]

1≤i,j≤n
, which would look like:
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As a side note, if ε = 0 then B would be 1 along the diagonal and 1/2 everywhere else, hence it
would have full rank n. Being the Gram matrix of the v ′

i’s it would follow that they span a subspace
of dimension n (this follows from Theorem 7.2.10 in [3]) which is also the subspace spanned by the
vi’s. In other words, if no distortion were allowed, the lower bound on the dimension is n.

Continuing, let d = rank(B) and define C = 2B − J , where J = eeT is the all-ones matrix.
Taking the rank operator in the definition of C, we get | rank(C) − rank(B)| ≤ 1 or equivalently:

rank(C) ≤ d + 1.

We now prove a lower bound on the rank of a matrix for the case when the off-diagonal entries are
very small; we will later apply this to C:

Lemma 2. Consider a symmetric matrix C ∈ Mn×n(R) such that Ci,i = 1 for i ∈ [n], and
Ci,j ≤ 1/

√
n for i 6= j ∈ [n]. Then rank(C) ≥ n/2.
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Proof of Lemma: Since C is symmetric, all of its eigenvalues must be real (See Theorem 4.1.3
in [3]). Now, suppose d = rank(C) and let λ1, . . . , λd ∈ R be the non-zero eigenvalues of C. The
invariance of the trace with respect to conjugation gives:

Tr(C) =
∑

i∈[n]

Ci,i = n =
∑

i∈[d]

λd. (1)

Now observe that the non-zero eigenvalues of C 2 = CT C are exactly λ2
1, . . . , λ

2
d. Respectively:

Tr(C2) =
∑

i∈[d]

λ2
i , but also (2)

Tr(C2) =
∑

i∈[n]

∑

j∈[n]

C2
i,j ≤ n + n(n − 1)

1

n
= 2n − 1 < 2n. (3)

Now let us pretend that the λi’s are the equally likely outcomes of a random variable Λ. Then (1),
(2) and (3) tell us that:

E[Λ] =
n

d
and E[Λ2] <

2n

d

Applying that Var[Λ] = E[Λ2] − E[Λ]2 ≥ 0, we get d > 2n (this is simply the quadratic/arithmetic
mean inequality).

Lemma 3. Suppose A ∈ Mn,n(R) has rank d, then F =
(

Ak
i,j

)

1≤i,j≤n
has rank at most

(

d+k−1
d−1

)

.

Proof of Lemma: Let v1, . . . , vd ∈ R
n be a basis for the row space of A. Then for the i-th row of

A, denoted Ai, we have that:

Ai =
∑

l∈[d]

λlvl

for some coefficients λl. And moreover:

Ai,j =
∑

l∈[d]

λlvl,j

where vl,j denotes the j-th entry of vl. For an entry of F we have:

Fi,j = Ak
i,j =

(

∑

l∈[d]

λlvi,j

)k

=
∑

k1+···+kd=k

(

k

k1, . . . , kd

)





∏

l∈[d]

λkl

l









∏

l∈[d]

vkl

l,j





From this formula, the row space of F is spanned by:

(

wk1,...,kd

)

j
=
∏

l∈[d]

vkl

l,j

i.e. there is one vector, corresponding to each partition k1 + · · · + kd = k. The number of such
partitions

(k+d−1
d−1

)

gives an upper bound on the (row) rank of F .
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Proof of Theorem: Back to the main theorem. Recall rank(C) ≤ d + 1 and |Ci,j| ≤ ε. Let k
be an integer such that εk < 1/

√
n. Consider the matrix F =

(

Ck
i,j

)

1≤i,j≤n
, which has it that

|Fi,j | ≤ 1/
√

n by construction. According to the second lemma rank(F ) ≤
(

k+d
d

)

. According to the
first lemma rank(F ) ≥ n/2. From the inequalities for rank(F ) we now have:

n

2
≤
(

k + d

d

)

=

(

k + d

k

)

=
(k + d)!

d!

1

k!
≤ (k + d)k

( e

k

)k

Taking the natural logarithm on both sides and observing that k = ln n
2 ln 1/ε yields the result d =

Ω(ln n)
ε2 ln 1/ε

.

A lower-bound on `1 dimensionality reduction

The result we are about to show was first discovered by Brikman and Charikar [2], but a much
simpler proof is presented here due to Lee and Naor [4].

Let Dm denote the m-th level diamond graph (defined in earlier lectures). In the problem set,
we prove that the shortest path metric of Dm embeds into `1 with constant distortion.

Theorem 4. For any 1 < p ≤ 2, the distortion required to embed Dm in `p is at least
√

1 + (p − 1)m.

Lemma 5. Let x ∈ R
d, then d1/p−1‖x‖1 ≤ ‖x‖p ≤ ‖x‖1.

Proof of Lemma: The right inequality is trivial, so we focus on the left one. Let xT = (x1, . . . , xd).
Then d1/p−1‖x‖1 ≤ ‖x‖p is equivalent to:

∑

i∈[d] |xi|p

d
≥
(
∑

i∈[d] |xi|
d

)p

This can be written as E[Xp] ≥ E[X]p, where X is a random variable uniform over |x1|, . . . , |xd|.
The latter inequality always holds due to the convexity of fp(t) = tp for p ≥ 1 and t ≥ 0.

We are going to combine the above theorem and lemma to get a lower bound on dimensionality
reduction in `1. In particular, consider the following sequence of operations:

1. Embed the shortest-path metric of Dm into `1 with distortion O(1) (see problem set).

2. Reduce the dimension of the resulting embedding down to d dimensions, by admitting some
distortion D.

3. Apply the lemma above to argue that the same (reduced dimension) embedding viewed as an
`p embedding distorts distances by at most d1−1/p.

In summary, we have embedded Dm into `p with distortion O(1) · D · d1−1/p. On the other hand,
the theorem tells us that we cannot embed Dm into `p with less than

√

1 + (p − 1)m distortion,
hence we can set up the inequality:

O(1) · D · d1−1/p ≥
√

1 + (p − 1)m.
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Choosing p = 1 + 1
log d yields that:

D2 = Ω

(

log n

log d

)

, or equivalently d = nΩ(1/D2)

Sketch of Proof of Theorem: Recall that for any points x, y, z, w in `2 we have the isoperimetric
inequality:

‖x − z‖2
2 + ‖y − w‖2

2 ≤ ‖x − y‖2
2 + ‖y − z‖2

2 + ‖z − w‖2
2 + ‖w − x‖2

2.

Similarly in `p we have that:

‖x − z‖2
p + (p − 1)‖y − w‖2

p ≤ ‖x − y‖2
p + ‖y − z‖2

p + ‖z − w‖2
p + ‖w − x‖2

p.

Let us now resume the notation that Em is the set of edges of Dm and Fm is the set of anti-edges.
And let f be an embedding of Dm into `p, then:

A = ‖f(s) − f(t)‖2
p + (p − 1)

∑

(u,v)∈Fm\{(s,t)}

‖f(u) − f(v)‖2
p ≤

∑

(u,v)∈Em

‖f(u) − f(v)‖2
p = B.

If f has distortion less than D, then:

dDm
(u, v) ≤ ‖f(u) − f(v)‖p ≤ D · dDm

(u, v).

Then we would get that:

4m
(

(p − 1)m + 1
)

≤ A ≤ B ≤ |Em| · D2 = 4m · D2,

which yields the result D ≥
√

1 + (p − 1)m.
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