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Lecture 5

Last time we discussed the sparsest cut problem and its connection to metric embeddings. If we
can efficiently embed any metric (i.e. l∞-embeddable) into l1 with distortion α then we can derive an
α-approximation algorithm for the sparsest cut problem. Similarly, for embedding a negative-type
metric into l1. In 1985, Bourgain [1] proved that any n-point metric space can be embedded into l2
(hence, l1 or any lp for p ≥ 1) with distortion O(log n). Metrics from expander graphs show this is
tight. Recently, Arora, Lee and Naor [2] have shown that a distortion of O(

√
log n · log log n) can

be achieved to embed a negative type metric into Euclidean space. Today, we describe Bourgain’s
result and prove it.

Theorem 1. Every metric space (X, d) with |X| = n can be embedded into l2 with distortion
O(log n).

Frechet Embedding. For a given metric space (X, d), distance between a point x ∈ X and a set
A ⊂ X is defined as:

d(x,A) = min
y∈A

d(x, y).

Also, we can check that a function fA : X → R
1 which maps x to d(x,A) has the following non-

expanding property. For x ∈ X, let s ∈ X be such that d(x, s) = d(x,A) and, similarly for y ∈ X,
let t ∈ X be such that d(y, t) = d(y,A). Thus,

fA(x) − fA(y) = d(x,A) − d(y,A)

= d(x, s) − d(y, t)

≤ d(x, t) − d(y, t) ≤ d(x, y).

The same is true if we exchange the roles of x and y and thus we have |fA(x) − fA(y)| ≤ d(x, y).
A Frechet Embedding of (X, d) is a probability distribution µ over all non-empty subsets of X. If

A is a random subset distributed according to µ, then we associate, to every x ∈ X, the real-valued
random variable Fµ(x) = d(x,A). Then, the following lemma holds.

Lemma 2. Let (X, d) be a metric space with |X| = n. If, for a Frechet embedding µ, we can show
that

∀x, y ∈ X, d(x, y) ≤ γEµ|Fµ(x) − Fµ(y)| = γEµ[|d(x,A) − d(y,A)|]
then the mapping G : X → R

2n
with1 G(x) = (

√

µ(A) d(x,A))A⊂X embeds (X, d) into l2 with
distortion γ.

1The coordinate value of G(x) corresponding to A in R
2n

is
p

µ(A) d(x,A)

1



Proof.

∀x, y ∈ X, ||G(x) − G(y)||2 =





∑

A⊆X

µ(A)(d(x,A) − d(y,A))2





1
2

≤





∑

A⊆X

µ(A)d(x, y)2





1
2

= d(x, y).

Also, if we set u, v ∈ R
2n

as u = (
√

µ(A) |d(x,A) − d(y,A)|)A⊆X , v = (
√

µ(A))A⊆X , we can get
the other direction of the inequality as follows:

∀x, y ∈ X, ||G(x) − G(y)||2 = ||u||2 = ||u||2||v||2
≥ 〈u, v〉 (by the Cauchy Schwartz inequality)

=
∑

A⊆X

µ(A)|d(x,A) − d(y,A)|

= Eµ[|d(x,A) − d(y,A)|]

≥ 1

γ
d(x, y).

Therefore, for all x, y ∈ X, we have

||G(x) − G(y)||2 ≤ d(x, y) ≤ γ||G(x) − G(y)||2.

For proving the main theorem, this lemma says that it suffices to find a Frechet embedding µ
which satisfies the condition of the lemma with γ = O(log n).

Let K = {1, 2, . . . , 2p} where p = blog2(n)c, and construct a Frechet embedding µ as follows:

µ(A) =







1
p+1

1

( n
|A|)

if |A| ∈ K

0 if |A| /∈ K.

We need to verify the condition of Lemma 2 for every x and y. So, fix x, y ∈ X, and define some
notions.

Definition 1. • B(x, ρ) = {y ∈ X, d(x, y) ≤ ρ}

• B̄(x, ρ) = {y ∈ X, d(x, y) < ρ}

• ρt = min{ρ : |B(x, ρ)| ≥ 2t & |B(y, ρ)| ≥ 2t}.

By definition, ρ0 = 0. Let l be a least index with ρl ≥ d(x,y)
4 . Then, B(x, ρl−1)∩B(y, ρl−1) = φ

because ρl−1 < d(x,y)
4 . Therefore, 2l ≤ n because n ≥ |B(x, ρl−1) ∪ B(y, ρl−1)| = |B(x, ρl−1)| +

|B(y, ρl−1)| ≥ 2l−1 + 2l−1 = 2l. Thus l ≤ p. Now, fix k = 2j with p − l ≤ j ≤ p − 1, and let
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t = p − j. (Hence, 1 ≤ t ≤ l.) We can assume |B̄(x, ρt)| < 2t without loss of generality, because
either |B̄(x, ρt)| < 2t or |B̄(y, ρt)| < 2t. Set

Rk = {A ⊆ X : |A| = k, B̄(x, ρt) ∩ A = φ, B(y, ρt−1) ∩ A 6= φ}.

Then, the following lemma holds.

Lemma 3. There exists a constant β (independent from k) such that

|Rk| ≥
(

n
k

)

β
.

Proof. Let P and Q be B̄(x, ρt) and B(y, ρt−1) respectively for convenience. P and Q are disjoint,
and |P | < 2t, |Q| ≥ 2t−1. If we generate A uniformly among sets of size k = 2j , then

Pr[A ∩ P = φ & A ∩ Q 6= φ] = Rk/

(

n

k

)

=

[

(

n − |P |
k

)

−
(

n − |P | − |Q|
k

)

]

/

(

n

k

)

=
(n − |P |)!(n − k)!

n!(n − |P | − k)!
− (n − |P | − |Q|)!(n − k)!

n!(n − |P | − |Q| − k)!

= (1 − |P |
n

)(1 − |P |
n − 1

) . . . (1 − |P |
n − k + 1

) − (1 − |P | + |Q|
n

) . . . (1 − |P | + |Q|
n − k + 1

)

≈ (e−
|P |
n )k − (e−

|P |+|Q|
n )k = e−

|P |k
n (1 − e−

|Q|k
n )

≥ e−
2t2p−t

n (1 − e−
2t−12p−t

n ) = e−
2p

n (1 − e−
2p−1

n )

≥ e−1(1 − e−4) = 1/β,

where the approximation can be made formal.

Now, we are ready to prove the main theorem.

Proof. µ satisfies the condition of Lemma 2 for the following reason. If A ⊂ Rk, |d(x,A)−d(y,A)| ≥
ρt − ρt−1 because d(x,A) ≥ ρt, d(y,A) ≤ ρt−1. Thus we have:

Eµ[|d(x,A) − d(y,A)|]

=
∑

A⊆X

µ(A)|d(x,A) − d(y,A)| ≥
p−1
∑

j=p−l

(k=2j ,t=p−j)

∑

A∈Rk

|d(x,A) − d(y,A)|µ(A)

≥
p−1
∑

j=p−l

(k=2j ,t=p−j)

∑

A∈Rk

(ρt − ρt−1)
1

p + 1

1
(

n
k

) =

p−1
∑

j=p−l

(k=2j ,t=p−j)

|Rk|(ρt − ρt−1)
1

p + 1

1
(

n
k

)

≥
p−1
∑

j=p−l

(k=2j ,t=p−j)

(ρt − ρt−1)
1

p + 1

1

β
(by Lemma 3)
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=
1

p + 1

1

β
ρl ≥

1

p + 1

1

β

d(x, y)

4

≥ 1

O(log n)
d(x, y).

Therefore, this completes the proof of the main theorem.

Remark 1. (X, d) can be embedded into any lp (p ≥ 1) with distortion O(log n) because l2 can
be isometrically embedded into lp. Also, lemma 2 can be slightly modified to give directly the lp-
embedding with distortion γ.

Remark 2. We have embedded (X, d) into R
2n

. The Frechet embedding µ we constructed considered
all subset A of size k = 2j, and gave the same probability( 1

p+1
1

(n
k)

) to their sets. But, instead of

looking all subsets A of size k = 2j, if we choose O(log n) sets among them, the second lemma
(Pr[A ∩ P = φ & A ∩ Q 6= φ] ≥ constant) holds with high probability for each x, y ∈ X (using
a Chernoff bound [3]). Therefore, we can do the embedding efficiently (in polynomial time) into

R
O(p log n) = R

O(log2 n) with the same distortion O(log n). This was observed by London, Linial and
Rabinovich (1985).

Remark 3. The embedding we constructed gives a O(log n)-approximation algorithm for the general
sparsest cut problem. However, if we focus on the source and sink vertices (T = {(s1, t1), (s2, t2), . . . ,
(sk, tk)}) and do the embedding G as we did but restricted to T (thus considering only sets A ⊆ T ),
we can get

∀x, y ∈ T, ||f(x) − f(y)||2 ≥ d(x, y)

O(log k)
.

Furthermore, the non-expanding property of our embedding says

∀x, y ∈ X, ||f(x) − f(y)||2 ≤ d(x, y).

These two inequality are enough to analyze that this gives O(log k)-approximation algorithm because
the denominator of the formulas2 of α(G) and β(G) only depend on vertices in T .
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2α(G) = min(V,d), l∞−embeddable
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