18.409: Topics in TCS: Embeddings of Finite Metric Spaces

September 20, 2006
Scribe: Jinwoo Shin

Lecture 5

Last time we discussed the sparsest cut problem and its connection to metric embeddings. If we can efficiently embed any metric (i.e. l_{∞}-embeddable) into l_{1} with distortion α then we can derive an α-approximation algorithm for the sparsest cut problem. Similarly, for embedding a negative-type metric into l_{1}. In 1985, Bourgain [1] proved that any n-point metric space can be embedded into l_{2} (hence, l_{1} or any l_{p} for $p \geq 1$) with distortion $O(\log n)$. Metrics from expander graphs show this is tight. Recently, Arora, Lee and Naor [2] have shown that a distortion of $O(\sqrt{\log n} \cdot \log \log n)$ can be achieved to embed a negative type metric into Euclidean space. Today, we describe Bourgain's result and prove it.

Theorem 1. Every metric space (X, d) with $|X|=n$ can be embedded into l_{2} with distortion $O(\log n)$.

Frechet Embedding. For a given metric space (X, d), distance between a point $x \in X$ and a set $A \subset X$ is defined as:

$$
d(x, A)=\min _{y \in A} d(x, y)
$$

Also, we can check that a function $f_{A}: X \rightarrow \mathbb{R}^{1}$ which maps x to $d(x, A)$ has the following nonexpanding property. For $x \in X$, let $s \in X$ be such that $d(x, s)=d(x, A)$ and, similarly for $y \in X$, let $t \in X$ be such that $d(y, t)=d(y, A)$. Thus,

$$
\begin{aligned}
f_{A}(x)-f_{A}(y) & =d(x, A)-d(y, A) \\
& =d(x, s)-d(y, t) \\
& \leq d(x, t)-d(y, t) \leq d(x, y)
\end{aligned}
$$

The same is true if we exchange the roles of x and y and thus we have $\left|f_{A}(x)-f_{A}(y)\right| \leq d(x, y)$.
A Frechet Embedding of (X, d) is a probability distribution μ over all non-empty subsets of X. If A is a random subset distributed according to μ, then we associate, to every $x \in X$, the real-valued random variable $F_{\mu}(x)=d(x, A)$. Then, the following lemma holds.

Lemma 2. Let (X, d) be a metric space with $|X|=n$. If, for a Frechet embedding μ, we can show that

$$
\forall x, y \in X, d(x, y) \leq \gamma E_{\mu}\left|F_{\mu}(x)-F_{\mu}(y)\right|=\gamma E_{\mu}[|d(x, A)-d(y, A)|]
$$

then the mapping $G: X \rightarrow \mathbb{R}^{2^{n}}$ with $^{1} G(x)=(\sqrt{\mu(A)} d(x, A))_{A \subset X}$ embeds (X, d) into l_{2} with distortion γ.

[^0]Proof.

$$
\begin{aligned}
\forall x, y \in X,\|G(x)-G(y)\|_{2} & =\left(\sum_{A \subseteq X} \mu(A)(d(x, A)-d(y, A))^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{A \subseteq X} \mu(A) d(x, y)^{2}\right)^{\frac{1}{2}} \\
& =d(x, y) .
\end{aligned}
$$

Also, if we set $u, v \in \mathbb{R}^{2 n}$ as $u=(\sqrt{\mu(A)}|d(x, A)-d(y, A)|)_{A \subseteq X}, v=(\sqrt{\mu(A)})_{A \subseteq X}$, we can get the other direction of the inequality as follows:

$$
\begin{aligned}
\forall x, y \in X,\|G(x)-G(y)\|_{2} & =\|u\|_{2}=\|u\|_{2}\|v\|_{2} \\
& \geq\langle u, v\rangle(\text { by the Cauchy Schwartz inequality }) \\
& =\sum_{A \subseteq X} \mu(A)|d(x, A)-d(y, A)| \\
& =\mathbb{E}_{\mu}[|d(x, A)-d(y, A)|] \\
& \geq \frac{1}{\gamma} d(x, y) .
\end{aligned}
$$

Therefore, for all $x, y \in X$, we have

$$
\|G(x)-G(y)\|_{2} \leq d(x, y) \leq \gamma\|G(x)-G(y)\|_{2} .
$$

For proving the main theorem, this lemma says that it suffices to find a Frechet embedding μ which satisfies the condition of the lemma with $\gamma=O(\log n)$.

Let $K=\left\{1,2, \ldots, 2^{p}\right\}$ where $p=\left\lfloor\log _{2}(n)\right\rfloor$, and construct a Frechet embedding μ as follows:

$$
\mu(A)=\left\{\begin{array}{c}
\frac{1}{p+1} \frac{1}{(|n|)} \text { if }|A| \in K \\
0 \\
\text { if }|A| \notin K .
\end{array}\right.
$$

We need to verify the condition of Lemma 2 for every x and y. So, fix $x, y \in X$, and define some notions.

Definition 1. - $B(x, \rho)=\{y \in X, d(x, y) \leq \rho\}$

- $\bar{B}(x, \rho)=\{y \in X, d(x, y)<\rho\}$
- $\rho_{t}=\min \left\{\rho:|B(x, \rho)| \geq 2^{t} \&|B(y, \rho)| \geq 2^{t}\right\}$.

By definition, $\rho_{0}=0$. Let l be a least index with $\rho_{l} \geq \frac{d(x, y)}{4}$. Then, $B\left(x, \rho_{l-1}\right) \cap B\left(y, \rho_{l-1}\right)=\phi$ because $\rho_{l-1}<\frac{d(x, y)}{4}$. Therefore, $2^{l} \leq n$ because $n \geq\left|B\left(x, \rho_{l-1}\right) \cup B\left(y, \rho_{l-1}\right)\right|=\left|B\left(x, \rho_{l-1}\right)\right|+$ $\left|B\left(y, \rho_{l-1}\right)\right| \geq 2^{l-1}+2^{l-1}=2^{l}$. Thus $l \leq p$. Now, fix $k=2^{j}$ with $p-l \leq j \leq p-1$, and let
$t=p-j$. (Hence, $1 \leq t \leq l$.) We can assume $\left|\bar{B}\left(x, \rho_{t}\right)\right|<2^{t}$ without loss of generality, because either $\left|\bar{B}\left(x, \rho_{t}\right)\right|<2^{t}$ or $\left|\bar{B}\left(y, \rho_{t}\right)\right|<2^{t}$. Set

$$
R_{k}=\left\{A \subseteq X:|A|=k, \bar{B}\left(x, \rho_{t}\right) \cap A=\phi, B\left(y, \rho_{t-1}\right) \cap A \neq \phi\right\}
$$

Then, the following lemma holds.
Lemma 3. There exists a constant β (independent from k) such that

$$
\left|R_{k}\right| \geq \frac{\binom{n}{k}}{\beta}
$$

Proof. Let P and Q be $\bar{B}\left(x, \rho_{t}\right)$ and $B\left(y, \rho_{t-1}\right)$ respectively for convenience. P and Q are disjoint, and $|P|<2^{t},|Q| \geq 2^{t-1}$. If we generate A uniformly among sets of size $k=2^{j}$, then

$$
\begin{aligned}
& \operatorname{Pr}[A \cap P=\phi \& A \cap Q \neq \phi]=R_{k} /\binom{n}{k} \\
& =\left[\binom{n-|P|}{k}-\binom{n-|P|-|Q|}{k}\right] /\binom{n}{k} \\
& =\frac{(n-|P|)!(n-k)!}{n!(n-|P|-k)!}-\frac{(n-|P|-|Q|)!(n-k)!}{n!(n-|P|-|Q|-k)!} \\
& =\left(1-\frac{|P|}{n}\right)\left(1-\frac{|P|}{n-1}\right) \ldots\left(1-\frac{|P|}{n-k+1}\right)-\left(1-\frac{|P|+|Q|}{n}\right) \ldots\left(1-\frac{|P|+|Q|}{n-k+1}\right) \\
& \approx\left(e^{-\frac{|P|}{n}}\right)^{k}-\left(e^{-\frac{|P|+|Q|}{n}}\right)^{k}=e^{-\frac{|P| k}{n}}\left(1-e^{-\frac{|Q| k}{n}}\right) \\
& \geq e^{-\frac{2^{t} 2^{p-t}}{n}}\left(1-e^{-\frac{2^{t-1} 2^{p-t}}{n}}\right)=e^{-\frac{2^{p}}{n}}\left(1-e^{-\frac{2^{p-1}}{n}}\right) \\
& \geq e^{-1}\left(1-e^{-4}\right)=1 / \beta,
\end{aligned}
$$

where the approximation can be made formal.
Now, we are ready to prove the main theorem.
Proof. μ satisfies the condition of Lemma 2 for the following reason. If $A \subset R_{k},|d(x, A)-d(y, A)| \geq$ $\rho_{t}-\rho_{t-1}$ because $d(x, A) \geq \rho_{t}, d(y, A) \leq \rho_{t-1}$. Thus we have:

$$
\begin{aligned}
& E_{\mu}[|d(x, A)-d(y, A)|] \\
& =\sum_{A \subseteq X} \mu(A)|d(x, A)-d(y, A)| \geq \sum_{\substack{\left.j=p-l \\
k=2^{j}, t=p-j\right)}}^{p-1} \sum_{A \in R_{k}}|d(x, A)-d(y, A)| \mu(A) \\
& \geq \sum_{\substack{j=p-l \\
\left(k=2^{j}, t=p-j\right)}}^{p-1} \sum_{A \in R_{k}}^{p-1}\left(\rho_{t}-\rho_{t-1}\right) \frac{1}{p+1} \frac{1}{\binom{n}{k}}=\sum_{\substack{j=p-l \\
\left(k=2^{j}, t=p-j\right)}}^{p-1}\left|R_{k}\right|\left(\rho_{t}-\rho_{t-1}\right) \frac{1}{p+1} \frac{1}{\binom{n}{k}} \\
& \geq \sum_{\substack{\left.j=p-l \\
k=2^{j}, t=p-j\right)}}^{p-1}\left(\rho_{t}-\rho_{t-1}\right) \frac{1}{p+1} \frac{1}{\beta}(\text { by Lemma } 3)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{p+1} \frac{1}{\beta} \rho_{l} \geq \frac{1}{p+1} \frac{1}{\beta} \frac{d(x, y)}{4} \\
& \geq \frac{1}{O(\log n)} d(x, y) .
\end{aligned}
$$

Therefore, this completes the proof of the main theorem.
Remark 1. (X, d) can be embedded into any $l_{p}(p \geq 1)$ with distortion $O(\log n)$ because l_{2} can be isometrically embedded into l_{p}. Also, lemma 2 can be slightly modified to give directly the $l_{p^{-}}$ embedding with distortion γ.

Remark 2. We have embedded (X, d) into $\mathbb{R}^{2^{n}}$. The Frechet embedding μ we constructed considered all subset A of size $k=2^{j}$, and gave the same probability $\left(\frac{1}{p+1} \frac{1}{\binom{n}{k}}\right.$) to their sets. But, instead of looking all subsets A of size $k=2^{j}$, if we choose $O(\log n)$ sets among them, the second lemma $(\operatorname{Pr}[A \cap P=\phi \& A \cap Q \neq \phi] \geq$ constant) holds with high probability for each $x, y \in X$ (using a Chernoff bound [3]). Therefore, we can do the embedding efficiently (in polynomial time) into $\mathbb{R}^{O(p \log n)}=\mathbb{R}^{O\left(\log ^{2} n\right)}$ with the same distortion $O(\log n)$. This was observed by London, Linial and Rabinovich (1985).

Remark 3. The embedding we constructed gives a $O(\log n)$-approximation algorithm for the general sparsest cut problem. However, if we focus on the source and sink vertices $\left(T=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots\right.\right.$, $\left.\left(s_{k}, t_{k}\right)\right\}$) and do the embedding G as we did but restricted to T (thus considering only sets $A \subseteq T$), we can get

$$
\forall x, y \in T,\|f(x)-f(y)\|_{2} \geq \frac{d(x, y)}{O(\log k)} .
$$

Furthermore, the non-expanding property of our embedding says

$$
\forall x, y \in X,\|f(x)-f(y)\|_{2} \leq d(x, y) .
$$

These two inequality are enough to analyze that this gives $O(\log k)$-approximation algorithm because the denominator of the formulas ${ }^{2}$ of $\alpha(G)$ and $\beta(G)$ only depend on vertices in T.

References

[1] J. Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space. Israel Journal of Mathematics, 52:46-52, 1985.
[2] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. In 37th STOC, 2005.
[3] H. Chernoff. A measure of asymptotic efficiency for test of hypothesis based on the sum of observations. Annals of Mathematical Statistics, vol. 23, pp. 493-507, 1952.

[^1]
[^0]: ${ }^{1}$ The coordinate value of $G(x)$ corresponding to A in $\mathbb{R}^{2^{n}}$ is $\sqrt{\mu(A)} d(x, A)$

[^1]: ${ }^{2} \alpha(G)=\min _{(V, d), l_{\infty}-\text { embeddable } e} \frac{\sum_{e \in E} c(e) \cdot d}{} \sum_{i=1}^{k} D_{i} \cdot d\left(s_{i}, t_{i}\right) \quad$

