
Massachusetts Institute of Technology Lecturer: Michel X. Goemans

18.409: Topics in TCS: Embeddings of Finite Metric Spaces

September 18, 2006 Scribe: Kyle Burke

Lecture 4

Definition 1. Given G = (V,E), the Uniform Sparsest Cut Problem is the problem of computing

β(G) = min
∅6=S⊂V

|δ(S, V \ S)|
|S| |V \ S|

where δ(A,B) = {(u, v) ∈ E|u ∈ A, v ∈ B}.

Remark 1. We are often interested not only in the value β, but also in the argument, S of the
equation.

Finding the Sparsest Cut is an NP-hard problem, but is also related to expansion. Recall:

φ(G) = min
S⊂V,|S|≤|V |/2

|δ(S, V \ S)|
|S| .

Thus, φ(G)
n ≤ β(G) ≤ 2φ(G)

n .
So, if we can find an approximate solution for the sparsest cut problem, we can also find an

approximation for expansion. For example, if we have a family of r-regular expanders, then we
know that β(G) = Θ(1).

Before we introduce the non-uniform version of the sparsest cut problem, we define the concur-
rent multicommodity flow problem.

Definition 2. The Concurrent Multi-Commodity Flow Problem: We are given G = (V,E, c)
where c : E → R

+ and k “commodities” such that ∀i ∈ [k], we have source/destination pairs
(si, ti) ∈ V × V and demand Di. The goal is to maximize α such that ∀i we can simultaneously
send αDi units between si and ti with respect to the capacities c. Let α(G) denote the maximum
such value.

Example: Using the complete bipartite graph K2,3, we set k = 4 and set ∀e : c(e) = 1 and
∀i ∈ [4] : Di = 1. We set our sources and sinks as shown in Figure 1. For this example, we see a
valid concurrent flow in Figure 2 with α = 3/4.

In our example, each path between source and destination for any commodity has length 2, so
αDi uses 2α units of capacity. As we have 4 units of demand and a total capacity of 6 in the graph,
we see that 8α ≤ 6 ⇒ α ≤ 3

4 . Thus, for our instance, α(G) = 3
4 .

To get an upper bound on α(G), we can look at every cut and the requirement through this
cut. This leads to the following (non-uniform) Sparsest Cut problem:

Definition 3. Let

β(G) = min
S

∑

e∈δ(S,V \S) c(e)
∑

si,ti:si∈S XOR ti∈S Di
.

Observation 1. It follows that α(G) ≤ β(G) since in the cut δ(S, V \S) we would need
∑

si,ti:si∈S XOR ti∈S Di

if we were to fully satisfy the demands. In our example, α(G) = 3
4 < β(G) = 1.

1

Figure 1: The complete bipartite graph with sizes 2 and 3.

Observation 2. For another example, we look again at constant-degree expanders. From before
we saw that the expansion φ(G) is constant, and thus β(G) ≥ φ(G)/n = Ω(1/n).

In order to calculate α, we note that in an expander graph,
∑

e∈E c(e) = rn
2 = Θ(n) and for

most si, ti pairs, the path length between them will be Ω(log n). So, α(G) = Θ(n)
Ω(n2)Ω(log n)

= O(1
n log n).

Therefore, β(G)
α(G) = Θ(log n).

Remark 2. In some cases, α(G) = β(G). The first is simple: k = 1. Equality follows directly
from the equivalence of Max-Flow and Min-Cut. T.C. Hu proved that the two are also equal when
k = 2 in 1963.

Now, we relate these values to embeddings and their distortions. We will first derive two very
similar looking expressions for β(G) and α(G).

Lemma 1. β(G) = min
(V,d) l1−embeddable

∑

e∈E c(e) · d(e)
∑

i∈[k] Did(si, ti)
.

Proof. Use the cut metric induced by S: d(u, v) = 1 ⇐⇒ u ∈ S XOR v ∈ S. Then

β(G) = min
cut metrics d

∑

e∈E c(e) · d(e)
∑

i Did(si, ti)
= min

d∈CUTn

∑

e∈E c(e) · d(e)
∑

i Did(si, ti)
.

The last equality follows from the fact that CUTn is precisely the cone of all the cut metrics and
that β(G) is the ratio of two linear functions. More precisely, if we let ai and bi be the numerator

and denominator for cut i, we obtain mini

{

ai

bi

}

when we optimize over the cuts while we get

min
λi≥0 ∀i

∑

i λiai
∑

i λibi

when we optimize over CUTn. The two quantities are equal for all choices of ai, bi.
Recall from Lecture 1 (see Lemma 4 there) that CUTn is exactly the set of all l1-embeddable

(semi)-metrics, and this completes the proof of the lemma.

2

Figure 2: A solution providing as much concurrent flow as possible.

Lemma 2. α(G) = min
(V,d) l∞-embeddable

∑

e∈E c(e) · d(e)
∑

i Did(si, ti)
.

Proof. Formulate α(G) as a linear program. We will do this in a seemingly straightforward and
stupid way. For all i, we enumerate all paths between si and ti. So, Pij is the jth such path between
si and ti and xij is the amount of flow on Pij . Then,

α(G) = max α

s.t.

αDi −
∑

j

xij ≤ 0 i = 1, · · · , k (1)

k
∑

i=1

∑

j:e∈Pij

xij ≤ c(e) e ∈ E (2)

α ≥ 0

xij ≥ 0 ∀i, j

By strong duality, we know that α(G) also equals to (using dual variables hi for constraints (1)
and le for constraints (2)):

3

α(G) = min
∑

e∈E

c(e)

s.t.
∑

i

Dihi ≥ 1 (3)

∑

e∈Pij

le − hi ≥ 0 ∀i, j (4)

hi ≥ 0 ∀i

le ≥ 0 ∀e

Observe that we can assume that (3) is an equality (by decreasing some of the hi’s without violating
any other constraint), and similarly that for every i, hi equals the shortest path length with respect
to le between si and ti (i.e. for every i, there exists j with (4) an equality).

Thus, from the optimum solution l, h of the above dual program, we can consruct the shortest
path metric d corresponding to the lengths le, and we have that

α(G) =

∑

e∈E c(e) · d(e)
∑

i Did(si, ti)
.

Vice versa, if we have an l∞=embeddable metric d which minimizes
P

e∈E c(e)·d(e)
P

i Did(si,ti)
, without loss of

generality (without increasing the ratio), we can assume that this metric is the shortest path metric
corresponding to de for e ∈ E (i.e. the distance separating the endpoins of a non-edge is indeed
given by the shortest path). Thus, it leads to a feasible solution of the above dual program and
this proves equality and completes the proof.

Linial, London and Rabinovich, ’95 and Aumann and Rabani ’95 proposed to solve the linear
program to get the value α and the l∞-embeddable metric d that optimizes it. Now, embed d
into the l1=metric l with distortion γ (with γ chosen as small as possible); thus we have that
l(u, v) ≤ d(u, v) ≤ γl(u, v) for all u, v. Then

β(G) ≤
∑

c(e)l(e)
∑

Dil(si, ti)
≤ γ

∑

c(e)d(e)

Did(si, ti)
= γα(G),

showing that β(G)
α(G) ≤ γ. In addition, the l1-embeddable metric l can be decomposed into at most

(n
2

)

cut metrics (see Lemma 4 from Lecture 1), and the best of these gives a cut S with

∑

e∈δ(S,V \S) c(e)
∑

si,ti:si∈S XOR ti∈S Di
≤ γα(G) ≤ γβ(G),

and therefore approximates the sparsest cut within a ratio of γ.
What remains is to establish how small γ can be. In general, Bourgain proved that γ can be

O(log n) for any metric. (We will see a proof of this in the next lecture.) This implies that for all

G, k, c,D : β(G)
α(G) ≤ O(log n). This logarithmic gap between sparsest cut and concurrent flow was

4

already known for the uniform case; this was established (without embeddings of metric spaces) by
Leighton and Rao ’88.

If the graph G is planar, Rao has shown that for any planar graph metric d, we have c1(d) ≤
c2(d) = O(

√
log n). Thus for every planar graph independently of the number of commodities), we

have that β(G)
α(G) = O(

√
log n).

Last time we noted that a regular expander graph metric d satisfies c2(d) = Ω(log n). Today we

saw that β(G)
α(G) = Ω(log n) for expander graphs, implying that c1(d) = Θ(log n). Thus, Bourgain’s

result cannot be improved for general graphs.
We have two closing remarks.

Remark 3. The embedding of any metric into l1 with distortion O(log n) can done efficiently. This
implies that the Linial-London-Rabinovich result is algorithmic.

Remark 4. : Suppose we don’t care about concurrent flow, and just finding an approximation to
the sparsest cut. Instead of optimizing over l∞ metrics (which was convenient wince we could use
linear programming), we can try instead to optimize over a more restrictive class of metrics which
nevertheless includes all cut metrics (so that the resulting bound is a lower bound on β(G)).

One class for which this has been successful is the class of negative type metrics. A metric (X, d)
is a it negative-type metric if (X,

√
d) is iso-metrically embeddable into l2.

This only begs more questions. One question is: can we optimize in polynomial time over
negative-type metrics? It turns out that we can—at least, approximately—using Semi-Definite
Programming. The clear follow up to this is: what distortion do we need to embed negative type
metrics into l1? According to Arora, Lee and Naor (2005), that distortion is O(

√
log n log log n).

5

