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Lecture 3

Recall that last lecture we discussed a theorem that provides a template which essentially all
distortion lower bounds of embeddings of a finite metric space (X, δ) into `2 must follow. The
proof we discussed actually is easily extended to give a more general theorem concerning distortion
of embeddings into `p. Furthermore, a point we did not discuss before is if one is to invoke the
theorem and show that the inequalities hold, showing that they hold for dimension d = 1 suffices to
show that they hold for all d > 1 as well. This is because by taking the pth power of the norm, it
suffices for the inequality to hold dimension by dimension for the original inequality to hold overall.
The general theorem is stated below.

Theorem 1. A finite metric space (X, δ) has no embedding of distortion at most D into `p (p ≥ 1)
iff ∃η, ϕ :

(

X
2

)

→ [0,∞) such that for all sets V = {vi|vi ∈ R
d}i∈X the following two inequalities

hold:

∑

(i,j)∈(V

2
)

η(i, j)‖vi − vj‖p
p ≥

∑

(i,j)∈(V

2
)

ϕ(i, j)‖vi − vj‖p
p (1)

∑

(i,j)∈(V

2
)

η(i, j)δp(i, j)Dp <
∑

(i,j)∈(V

2
)

ϕ(i, j)δp(i, j) (2)

Furthermore, showing that the inequalities hold for embeddings into `1
p implies that they hold for

embeddings into `p.

In this lecture we give two examples of how to use Theorem 1 to provide distortion lower bounds.
First, we cover the existence a family of planar graph metrics which require Ω(

√
log n) distortion

to be embedded into `2. We then cover an Ω(log n) distortion bound for the embeddability of
expander graphs into `2.

Planar Graph Metrics. For G = (V,E) a planar graph with |V | = n, we define the met-
ric space (V, δ) to be such that δ(u, v) is the shortest path distance from u to v. The family of
planar graph metrics is the set of all such metric spaces. Recall that cp(δ) denotes the minimum
distortion required to embed the metric space δ into `p. Rao showed that for any planar graph
metric, c2(δ) = O(

√
log n) [1]. It immediately follows that c1(δ) = O(

√
log n) since `2 embeds

isometrically into `1, but improving this bound is an open problem. With the current state of
knowledge, it is conceivable that c1(δ) = O(1) for all planar graph metrics δ.

We now review a result of Newman and Rabinovich [2] showing that Rao’s upper bound is tight
by exhibiting a family of planar graphs with c2(δ) = Ω(

√
log n).

Definition 1. The family D = {Dm}∞m=1 of diamond graphs is the set of graphs where D1 is
the cycle on 4 vertices, and Dm is obtained from Dm−1 by replacing every edge (u, v) of Dm−1 with
four new edges (u, x), (x, v), (u, y), and (y, v), where x and y are new vertices.

We use the following notation for discussing the diamond graphs. The set Vm (resp. Em) is
the set of vertices (resp. edges) of Dm. The set Fm ⊂

(

V
2

)

denotes the anti-edges of Dm, which
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Figure 1: On the left hand side is D1, the 4-cycle. The graph on the right hand side is D2, the
second diamond graph. Solid lines represent edges, and dashed lines represent anti-edges.

we define inductively. The anti-edges of D1 are the diagonals of the 4-cycle. The anti-edges of Dm

include all the anti-edges of Dm−1, in addition to the diagonals between newly introduced vertices
in the same 4-cycle when replacing edges of Dm−1. The first two diamond graphs, along with their
anti-edges, are illustrated in Figure 1.

Theorem 2. Any embedding of the diamond graph Dm into `2 requires distortion at least
√

m + 1 =
Ω(
√

log |Vm|).

Proof. Define

η(i, j) =

{

1 if (i, j) ∈ Em,

0 otherwise.

We first prove by induction that inequality (1) of Theorem 1 holds (we can assume that the
embedding is into `1

p). The case m = 1 amounts to proving the inequality (a− b)2 + (b− c)2 + (c−
d)2 + (d− a)2 ≥ (a− c)2 + (b − d)2 for all a, b, c, d ∈ R. This was shown in a previous lecture when
discussing the distortion of embedding the 4-cycle and hamming cube graphs into `2.

Now we proceed with the inductive step. If vertex i is mapped to vi ∈ R, then we have that

∑

(i,j)∈Em−1

(vi − vj)
2 ≥

∑

(i,j)∈Fm−1

(vi − vj)
2

Adding
∑

(i,j)∈Fm−Fm−1
(vi − vj)

2 to both sides, we have:

∑

(i,j)∈Fm−Fm−1

(vi − vj)
2 +

∑

(i,j)∈Em−1

(vi − vj)
2 ≥

∑

(i,j)∈Fm

(vi − vj)
2

Notice that if we associate sets of terms in the sum on the left hand side with each new 4-cycle
formed by the addition of vertices going from Dm−1 to Dm, we can apply the argument that the
sum of squares of edge lengths is at least the sum of squares of the diagonals for each set of terms.
Thus, the left hand side is at most

∑

(i,j)∈Em
(vi − vj)

2, as desired.
We now show inequality (2). The left hand side equals

∑

(i,j)∈Em

δ2(i, j)D2 = |Em|D2 = 4mD2
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The right hand side equals
∑

(i,j)∈Fm
δ2(i, j). Notice that there is an anti-edge corresponding to

each edge in Dk for k < m, plus an additional two anti-edges that remain from D1. An anti-edge
formed in Dk connects two vertices that are at distance 2(m−k) in Dm. The right hand side thus
equals

2 · (2m)2 +

m−1
∑

k=1

4k · 2(m−k)2 = (m + 1)4m.

This shows that D ≥
√

m + 1 = Ω(
√

log |Vm|).

Expander Graph Metrics. Bourgain showed that any finite metric space can be embedded into
`2 with only O(log n) distortion [4]; this will be shown in a forthcoming lecture. Linial, London,
and Rabinovich showed that this bound is actually tight [3] by demonstrating that embedding the
shortest path metric of an expander graph into `2 requires Ω(log n) distortion.

Definition 2. For a graph G = (V,E), the conductance (also called edge expansion) Φ(G) is
defined as

Φ(G) = min
1≤|S|≤n

2

|δ(S, V \ S)|
|S|

where δ(U, V ) is the set of edges {(u, v) ∈ E|u ∈ U, v ∈ V }.

Definition 3. A family G = {Gi}∞i=1 of graphs is said to be a family of r-regular expander graphs
when

1. limi→∞ |V (Gi)| = ∞

2. ∃c > 0 such that ∀i Φ(Gi) ≥ c

Expanders can be most easily shown to exist by using the probabilistic method, though explicit
constructions do exist. For the purposes of this lecture, we take their existence for granted.

Definition 4. The adjacency matrix of G, AG is an n × n matrix where entry i, j is 1 if
(i, j) ∈ V (G), and is 0 otherwise. The Laplacian LG is an n × n matrix defined as:

(LG)i,j =











−1 if i 6= j and (i, j) ∈ E(G),

dG(vi) if i = j

0 otherwise.

Here dG(v) is the degree of v.

Note that for an r-regular graph G, Lg = rI − A. Thus, eigenvalues λ of AG are in correspon-
dence with eigenvalues µ of LG by the mapping λi 7→ r − µi. We label the n eigenvalues of LG so
that µi ≤ µi+1 for i = 1, 2, . . . , n − 1. Notice that the vector

∑n
i=1 ei is an eigenvector of LG with

eigenvalue 0, so one of the µi is 0. Also, for any x we have that xT LGx =
∑

(u,v)∈E(G)(xu − xv)
2.

Therefore LG is positive semidefinite, and so µ1 = 0.
We will use the following Lemma without proof:
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Lemma 3. For any graph G:

2Φ(G) ≥ µ2(G) ≥ Φ2(G)

4r
The relevance of Lemma 3 to us is that µ2(G) = Θ(1) for G an expander.

Theorem 4. For a graph G an expander, the shortest-path metric δ for G has c2(δ) = Ω(log n).

Proof. We will again use an η, ϕ argument. Observe that for any embedding x1, x2 . . . , xn into
`1
2, we can assume

∑

i xi = 0 without affecting the distortion. This can be achieved by a simple
translation. Now, let v1, v2, . . . , vn be the unit eigenvectors for LG. The vi are orthonormal and
v1 = (1/

√
n, 1/

√
n, . . . , 1/

√
n). Thus, any x satisfying

∑

i xi = 0 is orthogonal to v1 and we can
write x =

∑n
i=2 αivi. Now we prove a useful inequality:

xT LGx =

n
∑

i=2

xT (αiLGvi) =

n
∑

i=2

αiµix
T vi =

n
∑

i=2

α2
i µi ≥ µ2

n
∑

i=1

α2
i = µ2‖x‖2. (3)

Note in the inequality that α1 = 0. We will define:

η(i, j) =

{

1 if (i, j) ∈ E(G),

0 otherwise.

Now calculating the left-hand side of (1) from Theorem 1:

∑

(i,j)∈(V

2
)

η(i, j)(xi − xj)
2 =

∑

(i,j)∈E(G)

(xi − xj)
2 =

∑

i∈V (G)

rx2
i − 2

∑

(i,j)∈E(G)

xixj = xT LGx.

Now we define ϕ(i, j) = µ2(G)/n for all (i, j) ∈
(

V
2

)

. Then we have:

∑

(i,j)∈(V

2
)

ϕ(i, j)(xi − xj)
2 =

µ2(G)

n



(n − 1)
n
∑

i=1

x2
i − 2

∑

i<j

xixj





=
µ2(G)

n



n
n
∑

i=1

x2
i −

(

n
∑

i=1

xi

)2




= µ2(G)‖x‖.
Applying inequality 3 shows that inequality (1) holds. For the second part,

∑

(i,j)∈E(G) δ2(i, j) =
|E| = nr/2. Now, notice that for any r-regular graph the number of vertices at distance o(log r n)
from any vertex u is o(n). Thus, E[δ2(i, j)] ≥ α log2

r n for some positive constant α. Thus for
inequality (2) we have:

∑

(i,j)∈(V

2
)

µ2(G)

n
δ2(i, j) ≥ α

µ2(G)

n
log2

r n

(

n

2

)

.

We thus need
nr

2
D2 <

µ2(G)

n
log2

r n

(

n

2

)

to make inequality (2) hold. This implies that D = Ω(
√

µ2(G)/r log n) = Ω(log n), as r = O(1),
and µ2(G) = O(1) by Lemma 3.
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