Massachusetts Institute of TechnologyLecturer: Michel X. Goemans18.409: Topics in TCS: Embeddings of Finite Metric SpacesNovember 22, 2006Michel Goemans and Michael Manapat

Lecture 20

The aim of this lecture is to outline the gluing of embeddings at different scales described in James Lee's paper *Distance scales, embeddings, and metrics of negative type* from SODA 2005 [1].

We begin by recalling some definitions. A map $f: X \to Y$ of metric spaces (X, d_X) and (Y, d_Y) is said to be C-Lipschitz if

$$d_Y(f(x), f(y)) \le C d_X(x, y)$$

for all $x, y \in X$. The infimum of all C such that f is C-Lipschitz is denoted by $||f||_{\text{Lip}}$. If f is bijective and $||f^{-1}||_{\text{Lip}}$ is finite, we say that f is bi-Lipschitz. The distortion of a bi-Lipschitz map is defined to be $||f||_{\text{Lip}} ||f^{-1}||_{\text{Lip}}$. If $f : X \to Y$ is a 1-Lipschitz map such that for all $x, y \in X$ satisfying $\tau \leq d_X(x, y) \leq 2\tau$ we have

$$d_Y(f(x), f(y)) \ge \frac{\tau}{K}$$

then we say that f is a scale- τ embedding with deficiency K. Finally, recall that $c_2(X)$ is the minimum distortion required to embed a metric space X in L_2 .

The goal of this lecture is to prove the following "gluing lemma":

Lemma 1. Suppose that for each $m \in \mathbb{Z}$ there exists a scale- 2^m embedding $\phi_m : X \to L_2$ with deficiency K. Then $c_2(X) = O(\sqrt{K \log n})$.

For planar graphs, we obtain embeddings with deficiency K = O(1), so the gluing lemma tells us that we can embed a planar graph into L_2 with distortion $O(\sqrt{\log n})$, a result we obtained before by other means. We will prove this using a series of technical lemmas, some of whose proofs will be deferred.

Lemma 2. There exists a map $M: X \to L_2$ such that

- 1. $||M||_{\text{Lip}} = O(\sqrt{\log n})$
- 2. For all $m \in \mathbb{Z}$ and for all $x, y \in X$ satisfying $2^m \le d(x, y) \le 2^{m+1}$ and $\log \frac{|B(x, 2^{m-1})|}{|B(x, 2^{m-2})|} < 1$, we have

$$||M(x) - M(y)|| \ge \Omega(1)d(x, y).$$

Lemma 3. For every $m \in \mathbb{Z}$, there exists a map $f_m : X \to L_2$ with $||f_m||_{\text{Lip}} \leq 1$ and such that for all $x, y \in X$ satisfying $2^m \leq d(x, y) \leq 2^{m+1}$,

$$||f_m(x) - f_m(y)|| \ge \frac{d(x, y)}{1 + O\left(\log\frac{|B(x, 2^{m+1})|}{|B(x, 2^{m-3})|}\right)}$$

Lemmas 2 and 3 will be proved in the next lecture; Lemma 2 follows from a variant of the analysis of Bourgain's embedding into Hilbert space with logarithmic distortion while Lemma 3 follows from an embedding somewhat similar to Rao's embedding for planar graph metrics.

In the following, $L_2^{\leq D}$ will denote the space with the same underlying point set as L_2 but with norm $||x|| = \min\{||x||_2, D\}$.

Lemma 4. There exists a map $G: L_2^{\leq D} \to L_2$ with distortion 2 such that for every $x \in L_2$, $||G(x)||_2 \leq 2D$. In particular,

$$\frac{1}{2}\min\{D, \|x-y\|_2\} \le \|G(x) - G(y)\|_2 \le \min\{D, \|x-y\|_2\}.$$

We will use the following notation in the sequel:

$$\rho_m(x,y) = \begin{cases} x & \text{if } |B(x,2^m)| > |B(y,2^m)| \\ y & \text{otherwise.} \end{cases}$$

The final ingredient used in the proof of lemma 1 is the following result.

Lemma 5. Given for every $m \in \mathbb{Z}$ a 1-Lipschitz map $h_m : X \to L_2$, there exists a map $H : X \to L_2$ which satisfies

- 1. $||H||_{\text{Lip}} = O(\sqrt{\log n}).$
- 2. For every $m \in \mathbb{Z}$ and every $x, y \in X$ such that $2^m \leq d(x, y) < 2^{m+1}$, we have

$$||H(x) - H(y)||_2 \ge C \sqrt{\left\lfloor \log \frac{|B(\rho_{m-3}(x,y), 2^{m+1})|}{|B(\rho_{m-3}(x,y), 2^{m-3})|}\right\rfloor} ||h_m(x) - h_m(y)||_2$$

for some constant C.

Proof. By using lemma 4, for each map $h_m: X \to L_2$, we obtain a "truncated" map $\hat{h}_m: X \to L_2$ satisfying

$$\frac{1}{2}\min\{2^m, \|h_m(x) - h_m(y)\|\} \le \|\hat{h}_m(x) - \hat{h}_m(y)\| \le \|h_m(x) - h_m(y)\|$$

and $\hat{h}_m(x) \leq 2^{m+1}$. Let $R(x,t) = \sup\{R : |B(x,R)| \leq 2^t\}$. Let $\rho : \mathbb{R} \to \mathbb{R}^+$ be any O(1)-Lipschitz map that (1) has support contained in $[2^{-4}, 2^4]$, (2) is identically 1 on $[2^{-3}, 2^3]$, and (3) is at most 1 everywhere. Define

$$\rho_{m,t}(x) = \rho\left(\frac{R(x,t)}{2^m}\right)$$

and let

$$\psi_t(x) = \bigoplus_{m \in \mathbb{Z}} \rho_{m,t}(x) \hat{h}_m(x).$$

The map H we seek will then be given by

$$H = \psi_1 \oplus \psi_2 \oplus \cdots \oplus \psi_{\lceil \log n \rceil}.$$

Since the map $x \mapsto R(x,t)$ is 1-Lipschitz (if it were not, then we could assume R(x,t) > d(x,y) + R(y,t), which easily leads to a contradiction), we have

$$|\rho_{m,t}(x) - \rho_{m,t}(y)| \le \frac{O(1)}{2^m} |R(x,t) - R(y,t)| \le O(1) \frac{d(x,y)}{2^m}$$

Now

$$\|\psi_t(x) - \psi_t(y)\|^2 = \sum_{m \in \mathbb{Z}} \|\rho_{m,t}(x)\hat{h}_m(x) - \rho_{m,t}(y)\hat{h}_m(y)\|^2$$

and we wish to bound this from above. From the definition of $\rho_{m,t}$, for fixed t there are only O(1) values $m \in \mathbb{Z}$ for which $\rho_{m,t}(x)$ or $\rho_{m,t}(y)$ is nonzero. For such m, we can write

$$\begin{aligned} \|\rho_{m,t}(x)\hat{h}_m(x) - \rho_{m,t}(y)\hat{h}_m(y)\| &\leq \|\hat{h}_m(x)\| \cdot |\rho_{m,t}(x) - \rho_{m,t}(y)| + |\rho_{m,t}(y)| \cdot \|\hat{h}_m(x) - \hat{h}_m(y)\| \\ &\leq 2^{m+1} \cdot O(1)\frac{d(x,y)}{2^m} + d(x,y) \\ &\leq O(1) \cdot d(x,y). \end{aligned}$$

After summing over t, it follows that $||H||_{\text{Lip}} = O(\sqrt{\log n})$.

Now for the opposite inequality, fix $x, y \in X$ such that $2^m \leq d(x, y) < 2^{m+1}$. Whenever $\rho_{m,t}(x) = \rho_{m,t}(y) = 1$, we have

$$\|\psi_t(x) - \psi_t(y)\| \ge \|\hat{h}_m(x) - \hat{h}_m(y)\| \ge \frac{1}{4} \|h_m(x) - h_m(y)\|.$$

We will count the number of values t among $1, 2, ..., \lceil \log n \rceil$ for which $\rho_{m,t}(x) = \rho_{m,t}(y) = 1$.

Now $\rho_{m,t}(x) = 1$ if $R(x,t) \in [2^{m-3}, 2^{m+3}]$, which occurs if $t \in [\log |B(x, 2^{m-3})|, \log |B(x, 2^{m+3})|]$, and similarly for $\rho_{m,t}(y)$. We can assume that $\rho_{m-3}(x,y) = x$, so $|B(x, 2^{m-3})| > |B(y, 2^{m-3})|$. In this case, if

$$t \in [\log |B(x, 2^{m-3})|, \log |B(x, 2^{m+1})|]$$

then $\rho_{m,t}(x) = \rho_{m,t}(y) = 1$. Hence the desired equality holds for at least

$$\left[\log\frac{|B(x,2^{m+1})|}{|B(x,2^{m-3})|}\right]$$

values of t. It follows that

$$||H(x) - H(y)||^2 \ge \frac{1}{4} \left[\log \frac{|B(\rho_{m-3}(x,y), 2^{m+1})|}{|B(\rho_{m-3}(x,y), 2^{m-3})|} \right] \cdot ||h_m(x) - h_m(y)||^2.$$

Proof of Lemma 1. Let $F: X \to L_2$ and $\Phi: X \to L_2$ be the maps obtained by applying lemma 5 to the given collection $\{\phi_m\}$ and the collection $\{f_m\}$ provided by lemma 3. Letting M denote the map of lemma 1, the final embedding will be $\Psi = F \oplus \Phi \oplus M$. We clearly have

$$\|\Psi\|_{\text{Lip}} \le \|F\|_{\text{Lip}} + \|\Phi\|_{\text{Lip}} + \|M\|_{\text{Lip}} = O(\sqrt{\log n}).$$

Now let $x, y \in X$ be fixed, so $d(x, y) \in [2^m, 2^{m+1})$ for some m; without loss of generality, we can assume $x = \rho_{m-3}(x, y)$. Let $A = \log \frac{|B(x, 2^{m+1})|}{|B(x, 2^{m-3})|}$. Then

$$\begin{split} \|\Psi(x) - \Psi(y)\|^2 &= \|F(x) - F(y)\|^2 + \|\Phi(x) - \Phi(y)\|^2 + \|M(x) - M(y)\|^2 \\ &\geq \Omega(1)d(x,y)^2 \left(\frac{\lfloor A \rfloor}{(1+A)^2} + \frac{\lfloor A \rfloor}{K^2} + 1_{\{A < 1\}}\right) \\ &\geq \Omega(1)\frac{d(x,y)^2}{K}, \end{split}$$

by looking at the contributions of the first 2 terms based on whether $A \leq K$ or not. We conclude the distortion of Ψ is $O(\sqrt{K \log n})$.

References

and "Distance scales, embeddings, [1] James R. Lee, metrics of negtype", ative Proceedings of SODA 2005.Full version available at http://www.cs.washington.edu/homes/jrl/papers/soda05-full.pdf.