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Lecture 10

We first provide a clarification of the discussion in Lectures 8 and 9 for the case of weighted
graphs, and then discuss the sparsest cut problem and negative type metrics.

1 Clarification on lectures 8 and 9

Recall that in the previous lectures we considered a planar graph metric (X, d) and, for any ∆,
gave an embedding f∆ : X → ℓ2 such that

∆

32
≤ ‖f∆(u) − f∆(v)‖ ≤ d(u, v), for 34∆ ≤ d(u, v) ≤ 68∆. (1)

In the unweighted case, we subdivided the edges to make sure that all original distances were at
least 4 × 34 = 136, took1 ∆ = 4, 8, . . . , 2k with k = ⌈log diam(G)⌉ + 1, let the embedding be given

by f : x → (f4(x), f8(x), . . . , f2k(x)), and showed that ‖f(u) − f(v)‖ ≥ d(u,v)
2176 . On the other hand,

diam(G) < n (recall that n is the number of vertices in the original graph), hence

‖f(u) − f(v)‖ =

√

∑

∆=4,8,...,2k

‖f∆(u) − f∆(v)‖2 ≤
√

log diam(G) · d(u, v) <
√

log n · d(u, v). (2)

This implies that f is an embedding into ℓ2 with distortion O(
√

log n). However, this does not
work for weighted graphs, since diam(G) is no longer bounded by n.

We next show how to proceed in the weighted case. Let each edge e have a weight w(e), and
consider ∆ = 4, . . . , 2k. For each ∆, we introduce a graph G∆ obtained by contracting all edges
with w(e) ≤ ∆

n . Note that
0 ≤ dG(u, v) − dG∆

(u, v) ≤ ∆, (3)

and that dG∆
is still a planar graph metric. We then insert w(e) − 1 surrogate nodes on each edge

e to obtain an unweighted graph. For each ∆, let f∆ be a mapping from G∆ satisfying property
(1), and let f : x → (f4(x), f8(x), . . . , f2k(x)).

Observation 1. If dG(u, v) ≤ ∆
n , then all edges on the shortest path from u to v in G have been

contracted in G∆. Hence f∆(u) = f∆(v).

Observation 2. Assuming the notation of the previous lecture, with u ∈ si and v ∈ sj,

‖f∆(u) − f∆(v)‖2 ≤
∑

A,σ

γ(A,σ)(σ(si)dG∆
(u,A) − σ(sj)dG∆

(v,A))2

≤
∑

A,σ

γ(A,σ)(dG∆
(u,A) + dG∆

(v,A))2
(∗)

≤
∑

A,σ

γ(A,σ)(2∆)2 = (2∆)2. (4)

Here, (∗) is due to the construction of A by “slicing” the vertex set of G∆ in components of “width”
at most ∆.

1The reason to start at ∆ = 4 is because the probabilistic analysis required ∆ to be a multiple of 4.
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We now upper bound the squared distance for u, v ∈ V (G):

‖f(u) − f(v)‖2 =
∑

∆=4,...,2k

‖f∆(u) − f∆(v)‖2 (∗)
=

∑

∆=4,...,2k

∆≤ndG(u,v)

‖f∆(u) − f∆(v)‖2

(∗∗)

≤
∑

∆=4,...,2k

∆≤ndG(u,v)

min{d2
G(u, v), (2∆)2}

(∗∗∗)

≤ O(log(n))d2
G(u, v). (5)

Here, (∗) is due to Observation 1, and (∗∗) is due to Observation 2 and f∆ being non-expanding. To

see (∗ ∗ ∗) note that when d2
G(u, v) is smaller, we have ∆2

n2 ≤ d2
G(u, v) ≤ (2∆)2, which can occur for

at most O(log n) terms. The terms when (2∆)2 is smaller can be viewed as a decreasing geometric
progression with the base term at most d2

G(u, v).

Observation 3. If dG(u, v) ≥ 35∆, then dG∆
(u, v) ≥ 34∆, hence ‖f∆(u) − f∆(v)‖ ≥ ∆

32 .

To conclude, we find a lower bound, also for u, v ∈ V (G):

‖f(u) − f(v)‖2 ≥
∑

∆=4,...,2k

‖f∆(u) − f∆(v)‖2 ≥
∑

∆=4,...,2k

dG(u,v)≥35∆

‖f∆(u) − f∆(v)‖2

≥
∑

∆=4,...,2k

dG(u,v)≥35∆

(

∆

32

)2

≥
(

dG(u, v)

2 · 35 · 32

)2

. (6)

The last inequality holds because we can assume that dG(u, v) ≥ 35 for all u and v, and for the
last term in the summation we will have 35∆ ≤ dG(u, v) ≤ 2 · 35∆. Taking square roots of both
bounds, we obtain that f is an embedding into ℓ2 with distortion O(

√
log n).

A more general technique to combine embeddings for different scales (different values of ∆) was
obtained by Lee [Lee05].

2 Sparsest cut and negative type metrics

Recall the uniform sparsest cut problem:

Given a graph G, find β(G) = min
∅6=S(V (G)

δ(S, S)

|S| · |S|
. (7)

Leighton and Rao [LR88] obtained an O(log n)-approximation algorithm for this problem. Linial,
London, and Rabinovich [LLR95] obtained an O(log n)-approximation algorithm for the non-
uniform version of the problem (with general demands). In the remainder of this lecture, we
focus on the uniform problem.

As before, let α(G) be the largest fraction of multicommodity flow that can be sent given unit
capacities on edges and one unit-demand commodity between each pair of vertices. Remember that

β(G) = min
(V,d) ℓ1-embeddable

∑

(i,j)∈E d(i, j)
∑

i<j d(i, j)
, (8)
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and that

α(G) = min
(V,d) ℓ∞-embeddable

∑

(i,j)∈E d(i, j)
∑

i<j d(i, j)
. (9)

For more details on these definitions and properties, see Lecture 4.
The quantity α(G) can be computed by linear programming, which suggests that we can ap-

proximate β(G) by taking the corresponding ℓ∞ embedding d, and embedding it into ℓ1 through
Bourgain’s result. This yields

c

log n
d(u, v) ≤ l(u, v) ≤ d(u, v), (10)

and thus α(G) ≤ β(G) ≤ O(log n)α(G).
We would like to to obtain a better approximation for β(G) by considering a class of metrics

that would yield a tighter bound than ℓ∞ but would still allow us to optimize in polynomial time.
For this purpose, we consider negative-type metrics.

Definition 1. A finite metric (X, d) is of negative type if (X,
√

d) is ℓ2-embeddable.

For background on negative-type metrics, see [Sch38a, Sch38b]. Note that taking d(u, v) =
‖u − v‖2

2 does not necessarily yield a metric. For three points u, v,w the inequality

‖u − v‖2
2 + ‖v − w‖2

2 ≥ ‖v − w‖2
2 (11)

holds if and only if ∠uvw ≤ π
2 . Hence, taking X ⊂ R

k with all angles non-obtuse and d(u, v) =
‖u − v‖2

2 for any u, v ∈ X yields a negative-type metric. An example of a set with all angles
non-obtuse is X = {0, 1}k , the set of vertices of the unit hypercube.

The following lemma was conjectured by Erdös in 1948 and proven by Danzer and Grünbaum
[DG62].

Lemma 1. If X ⊂ R
k and no three points in X form an obtuse angle, then |X| ≤ 2k.

An elegant proof of this lemma is presented in [AZ04], but the reader is encouraged to prove
it independently first (hint: try a volume argument). Here is another characterization of negative
type metrics.

Lemma 2. A finite metric (X, d) is of negative type if and only if for any set {bi ∈ R : i ∈ X}
with

∑

i∈X bi = 0 we have
∑

i∈X

∑

j∈X

bibjd(i, j) ≤ 0. (12)

Proof sketch of ⇐. Use the fact that (X,
√

d) is ℓ2-embeddable to obtain that (d(i, n) + d(j, n) −
d(i, j))1≤i,j≤n−1 � 0 (see Lecture 2) and pre and post-multiply to obtain the characterization.

Note that if (X, d) is a negative-type metric and α > 0, then (X,αd) is also of negative type.

Lemma 3. If (X, d1) and (X, d2) are of negative type, then so is (X, d1 + d2).

Proof sketch. Take the ℓ2 embeddings of (X,
√

d1) and (X,
√

d2) and combine the dimensions.
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This implies that negative-type metrics form a (convex) cone. On the other hand, recall that
ℓ1 metrics also form a cone with cut metrics as its extreme rays.

Lemma 4. Cut metrics are of negative type.

Proof. Let the cut metric be (X, d) and the cut defining it given by S ⊂ X. For any bi-s, we have

∑

i∈X

∑

j∈X

bibjd(i, j) = 2
∑

i∈S

∑

j∈S

bibj ≤ 0, (13)

because
∑

i∈S bi +
∑

i∈S bi = 0 implies one of the sums is less than or equal to zero, and the other
is greater than or equal to zero.

Therefore, the cone of ℓ1 metrics is contained in the cone of negative-type metrics. Note that
the negative-type metric induced by squared l2 distance in the hypercube is ℓ1 embeddable. There
are, however, negative type metrics which are not l1-embeddable. Here is one such construction
from lattices.

Let

v1, . . . , vk ∈ R
k and L =

{

k
∑

i=1

λivi : λi ∈ Z

}

. (14)

Consider a sphere B(a, r) such that its interior Ḃ(a, r) = {x : ‖x − a‖ < r} does not intersect the
lattice (a so-called empty sphere), and let X = B(a, r)∩L. Note that no three points in X form an
obtuse angle. Indeed, if ∠uvw > π

2 , then u − v + w is in both the lattice and in L ∩ B̂(a, r), which
is a contradiction. For some lattices (and some empty spheres), the squared ℓ2 metric induced by
X is not ℓ1 embeddable.

Additional examples of negative type metrics not embeddable in ℓ1 include shortest path metrics
on some graphs (e.g. K9 minus two adjacent edges). To learn more about negative type metrics,
see the book by Deza and Laurent [DL97].

3 Computing γ(G) and a lower bound

Let

γ(G) = min
(X,d) is of neg. type

∑

(i,j)∈E d(i, j)
∑

i<j d(i, j)
. (15)

Since the cone of ℓ1 metrics is contained in the cone of negative type metrics, β(G) ≥ γ(G).
Next, we show how to compute γ(G) using semidefinite programming. Recall that for a sym-

metric n × n matrix X, the following are equivalent:

1. X is positive semidefinite, denoted X � 0.

2. The eigenvalues λi are nonnegative.

3. aT Xa ≥ 0 for any a ∈ R
n.
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A semidefinite program has the form

min C ◦ X, (16a)

s.t. Ai ◦ X = bi, i = 1, p, (16b)

X � 0. (16c)

Here C and Ai are symmetric n × n matrices, and A ◦ B =
∑n

i=1

∑n
j=1 aijbij = tr(AT B) is the

Frobenius product. (Although this is not specified in the constraints, X can be assumed symmetric
due A and B being symmetric. Also note that linear programming can be obtained as a special
case by restricting non-diagonal entries of X to be zero.)

Since negative type metrics form a cone, we can normalize by
∑

i<j d(i, j) = 1. The following
semidefinite program yields γ(G):

min
∑

(i,j)∈E

d(i, j), (17a)

s.t.
∑

i<j

d(i, j) = 1, (17b)

d(i, j) + d(j, k) ≥ d(i, k), i, j, k ∈ V (G), (17c)

(dij + djn − dij)1≤i,j≤n−1 � 0. (17d)

Since we can compute ǫ-approximate and ǫ-feasible solutions to semidefinite programs in time
polynomial in the input data size and log 1

ǫ , the same is true for γ(G).
We conclude by comparing γ(G) to the classical eignevalue bound for the uniform sparsest cut

problem. Since

γ(G) = min
v1,...,vn∈Rn

all angles ≤π/2

∑

(i,j)∈E ‖vi − vj‖2

∑

i<j ‖vi − vj‖2
, (18)

a lower bound is given by

δ(G) = min
v1,...,vn∈Rn

∑

(i,j)∈E ‖vi − vj‖2

∑

i<j ‖vi − vj‖2

(∗)
= min

x1,...,xn∈R
x1+···+xn=0

∑

(i,j)∈E |xi − xj|2
∑

i<j |xi − xj|2

= min
x∈Rn, xte=0

xT LGx

nxT x
=

1

n
µ2(G). (19)

Here (∗) holds because we can separate coordinate-by-coordinate and shift points. As usual, LG

denotes the Laplacian with

(LG)ij =











−1, (i, j) ∈ E,

degG(i), i = j,

0, otherwise.

(20)

This lower bound is good for an expander graph, but in general can be arbitrarily bad. For example,
consider the cycle Cn:

β(Cn) =
2

(

n
2

)2 =
8

n2
, (21)

µ2(LCn
) = 2 − 2 cos

(

2π

n

)

= Θ

(

1

n2

)

. (22)
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Therefore, δ(Cn) = Θ
(

1
n3

)

.
γ(G) is thus no worse than both the linear programming bound α(G) and the eigenvalue bound

δ(G). And these two bounds appear to have bad examples which appear to be good for the other
one, and this intuitively explains why γ(G) will turn out to be better in the worst case.
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