## Lecture 10

We first provide a clarification of the discussion in Lectures 8 and 9 for the case of weighted graphs, and then discuss the sparsest cut problem and negative type metrics.

## 1 Clarification on lectures 8 and 9

Recall that in the previous lectures we considered a planar graph metric $(X, d)$ and, for any $\Delta$, gave an embedding $f_{\Delta}: X \rightarrow \ell_{2}$ such that

$$
\begin{equation*}
\frac{\Delta}{32} \leq\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\| \leq d(u, v), \quad \text { for } \quad 34 \Delta \leq d(u, v) \leq 68 \Delta \tag{1}
\end{equation*}
$$

In the unweighted case, we subdivided the edges to make sure that all original distances were at least $4 \times 34=136$, took $^{1} \Delta=4,8, \ldots, 2^{k}$ with $k=\lceil\log \operatorname{diam}(G)\rceil+1$, let the embedding be given by $f: x \rightarrow\left(f_{4}(x), f_{8}(x), \ldots, f_{2^{k}}(x)\right)$, and showed that $\|f(u)-f(v)\| \geq \frac{d(u, v)}{2176}$. On the other hand, $\operatorname{diam}(G)<n$ (recall that $n$ is the number of vertices in the original graph), hence

$$
\begin{equation*}
\|f(u)-f(v)\|=\sqrt{\sum_{\Delta=4,8, \ldots, 2^{k}}\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\|^{2}} \leq \sqrt{\log \operatorname{diam}(G)} \cdot d(u, v)<\sqrt{\log n} \cdot d(u, v) \tag{2}
\end{equation*}
$$

This implies that $f$ is an embedding into $\ell_{2}$ with distortion $O(\sqrt{\log n})$. However, this does not work for weighted graphs, since $\operatorname{diam}(G)$ is no longer bounded by $n$.

We next show how to proceed in the weighted case. Let each edge $e$ have a weight $w(e)$, and consider $\Delta=4, \ldots, 2^{k}$. For each $\Delta$, we introduce a graph $G_{\Delta}$ obtained by contracting all edges with $w(e) \leq \frac{\Delta}{n}$. Note that

$$
\begin{equation*}
0 \leq d_{G}(u, v)-d_{G_{\Delta}}(u, v) \leq \Delta \tag{3}
\end{equation*}
$$

and that $d_{G_{\Delta}}$ is still a planar graph metric. We then insert $w(e)-1$ surrogate nodes on each edge $e$ to obtain an unweighted graph. For each $\Delta$, let $f_{\Delta}$ be a mapping from $G_{\Delta}$ satisfying property (1), and let $f: x \rightarrow\left(f_{4}(x), f_{8}(x), \ldots, f_{2^{k}}(x)\right)$.

Observation 1. If $d_{G}(u, v) \leq \frac{\Delta}{n}$, then all edges on the shortest path from $u$ to $v$ in $G$ have been contracted in $G_{\Delta}$. Hence $f_{\Delta}(u)=f_{\Delta}(v)$.

Observation 2. Assuming the notation of the previous lecture, with $u \in s_{i}$ and $v \in s_{j}$,

$$
\begin{align*}
\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\|^{2} \leq & \sum_{A, \sigma} \gamma(A, \sigma)\left(\sigma\left(s_{i}\right) d_{G_{\Delta}}(u, A)-\sigma\left(s_{j}\right) d_{G_{\Delta}}(v, A)\right)^{2} \\
& \leq \sum_{A, \sigma} \gamma(A, \sigma)\left(d_{G_{\Delta}}(u, A)+d_{G_{\Delta}}(v, A)\right)^{2} \stackrel{(*)}{\leq} \sum_{A, \sigma} \gamma(A, \sigma)(2 \Delta)^{2}=(2 \Delta)^{2} \tag{4}
\end{align*}
$$

Here, $(*)$ is due to the construction of $A$ by "slicing" the vertex set of $G_{\Delta}$ in components of "width" at most $\Delta$.

[^0]We now upper bound the squared distance for $u, v \in V(G)$ :

$$
\begin{align*}
&\|f(u)-f(v)\|^{2}= \sum_{\Delta=4, \ldots, 2^{k}}\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\|^{2} \stackrel{(*)}{=} \sum_{\substack{\Delta=4, \ldots, 2^{k} \\
\Delta \leq n d_{G}(u, v)}}\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\|^{2} \\
& \stackrel{(* *)}{\leq} \sum_{\substack{\Delta=4, \ldots, 2^{k} \\
\Delta \leq n d_{G}(u, v)}} \min \left\{d_{G}^{2}(u, v),(2 \Delta)^{2}\right\} \stackrel{(* *)}{\leq} O(\log (n)) d_{G}^{2}(u, v) \tag{5}
\end{align*}
$$

Here, $(*)$ is due to Observation 1, and $(* *)$ is due to Observation 2 and $f_{\Delta}$ being non-expanding. To see $(* * *)$ note that when $d_{G}^{2}(u, v)$ is smaller, we have $\frac{\Delta^{2}}{n^{2}} \leq d_{G}^{2}(u, v) \leq(2 \Delta)^{2}$, which can occur for at most $O(\log n)$ terms. The terms when $(2 \Delta)^{2}$ is smaller can be viewed as a decreasing geometric progression with the base term at most $d_{G}^{2}(u, v)$.
Observation 3. If $d_{G}(u, v) \geq 35 \Delta$, then $d_{G_{\Delta}}(u, v) \geq 34 \Delta$, hence $\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\| \geq \frac{\Delta}{32}$.
To conclude, we find a lower bound, also for $u, v \in V(G)$ :

$$
\begin{align*}
\|f(u)-f(v)\|^{2} \geq \sum_{\Delta=4, \ldots, 2^{k}}\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\|^{2} \geq & \sum_{\substack{\Delta=4, \ldots, 2^{k} \\
d_{G}(u, v) \geq 35 \Delta}}\left\|f_{\Delta}(u)-f_{\Delta}(v)\right\|^{2} \\
& \geq \sum_{\substack{\Delta=4, \ldots, 2^{k} \\
d_{G}(u, v) \geq 35 \Delta}}\left(\frac{\Delta}{32}\right)^{2} \geq\left(\frac{d_{G}(u, v)}{2 \cdot 35 \cdot 32}\right)^{2} . \tag{6}
\end{align*}
$$

The last inequality holds because we can assume that $d_{G}(u, v) \geq 35$ for all $u$ and $v$, and for the last term in the summation we will have $35 \Delta \leq d_{G}(u, v) \leq 2 \cdot 35 \Delta$. Taking square roots of both bounds, we obtain that $f$ is an embedding into $\ell_{2}$ with distortion $O(\sqrt{\log n})$.

A more general technique to combine embeddings for different scales (different values of $\Delta$ ) was obtained by Lee [Lee05].

## 2 Sparsest cut and negative type metrics

Recall the uniform sparsest cut problem:

$$
\begin{equation*}
\text { Given a graph G, find } \beta(G)=\min _{\emptyset \neq S \subseteq V(G)} \frac{\delta(S, \bar{S})}{|S| \cdot|\bar{S}|} \tag{7}
\end{equation*}
$$

Leighton and Rao [LR88] obtained an $O(\log n)$-approximation algorithm for this problem. Linial, London, and Rabinovich [LLR95] obtained an $O(\log n)$-approximation algorithm for the nonuniform version of the problem (with general demands). In the remainder of this lecture, we focus on the uniform problem.

As before, let $\alpha(G)$ be the largest fraction of multicommodity flow that can be sent given unit capacities on edges and one unit-demand commodity between each pair of vertices. Remember that

$$
\begin{equation*}
\beta(G)=\min _{(V, d)} \frac{\sum_{(i, j) \in E} d(i, j)}{\sum_{i<j} d(i, j)}, \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
\alpha(G)=\min _{(V, d)} \ell_{\infty} \text {-embeddable } \frac{\sum_{(i, j) \in E} d(i, j)}{\sum_{i<j} d(i, j)} . \tag{9}
\end{equation*}
$$

For more details on these definitions and properties, see Lecture 4.
The quantity $\alpha(G)$ can be computed by linear programming, which suggests that we can approximate $\beta(G)$ by taking the corresponding $\ell_{\infty}$ embedding $d$, and embedding it into $\ell_{1}$ through Bourgain's result. This yields

$$
\begin{equation*}
\frac{c}{\log n} d(u, v) \leq l(u, v) \leq d(u, v), \tag{10}
\end{equation*}
$$

and thus $\alpha(G) \leq \beta(G) \leq O(\log n) \alpha(G)$.
We would like to to obtain a better approximation for $\beta(G)$ by considering a class of metrics that would yield a tighter bound than $\ell_{\infty}$ but would still allow us to optimize in polynomial time. For this purpose, we consider negative-type metrics.

Definition 1. A finite metric $(X, d)$ is of negative type if $(X, \sqrt{d})$ is $\ell_{2}$-embeddable.
For background on negative-type metrics, see [Sch38a, Sch38b]. Note that taking $d(u, v)=$ $\|u-v\|_{2}^{2}$ does not necessarily yield a metric. For three points $u, v, w$ the inequality

$$
\begin{equation*}
\|u-v\|_{2}^{2}+\|v-w\|_{2}^{2} \geq\|v-w\|_{2}^{2} \tag{11}
\end{equation*}
$$

holds if and only if $\angle u v w \leq \frac{\pi}{2}$. Hence, taking $X \subset \mathbb{R}^{k}$ with all angles non-obtuse and $d(u, v)=$ $\|u-v\|_{2}^{2}$ for any $u, v \in X$ yields a negative-type metric. An example of a set with all angles non-obtuse is $X=\{0,1\}^{k}$, the set of vertices of the unit hypercube.

The following lemma was conjectured by Erdös in 1948 and proven by Danzer and Grünbaum [DG62].

Lemma 1. If $X \subset \mathbb{R}^{k}$ and no three points in $X$ form an obtuse angle, then $|X| \leq 2^{k}$.
An elegant proof of this lemma is presented in [AZ04], but the reader is encouraged to prove it independently first (hint: try a volume argument). Here is another characterization of negative type metrics.

Lemma 2. A finite metric $(X, d)$ is of negative type if and only if for any set $\left\{b_{i} \in \mathbb{R}: i \in X\right\}$ with $\sum_{i \in X} b_{i}=0$ we have

$$
\begin{equation*}
\sum_{i \in X} \sum_{j \in X} b_{i} b_{j} d(i, j) \leq 0 . \tag{12}
\end{equation*}
$$

Proof sketch of $\Leftarrow$. Use the fact that $(X, \sqrt{d})$ is $\ell_{2}$-embeddable to obtain that $(d(i, n)+d(j, n)-$ $d(i, j))_{1 \leq i, j \leq n-1} \succeq 0$ (see Lecture 2) and pre and post-multiply to obtain the characterization.

Note that if $(X, d)$ is a negative-type metric and $\alpha>0$, then $(X, \alpha d)$ is also of negative type.
Lemma 3. If ( $X, d_{1}$ ) and ( $X, d_{2}$ ) are of negative type, then so is $\left(X, d_{1}+d_{2}\right)$.
Proof sketch. Take the $\ell_{2}$ embeddings of $\left(X, \sqrt{d_{1}}\right)$ and $\left(X, \sqrt{d_{2}}\right)$ and combine the dimensions.

This implies that negative-type metrics form a (convex) cone. On the other hand, recall that $\ell_{1}$ metrics also form a cone with cut metrics as its extreme rays.

Lemma 4. Cut metrics are of negative type.
Proof. Let the cut metric be $(X, d)$ and the cut defining it given by $S \subset X$. For any $b_{i}$-s, we have

$$
\begin{equation*}
\sum_{i \in X} \sum_{j \in X} b_{i} b_{j} d(i, j)=2 \sum_{i \in S} \sum_{j \in \bar{S}} b_{i} b_{j} \leq 0, \tag{13}
\end{equation*}
$$

because $\sum_{i \in S} b_{i}+\sum_{i \in \bar{S}} b_{i}=0$ implies one of the sums is less than or equal to zero, and the other is greater than or equal to zero.

Therefore, the cone of $\ell_{1}$ metrics is contained in the cone of negative-type metrics. Note that the negative-type metric induced by squared $l_{2}$ distance in the hypercube is $\ell_{1}$ embeddable. There are, however, negative type metrics which are not $l_{1}$-embeddable. Here is one such construction from lattices.

Let

$$
\begin{equation*}
v_{1}, \ldots, v_{k} \in \mathbb{R}^{k} \quad \text { and } \quad L=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i}: \lambda_{i} \in \mathbb{Z}\right\} \tag{14}
\end{equation*}
$$

Consider a sphere $B(a, r)$ such that its interior $\dot{B}(a, r)=\{x:\|x-a\|<r\}$ does not intersect the lattice (a so-called empty sphere), and let $X=B(a, r) \cap L$. Note that no three points in $X$ form an obtuse angle. Indeed, if $\angle u v w>\frac{\pi}{2}$, then $u-v+w$ is in both the lattice and in $L \cap \hat{B}(a, r)$, which is a contradiction. For some lattices (and some empty spheres), the squared $\ell_{2}$ metric induced by $X$ is not $\ell_{1}$ embeddable.

Additional examples of negative type metrics not embeddable in $\ell_{1}$ include shortest path metrics on some graphs (e.g. $K_{9}$ minus two adjacent edges). To learn more about negative type metrics, see the book by Deza and Laurent [DL97].

## 3 Computing $\gamma(G)$ and a lower bound

Let

$$
\begin{equation*}
\gamma(G)=\min _{(X, d) \text { is of neg. type }} \frac{\sum_{(i, j) \in E} d(i, j)}{\sum_{i<j} d(i, j)} . \tag{15}
\end{equation*}
$$

Since the cone of $\ell_{1}$ metrics is contained in the cone of negative type metrics, $\beta(G) \geq \gamma(G)$.
Next, we show how to compute $\gamma(G)$ using semidefinite programming. Recall that for a symmetric $n \times n$ matrix $X$, the following are equivalent:

1. $X$ is positive semidefinite, denoted $X \succeq 0$.
2. The eigenvalues $\lambda_{i}$ are nonnegative.
3. $a^{T} X a \geq 0$ for any $a \in \mathbb{R}^{n}$.

A semidefinite program has the form

$$
\begin{align*}
& \min C \circ X,  \tag{16a}\\
& \text { s.t. } A_{i} \circ X=b_{i}, \quad i=\overline{1, p},  \tag{16b}\\
& \quad X \succeq 0 . \tag{16c}
\end{align*}
$$

Here $C$ and $A_{i}$ are symmetric $n \times n$ matrices, and $A \circ B=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{i j}=\operatorname{tr}\left(A^{T} B\right)$ is the Frobenius product. (Although this is not specified in the constraints, $X$ can be assumed symmetric due $A$ and $B$ being symmetric. Also note that linear programming can be obtained as a special case by restricting non-diagonal entries of $X$ to be zero.)

Since negative type metrics form a cone, we can normalize by $\sum_{i<j} d(i, j)=1$. The following semidefinite program yields $\gamma(G)$ :

$$
\begin{array}{ll}
\min & \sum_{(i, j) \in E} d(i, j), \\
\text { s.t. } & \sum_{i<j} d(i, j)=1, \\
& d(i, j)+d(j, k) \geq d(i, k), \quad i, j, k \in V(G), \\
& \left(d_{i j}+d_{j n}-d_{i j}\right)_{1 \leq i, j \leq n-1} \succeq 0 . \tag{17d}
\end{array}
$$

Since we can compute $\epsilon$-approximate and $\epsilon$-feasible solutions to semidefinite programs in time polynomial in the input data size and $\log \frac{1}{\epsilon}$, the same is true for $\gamma(G)$.

We conclude by comparing $\gamma(G)$ to the classical eignevalue bound for the uniform sparsest cut problem. Since

$$
\begin{equation*}
\gamma(G)=\min _{\substack{v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \\ \text { all angles } \leq \pi / 2}} \frac{\sum_{(i, j) \in E}\left\|v_{i}-v_{j}\right\|^{2}}{\sum_{i<j}\left\|v_{i}-v_{j}\right\|^{2}}, \tag{18}
\end{equation*}
$$

a lower bound is given by

$$
\begin{align*}
\delta(G)= & \min _{v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}} \frac{\sum_{(i, j) \in E}\left\|v_{i}-v_{j}\right\|^{2}}{\sum_{i<j}\left\|v_{i}-v_{j}\right\|^{2}} \stackrel{(*)}{=} \min _{\substack{x_{1}, \ldots, x_{n} \in \mathbb{R} \\
x_{1}+\ldots+x_{n}=0}} \frac{\sum_{(i, j) \in E}\left|x_{i}-x_{j}\right|^{2}}{\sum_{i<j}\left|x_{i}-x_{j}\right|^{2}} \\
& =\min _{x \in \mathbb{R}^{n}, x^{t} e=0} \frac{x^{T} L_{G} x}{n x^{T} x}=\frac{1}{n} \mu_{2}(G) . \tag{19}
\end{align*}
$$

Here $(*)$ holds because we can separate coordinate-by-coordinate and shift points. As usual, $L_{G}$ denotes the Laplacian with

$$
\left(L_{G}\right)_{i j}= \begin{cases}-1, & (i, j) \in E  \tag{20}\\ \operatorname{deg}_{G}(i), & i=j \\ 0, & \text { otherwise }\end{cases}
$$

This lower bound is good for an expander graph, but in general can be arbitrarily bad. For example, consider the cycle $C_{n}$ :

$$
\begin{align*}
\beta\left(C_{n}\right) & =\frac{2}{\left(\frac{n}{2}\right)^{2}}=\frac{8}{n^{2}}  \tag{21}\\
\mu_{2}\left(L_{C_{n}}\right) & =2-2 \cos \left(\frac{2 \pi}{n}\right)=\Theta\left(\frac{1}{n^{2}}\right) . \tag{22}
\end{align*}
$$

Therefore, $\delta\left(C_{n}\right)=\Theta\left(\frac{1}{n^{3}}\right)$.
$\gamma(G)$ is thus no worse than both the linear programming bound $\alpha(G)$ and the eigenvalue bound $\delta(G)$. And these two bounds appear to have bad examples which appear to be good for the other one, and this intuitively explains why $\gamma(G)$ will turn out to be better in the worst case.

## References

[AZ04] Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, third edition, 2004. Including illustrations by Karl H. Hofmann.
[DG62] L. Danzer and B. Grünbaum. Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee. Math. Z., 79:95-99, 1962.
[DL97] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997.
[Lee05] James R. Lee. Distance scales, embeddings, and metrics of negative type. In Proceedings of SODA, 2005.
[LR88] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 422-431, 1988.
[LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica, 15(2):215-245, 1995.
[Sch38a] I. J. Schoenberg. Metric spaces and completely monotone functions. Ann. of Math. (2), 39(4):811-841, 1938.
[Sch38b] I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math. Soc., 44(3):522-536, 1938.


[^0]:    ${ }^{1}$ The reason to start at $\Delta=4$ is because the probabilistic analysis required $\Delta$ to be a multiple of 4 .

