Massachusetts Institute of TechnologyLecturer: Michel X. Goemans18.409: Topics in TCS: Embeddings of Finite Metric SpacesOctober 16, 2006Scribe: Dan Stratila

Lecture 10

We first provide a clarification of the discussion in Lectures 8 and 9 for the case of weighted graphs, and then discuss the sparsest cut problem and negative type metrics.

1 Clarification on lectures 8 and 9

Recall that in the previous lectures we considered a planar graph metric (X, d) and, for any Δ , gave an embedding $f_{\Delta} : X \to \ell_2$ such that

$$\frac{\Delta}{32} \le \|f_{\Delta}(u) - f_{\Delta}(v)\| \le d(u, v), \quad \text{for} \quad 34\Delta \le d(u, v) \le 68\Delta.$$
(1)

In the unweighted case, we subdivided the edges to make sure that all original distances were at least $4 \times 34 = 136$, took¹ $\Delta = 4, 8, \ldots, 2^k$ with $k = \lceil \log \operatorname{diam}(G) \rceil + 1$, let the embedding be given by $f: x \to (f_4(x), f_8(x), \ldots, f_{2^k}(x))$, and showed that $||f(u) - f(v)|| \ge \frac{d(u,v)}{2176}$. On the other hand, $\operatorname{diam}(G) < n$ (recall that n is the number of vertices in the original graph), hence

$$\|f(u) - f(v)\| = \sqrt{\sum_{\Delta = 4, 8, \dots, 2^k} \|f_{\Delta}(u) - f_{\Delta}(v)\|^2} \le \sqrt{\log \operatorname{diam}(G)} \cdot d(u, v) < \sqrt{\log n} \cdot d(u, v).$$
(2)

This implies that f is an embedding into ℓ_2 with distortion $O(\sqrt{\log n})$. However, this does not work for weighted graphs, since diam(G) is no longer bounded by n.

We next show how to proceed in the weighted case. Let each edge e have a weight w(e), and consider $\Delta = 4, \ldots, 2^k$. For each Δ , we introduce a graph G_{Δ} obtained by contracting all edges with $w(e) \leq \frac{\Delta}{n}$. Note that

$$0 \le d_G(u, v) - d_{G_\Delta}(u, v) \le \Delta,\tag{3}$$

and that $d_{G_{\Delta}}$ is still a planar graph metric. We then insert w(e) - 1 surrogate nodes on each edge e to obtain an unweighted graph. For each Δ , let f_{Δ} be a mapping from G_{Δ} satisfying property (1), and let $f: x \to (f_4(x), f_8(x), \ldots, f_{2^k}(x))$.

Observation 1. If $d_G(u, v) \leq \frac{\Delta}{n}$, then all edges on the shortest path from u to v in G have been contracted in G_{Δ} . Hence $f_{\Delta}(u) = f_{\Delta}(v)$.

Observation 2. Assuming the notation of the previous lecture, with $u \in s_i$ and $v \in s_j$,

$$\|f_{\Delta}(u) - f_{\Delta}(v)\|^{2} \leq \sum_{A,\sigma} \gamma(A,\sigma)(\sigma(s_{i})d_{G_{\Delta}}(u,A) - \sigma(s_{j})d_{G_{\Delta}}(v,A))^{2}$$
$$\leq \sum_{A,\sigma} \gamma(A,\sigma)(d_{G_{\Delta}}(u,A) + d_{G_{\Delta}}(v,A))^{2} \stackrel{(*)}{\leq} \sum_{A,\sigma} \gamma(A,\sigma)(2\Delta)^{2} = (2\Delta)^{2}.$$
(4)

Here, (*) is due to the construction of A by "slicing" the vertex set of G_{Δ} in components of "width" at most Δ .

¹The reason to start at $\Delta = 4$ is because the probabilistic analysis required Δ to be a multiple of 4.

We now upper bound the squared distance for $u, v \in V(G)$:

$$\|f(u) - f(v)\|^{2} = \sum_{\Delta = 4, \dots, 2^{k}} \|f_{\Delta}(u) - f_{\Delta}(v)\|^{2} \stackrel{(*)}{=} \sum_{\substack{\Delta = 4, \dots, 2^{k} \\ \Delta \le nd_{G}(u,v)}} \|f_{\Delta}(u) - f_{\Delta}(v)\|^{2}$$

$$\stackrel{(**)}{\leq} \sum_{\substack{\Delta = 4, \dots, 2^{k} \\ \Delta \le nd_{G}(u,v)}} \min\{d_{G}^{2}(u,v), (2\Delta)^{2}\} \stackrel{(***)}{\leq} O(\log(n))d_{G}^{2}(u,v).$$
(5)

Here, (*) is due to Observation 1, and (**) is due to Observation 2 and f_{Δ} being non-expanding. To see (* **) note that when $d_G^2(u, v)$ is smaller, we have $\frac{\Delta^2}{n^2} \leq d_G^2(u, v) \leq (2\Delta)^2$, which can occur for at most $O(\log n)$ terms. The terms when $(2\Delta)^2$ is smaller can be viewed as a decreasing geometric progression with the base term at most $d_G^2(u, v)$.

Observation 3. If $d_G(u, v) \ge 35\Delta$, then $d_{G_\Delta}(u, v) \ge 34\Delta$, hence $||f_\Delta(u) - f_\Delta(v)|| \ge \frac{\Delta}{32}$.

To conclude, we find a lower bound, also for $u, v \in V(G)$:

$$\|f(u) - f(v)\|^{2} \geq \sum_{\Delta = 4, \dots, 2^{k}} \|f_{\Delta}(u) - f_{\Delta}(v)\|^{2} \geq \sum_{\substack{\Delta = 4, \dots, 2^{k} \\ d_{G}(u,v) \geq 35\Delta}} \|f_{\Delta}(u) - f_{\Delta}(v)\|^{2}$$
$$\geq \sum_{\substack{\Delta = 4, \dots, 2^{k} \\ d_{G}(u,v) \geq 35\Delta}} \left(\frac{\Delta}{32}\right)^{2} \geq \left(\frac{d_{G}(u,v)}{2 \cdot 35 \cdot 32}\right)^{2}.$$
(6)

The last inequality holds because we can assume that $d_G(u, v) \ge 35$ for all u and v, and for the last term in the summation we will have $35\Delta \le d_G(u, v) \le 2 \cdot 35\Delta$. Taking square roots of both bounds, we obtain that f is an embedding into ℓ_2 with distortion $O(\sqrt{\log n})$.

A more general technique to combine embeddings for different scales (different values of Δ) was obtained by Lee [Lee05].

2 Sparsest cut and negative type metrics

Recall the *uniform sparsest cut problem*:

Given a graph G, find
$$\beta(G) = \min_{\substack{\emptyset \neq S \subsetneq V(G)}} \frac{\delta(S, \overline{S})}{|S| \cdot |\overline{S}|}.$$
 (7)

Leighton and Rao [LR88] obtained an $O(\log n)$ -approximation algorithm for this problem. Linial, London, and Rabinovich [LLR95] obtained an $O(\log n)$ -approximation algorithm for the nonuniform version of the problem (with general demands). In the remainder of this lecture, we focus on the uniform problem.

As before, let $\alpha(G)$ be the largest fraction of multicommodity flow that can be sent given unit capacities on edges and one unit-demand commodity between each pair of vertices. Remember that

$$\beta(G) = \min_{(V,d) \ \ell_1 \text{-embeddable}} \frac{\sum_{(i,j) \in E} d(i,j)}{\sum_{i < j} d(i,j)},\tag{8}$$

and that

$$\alpha(G) = \min_{(V,d) \ \ell_{\infty} \text{-embeddable}} \frac{\sum_{(i,j) \in E} d(i,j)}{\sum_{i < j} d(i,j)}.$$
(9)

For more details on these definitions and properties, see Lecture 4.

The quantity $\alpha(G)$ can be computed by linear programming, which suggests that we can approximate $\beta(G)$ by taking the corresponding ℓ_{∞} embedding d, and embedding it into ℓ_1 through Bourgain's result. This yields

$$\frac{c}{\log n}d(u,v) \le l(u,v) \le d(u,v),\tag{10}$$

and thus $\alpha(G) \leq \beta(G) \leq O(\log n)\alpha(G)$.

We would like to to obtain a better approximation for $\beta(G)$ by considering a class of metrics that would yield a tighter bound than ℓ_{∞} but would still allow us to optimize in polynomial time. For this purpose, we consider negative-type metrics.

Definition 1. A finite metric (X, d) is of negative type if (X, \sqrt{d}) is ℓ_2 -embeddable.

For background on negative-type metrics, see [Sch38a, Sch38b]. Note that taking $d(u, v) = ||u - v||_2^2$ does not necessarily yield a metric. For three points u, v, w the inequality

$$\|u - v\|_2^2 + \|v - w\|_2^2 \ge \|v - w\|_2^2 \tag{11}$$

holds if and only if $\angle uvw \leq \frac{\pi}{2}$. Hence, taking $X \subset \mathbb{R}^k$ with all angles non-obtuse and $d(u, v) = ||u - v||_2^2$ for any $u, v \in X$ yields a negative-type metric. An example of a set with all angles non-obtuse is $X = \{0, 1\}^k$, the set of vertices of the unit hypercube.

The following lemma was conjectured by Erdös in 1948 and proven by Danzer and Grünbaum [DG62].

Lemma 1. If $X \subset \mathbb{R}^k$ and no three points in X form an obtuse angle, then $|X| \leq 2^k$.

An elegant proof of this lemma is presented in [AZ04], but the reader is encouraged to prove it independently first (hint: try a volume argument). Here is another characterization of negative type metrics.

Lemma 2. A finite metric (X,d) is of negative type if and only if for any set $\{b_i \in \mathbb{R} : i \in X\}$ with $\sum_{i \in X} b_i = 0$ we have

$$\sum_{i \in X} \sum_{j \in X} b_i b_j d(i, j) \le 0.$$
(12)

Proof sketch of \Leftarrow . Use the fact that (X, \sqrt{d}) is ℓ_2 -embeddable to obtain that $(d(i, n) + d(j, n) - d(i, j))_{1 \le i, j \le n-1} \succeq 0$ (see Lecture 2) and pre and post-multiply to obtain the characterization.

Note that if (X, d) is a negative-type metric and $\alpha > 0$, then $(X, \alpha d)$ is also of negative type.

Lemma 3. If (X, d_1) and (X, d_2) are of negative type, then so is $(X, d_1 + d_2)$.

Proof sketch. Take the ℓ_2 embeddings of $(X, \sqrt{d_1})$ and $(X, \sqrt{d_2})$ and combine the dimensions.

This implies that negative-type metrics form a (convex) cone. On the other hand, recall that ℓ_1 metrics also form a cone with cut metrics as its extreme rays.

Lemma 4. Cut metrics are of negative type.

Proof. Let the cut metric be (X, d) and the cut defining it given by $S \subset X$. For any b_i -s, we have

$$\sum_{i \in X} \sum_{j \in X} b_i b_j d(i, j) = 2 \sum_{i \in S} \sum_{j \in \overline{S}} b_i b_j \le 0,$$
(13)

because $\sum_{i \in S} b_i + \sum_{i \in \overline{S}} b_i = 0$ implies one of the sums is less than or equal to zero, and the other is greater than or equal to zero.

Therefore, the cone of ℓ_1 metrics is contained in the cone of negative-type metrics. Note that the negative-type metric induced by squared l_2 distance in the hypercube is ℓ_1 embeddable. There are, however, negative type metrics which are not l_1 -embeddable. Here is one such construction from lattices.

Let

$$v_1, \dots, v_k \in \mathbb{R}^k$$
 and $L = \left\{ \sum_{i=1}^k \lambda_i v_i : \lambda_i \in \mathbb{Z} \right\}.$ (14)

Consider a sphere B(a, r) such that its interior $B(a, r) = \{x : ||x - a|| < r\}$ does not intersect the lattice (a so-called empty sphere), and let $X = B(a, r) \cap L$. Note that no three points in X form an obtuse angle. Indeed, if $\angle uvw > \frac{\pi}{2}$, then u - v + w is in both the lattice and in $L \cap \hat{B}(a, r)$, which is a contradiction. For some lattices (and some empty spheres), the squared ℓ_2 metric induced by X is not ℓ_1 embeddable.

Additional examples of negative type metrics not embeddable in ℓ_1 include shortest path metrics on some graphs (e.g. K_9 minus two adjacent edges). To learn more about negative type metrics, see the book by Deza and Laurent [DL97].

3 Computing $\gamma(G)$ and a lower bound

Let

$$\gamma(G) = \min_{(X,d) \text{ is of neg. type}} \frac{\sum_{(i,j)\in E} d(i,j)}{\sum_{i< j} d(i,j)}.$$
(15)

Since the cone of ℓ_1 metrics is contained in the cone of negative type metrics, $\beta(G) \ge \gamma(G)$.

Next, we show how to compute $\gamma(G)$ using semidefinite programming. Recall that for a symmetric $n \times n$ matrix X, the following are equivalent:

- 1. X is positive semidefinite, denoted $X \succeq 0$.
- 2. The eigenvalues λ_i are nonnegative.
- 3. $a^T X a \ge 0$ for any $a \in \mathbb{R}^n$.

A semidefinite program has the form

$$\min C \circ X, \tag{16a}$$

s.t.
$$A_i \circ X = b_i, \quad i = \overline{1, p},$$
 (16b)

$$X \succeq 0. \tag{16c}$$

Here C and A_i are symmetric $n \times n$ matrices, and $A \circ B = \sum_{i=1}^n \sum_{j=1}^n a_{ij} b_{ij} = \operatorname{tr}(A^T B)$ is the Frobenius product. (Although this is not specified in the constraints, X can be assumed symmetric due A and B being symmetric. Also note that linear programming can be obtained as a special case by restricting non-diagonal entries of X to be zero.)

Since negative type metrics form a cone, we can normalize by $\sum_{i < j} d(i, j) = 1$. The following semidefinite program yields $\gamma(G)$:

$$\min \sum_{(i,j)\in E} d(i,j),\tag{17a}$$

s.t.
$$\sum_{i < j} d(i, j) = 1,$$
 (17b)

$$d(i,j) + d(j,k) \ge d(i,k), \qquad i,j,k \in V(G),$$
(17c)

$$(d_{ij} + d_{jn} - d_{ij})_{1 \le i,j \le n-1} \ge 0.$$
 (17d)

Since we can compute ϵ -approximate and ϵ -feasible solutions to semidefinite programs in time polynomial in the input data size and $\log \frac{1}{\epsilon}$, the same is true for $\gamma(G)$.

We conclude by comparing $\gamma(G)$ to the classical eignevalue bound for the uniform sparsest cut problem. Since

$$\gamma(G) = \min_{\substack{v_1, \dots, v_n \in \mathbb{R}^n \\ \text{all angles } \le \pi/2}} \frac{\sum_{(i,j) \in E} \|v_i - v_j\|^2}{\sum_{i < j} \|v_i - v_j\|^2},\tag{18}$$

a lower bound is given by

$$\delta(G) = \min_{v_1, \dots, v_n \in \mathbb{R}^n} \frac{\sum_{(i,j) \in E} \|v_i - v_j\|^2}{\sum_{i < j} \|v_i - v_j\|^2} \stackrel{(*)}{=} \min_{\substack{x_1, \dots, x_n \in \mathbb{R} \\ x_1 + \dots + x_n = 0}} \frac{\sum_{(i,j) \in E} |x_i - x_j|^2}{\sum_{i < j} |x_i - x_j|^2} = \min_{x \in \mathbb{R}^n, \ x^t e = 0} \frac{x^T L_G x}{n x^T x} = \frac{1}{n} \mu_2(G).$$
(19)

Here (*) holds because we can separate coordinate-by-coordinate and shift points. As usual, L_G denotes the Laplacian with

$$(L_G)_{ij} = \begin{cases} -1, & (i,j) \in E, \\ \deg_G(i), & i = j, \\ 0, & \text{otherwise.} \end{cases}$$
(20)

This lower bound is good for an expander graph, but in general can be arbitrarily bad. For example, consider the cycle C_n :

$$\beta(C_n) = \frac{2}{\left(\frac{n}{2}\right)^2} = \frac{8}{n^2},$$
(21)

$$\mu_2(L_{C_n}) = 2 - 2\cos\left(\frac{2\pi}{n}\right) = \Theta\left(\frac{1}{n^2}\right).$$
(22)

Therefore, $\delta(C_n) = \Theta\left(\frac{1}{n^3}\right)$.

 $\gamma(G)$ is thus no worse than both the linear programming bound $\alpha(G)$ and the eigenvalue bound $\delta(G)$. And these two bounds appear to have bad examples which appear to be good for the other one, and this intuitively explains why $\gamma(G)$ will turn out to be better in the worst case.

References

- [AZ04] Martin Aigner and Günter M. Ziegler. *Proofs from The Book.* Springer-Verlag, Berlin, third edition, 2004. Including illustrations by Karl H. Hofmann.
- [DG62] L. Danzer and B. Grünbaum. Über zwei Probleme bezüglich konvexer Körper von P. Erdős und von V. L. Klee. Math. Z., 79:95–99, 1962.
- [DL97] Michel Marie Deza and Monique Laurent. *Geometry of cuts and metrics*, volume 15 of *Algorithms and Combinatorics*. Springer-Verlag, Berlin, 1997.
- [Lee05] James R. Lee. Distance scales, embeddings, and metrics of negative type. In *Proceedings* of SODA, 2005.
- [LR88] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In *Proceedings* of the 29th Annual Symposium on Foundations of Computer Science, pages 422–431, 1988.
- [LLR95] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications. *Combinatorica*, 15(2):215–245, 1995.
- [Sch38a] I. J. Schoenberg. Metric spaces and completely monotone functions. Ann. of Math. (2), 39(4):811–841, 1938.
- [Sch38b] I. J. Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math. Soc., 44(3):522–536, 1938.