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In this lecture, we will prove that embedding edit metric over {0, 1}d into l1 requires Ω(log d)
distortion, following the proof of [KR06]. We will start with the definitions.

The edit metric is a metric on {0, 1}d, where for two points x, y ∈ {0, 1}d, we define their edit
distance, ed(x, y), to be the minimum number of edit operations to transform one string into the
other. The edit operations are character substitution, insertion, or deletion. For example strings
(10)3 = 101010 and (01)3 = 010101 are at distance 2 (to obtain the second string from the first
string, delete the first 1 and insert a 1 at the end). One can view the edit metric as the shortest
path metric on the d-dimensional hypercube with some additional “shortcuts” (in addition to the
hypercube edges, there is, for example, also an edge ((10)3, (01)3)).

Definition 1. We call c1({0, 1}d, ed) to be the minimum distortion required to embed edit metric
over {0, 1}d into l1. I.e., c1({0, 1}d, ed) is the minimum D such that there exists a mapping φ :
{0, 1}d → l1 such that for any x, y ∈ {0, 1}d,

ed(x, y) ≤ ‖φ(x) − φ(y)‖1 ≤ D · ed(x, y)

In this lecture we prove the following theorem:

Theorem 1 ([KR06]). c1({0, 1}d, ed) = Ω(log d).

For completeness, we mention that before [KR06], the previous lower bound was proven by
Subhash Khot and Assaf Naor [KN05], who showed that c1({0, 1}d, ed) = Ω

(

(log d)1/2−o(1)
)

using

Fourier-analytic approach. The best upper bound on c1({0, 1}d, ed) is1 2Õ(
√

log d), proven by Rafail
Ostrovsky and Yuval Rabani [OR05].

Open question 1. Bridge the gap between c1({0, 1}d, ed) ≥ Ω(log d) and c1({0, 1}d, ed) ≤ 2Õ(
√

log d).

1 Proof of the main theorem

As was mentioned earlier in this class, it is sufficient to exhibit two distributions τ and η on
{0, 1}d × {0, 1}d such that

1.
∑

x,y

τ(x, y) · ed(x, y) ≤ α
∑

x,y

η(x, y) · ed(x, y)

2. for any boolean function f : {0, 1}d → {0, 1}, it holds that

∑

x,y

τ(x, y) · |f(x) − f(y)| > β
∑

x,y

η(x, y) · |f(x) − f(y)|

Then, c1({0, 1}d, ed) ≥ β/α.
We construct τ and η as the following probability distributions (i.e.,

∑

τ(x, y) =
∑

η(x, y) = 1):

1Notation Õ(f(n)) means O(f(n) · (log f(n))O(1)).
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• Distribution τ(x, y) (close pairs, or “edges”). Define the following shift operation S : {0, 1}d →
{0, 1}d: S(x1x2 . . . xd) = xdx1x2 . . . xd−1. Then let ES = {(x, S(x)) | x ∈ {0, 1}d}, and τS

is the uniform distribution over ES . Also, let EH be the set of edges in the hypercube:
EH = {(x, y) | ‖x − y‖1 = 1}. τH is the uniform distribution over EH .

Then τ(x, y) = τS(x,y)+τH(x,y)
2 .

• Distribution η(x, y) (far pairs, or “diagonals”) is defined to be simply uniform over all pairs
(x, y).

We then prove the following two lemmas, which imply that c1({0, 1}d, ed) = Ω(log d).

Lemma 2.

Eτ [ed(x, y)] ≤ O

(

1

d

)

· Eη [ed(x, y)]

Lemma 3. For any boolean function f : {0, 1}d → {0, 1}, we have that

Eτ [|f(x) − f(y)|] > Ω

(

log d

d

)

· Eη [|f(x) − f(y)|]

The second lemma is the most technical part of the proof and is proven/discussed in the next
section. We prove below the first lemma:

Proof of lemma 2. First we claim that Eτ [ed(x, y)] ≤ 2. This results from the fact that for any
(x, y) ∈ ES ∪ EH , ed(x, y) ≤ 2.

Second, we claim that Eη [ed(x, y)] ≥ Ω(d). Fix any x ∈ {0, 1}d. Let’s upper bound the number
Nx,l of strings y that satisfy ed(x, y) ≤ l. Note that for any pair (x, y), we can assume that we
perform first the deletions on x, then the insertions, then all the substitutions. Thus,

Nx,l ≤
(

2d

l

)

·
(

2d

l

)

2l ·
(

2d

l

)

≤ 2l ·
(

2de

l

)3l

For l = d/100, we get that

Nx,d/100 ≤ 2d/100 · (200e)3d/100 ≤ 2d/2

Finally,

Eη [ed(x, y)] = Ex [Ey [ed(x, y)]] ≥ Ex

[

(1 − Nx,d/1002
−d) · (d/100)

]

= Ω(d)

2 Proof of lemma 3

To prove this lemma, we will use a deep theorem about boolean functions f : {0, 1}d → {0, 1}.
The theorem is that of Kahn-Kalai-Linial [KKL88]. We will not prove the KKL theorem in this
lecture. If you are interested in the proof this theorem, see [KKL88] for the original proof (using
a Fourier-analytic approach), or, for example, [FSar] (and references therein) for alternative proofs
(more combinatorial).

Consider a function f : {0, 1}d → {0, 1}. We define the influence of a variable as follows:
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Definition 2. For i ∈ [d], call the influence of the ith variable the quantity:

Infi(f) = Pr
x∈{0,1}d

[f(x) 6= f(x ⊕ ei)]

where ei is the vector with 1 in the ith position and 0 otherwise; ⊕ is the operation of coordinate-
wise sum modulo 2.

Why “influence”? Imagine the following voting procedure. There are n players x1, x2 . . . xn

with binary inputs (0 or 1), participating in a referendum. One can view the voting procedure as
a function f from their inputs, {0, 1}d, to the outcome of the referendum, {0, 1}. For example:

• In a democracy, the function is a majority: f(x1 . . . xd) = 1 iff
∑

i xi ≥ d/2 (assume d is odd,
and ignore vote rigging). We call such function f = Maj.

• The function could be a dictatorship, when f(x1 . . . xd) = xi, i.e., exactly one person (ith)
establishes the outcome of the referendum.

Now, influence Infi(f) is the probability that the ith player has an influence on the result of
the referendum after all the other players have fixed their value to random values. For example:

• In the majority, everybody has the same influence. Inf1(Maj) is precisely the probability
that

∑d
i=2 xi = (d − 1)/2, which is roughly Θ(1/

√
d). Thus Infi(Maj) = Θ(1/

√
d) for all

i ∈ [d].

• In a dictatorship f(x) = xi, Infi(f) = 1 and Infj(f) = 0 for j 6= i.

KKL theorem roughly answers the following question: how small can be the largest influence,
i.e., what is minf maxi Infi(f)? Note that for a constant function f(x) = 0, all influences are zero,
so the above question is trivial. But the question becomes much more non-trivial when we require
the function f to be balanced (Prx[f(x) = 0] = 1/2). A relatively simple combinatorial arguments
shows that

∑

i Infi(f) ≥ Ω(1) for all balanced f (therefore, the max influence is at least Ω(1/d)).

There is a function called tribes function, that obtains Infi(f) = Θ( log d
d ) and is roughly bal-

anced. The function is like this. Partition d players into t tribes, each of size log t (t satisfies
t log t = d). Note that t ≈ d/ log d. Let the partition be [d] = S1 ∪ S2 . . . St, where Si is the ith

tribe. Then f(x) = ∨t
i=1 ∧j∈Si

xj.
KKL theorem proves that the tribes function is essentially optimal:

Theorem 4 ([KKL88]). Let µ = Prx[f(x) = 1]. There exists some constant C > 1 such that

max
i

Infi(f) ≥ Cµ(1 − µ)
log d

d

In our proof, we will need a slightly stronger theorem than the above one (although, it is possible
to modify the proof in [KKL88] to obtain a similar stronger bound – see [KR06] for this).

Theorem 5 ([Tal94]). Let µ = Prx[f(x) = 1]. There exists some constant C > 1 such that

∑

i

Infi(f)

log(e/Infi(f))
≥ Cµ(1 − µ)
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Note that theorem 5 implies theorem 4.
Ok, we can finally prove lemma 3.

Proof of lemma 3. Suppose, wlog, µ = Prx[f(x) = 1] ≤ 1/2 (otherwise, invert the function). Note
that Eη [|f(x) − f(y)|] = µ(1 − µ) ≤ µ.

Assume, for contradiction, that, for any small c > 0, Eτ [|f(x) − f(y)|] ≤ c log d
d Eη [|f(x) − f(y)|] ≤

cµ log d
d .
Then,

∑

i

Infi(f) = dEτH
[|f(x) − f(y)|] ≤ 2dEτ [|f(x) − f(y)|] < 2cµ log d.

By theorem 5, there exists some j0 such that Infj0(f) ≥ d−1/8 (otherwise,
∑

Infi/ log(e/Infi) <
O(

∑

Infi/ log d) = O(µ)).
We will prove that there are at least d1/4 other variables with big influences, concluding that

∑

Infi(f) = Ω(d1/8), a contradiction.
First, note that

Prx[f(x) 6= f(S(x))] = EτS
[|f(x) − f(S(x))|] ≤ 2Eτ [|f(x) − f(y)|] ≤ 2cµ log d

d

For any k ∈ {1, . . . d1/4}, we have that (define Infz(f) = Infz−n(f) if z > n):

Infj0+k(f) = Pr
x

[f(x) 6= f(x ⊕ ej0+k)] = Ex [|f(x) − f(x ⊕ ej0+k)] ≤

Ex [|f(x) − f(S(x))|] + Ex [|f(S(x)) − f(S(x ⊕ ej0+k))] + Ex [|f(S(x ⊕ ej0+k)) − f(x ⊕ ej0+k)|] =

Ex [|f(S(x)) − f(S(x) ⊕ ej0+k+1)] + 2Ex [|f(x) − f(S(x))] = Infj0+k+1 + 2Pr[f(x) 6= f(S(x))]

Therefore, Infj0+k+1 ≥ Infj0+k − 22cµ log d
d . Since Infj0 ≥ n−1/8, we have that Infj0+k ≥

d−1/8 − ckµ log d
d ≥ d−1/8/2 for k ∈ [d1/4].

In total, we have that
∑

i Infi ≥ d−1/8/2 · d1/4 = d1/8 > cµ log d, a contradiction.

Remark 1. Lemma 3 is tight for the following function f . Fix some k = Θ(log d). Then f(x) = 1
iff x contains 0k as a substring (allowing the string to wrap-around in x). Then, the function has
balance µ ∈ [1/10, 9/10], and EτH

[|f(x) − f(y)|] ≤ O(k/d), whereas EτS
[|f(x) − f(y)|] = 0.
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