18.409: Topics in TCS: Embeddings of Finite Metric Spaces

In this lecture, we will prove that embedding edit metric over $\{0,1\}^{d}$ into l_{1} requires $\Omega(\log d)$ distortion, following the proof of [KR06]. We will start with the definitions.

The edit metric is a metric on $\{0,1\}^{d}$, where for two points $x, y \in\{0,1\}^{d}$, we define their edit distance, ed (x, y), to be the minimum number of edit operations to transform one string into the other. The edit operations are character substitution, insertion, or deletion. For example strings $(10)^{3}=101010$ and $(01)^{3}=010101$ are at distance 2 (to obtain the second string from the first string, delete the first 1 and insert a 1 at the end). One can view the edit metric as the shortest path metric on the d-dimensional hypercube with some additional "shortcuts" (in addition to the hypercube edges, there is, for example, also an edge $\left.\left((10)^{3},(01)^{3}\right)\right)$.
Definition 1. We call $c_{1}\left(\{0,1\}^{d}\right.$, ed) to be the minimum distortion required to embed edit metric over $\{0,1\}^{d}$ into l_{1}. I.e., $c_{1}\left(\{0,1\}^{d}, e d\right)$ is the minimum D such that there exists a mapping ϕ : $\{0,1\}^{d} \rightarrow l_{1}$ such that for any $x, y \in\{0,1\}^{d}$,

$$
e d(x, y) \leq\|\phi(x)-\phi(y)\|_{1} \leq D \cdot e d(x, y)
$$

In this lecture we prove the following theorem:
Theorem $1([\operatorname{KR} 06]) . c_{1}\left(\{0,1\}^{d}, e d\right)=\Omega(\log d)$.
For completeness, we mention that before [KR06], the previous lower bound was proven by Subhash Khot and Assaf Naor [KN05], who showed that $c_{1}\left(\{0,1\}^{d}, e d\right)=\Omega\left((\log d)^{1 / 2-o(1)}\right)$ using Fourier-analytic approach. The best upper bound on $c_{1}\left(\{0,1\}^{d}, e d\right)$ is ${ }^{1} 2^{\tilde{O}(\sqrt{\log d)}}$, proven by Rafail Ostrovsky and Yuval Rabani [OR05].

Open question 1. Bridge the gap between $c_{1}\left(\{0,1\}^{d}, e d\right) \geq \Omega(\log d)$ and $c_{1}\left(\{0,1\}^{d}, e d\right) \leq 2^{\tilde{O}(\sqrt{\log d})}$.

1 Proof of the main theorem

As was mentioned earlier in this class, it is sufficient to exhibit two distributions τ and η on $\{0,1\}^{d} \times\{0,1\}^{d}$ such that
1.

$$
\sum_{x, y} \tau(x, y) \cdot e d(x, y) \leq \alpha \sum_{x, y} \eta(x, y) \cdot e d(x, y)
$$

2. for any boolean function $f:\{0,1\}^{d} \rightarrow\{0,1\}$, it holds that

$$
\sum_{x, y} \tau(x, y) \cdot|f(x)-f(y)|>\beta \sum_{x, y} \eta(x, y) \cdot|f(x)-f(y)|
$$

Then, $c_{1}\left(\{0,1\}^{d}, e d\right) \geq \beta / \alpha$.
We construct τ and η as the following probability distributions (i.e., $\sum \tau(x, y)=\sum \eta(x, y)=1$):

[^0]- Distribution $\tau(x, y)$ (close pairs, or "edges"). Define the following shift operation $S:\{0,1\}^{d} \rightarrow$ $\{0,1\}^{d}: S\left(x_{1} x_{2} \ldots x_{d}\right)=x_{d} x_{1} x_{2} \ldots x_{d-1}$. Then let $E_{S}=\left\{(x, S(x)) \mid x \in\{0,1\}^{d}\right\}$, and τ_{S} is the uniform distribution over E_{S}. Also, let E_{H} be the set of edges in the hypercube: $E_{H}=\left\{(x, y) \mid\|x-y\|_{1}=1\right\} . \tau_{H}$ is the uniform distribution over E_{H}.
Then $\tau(x, y)=\frac{\tau_{S}(x, y)+\tau_{H}(x, y)}{2}$.
- Distribution $\eta(x, y)$ (far pairs, or "diagonals") is defined to be simply uniform over all pairs (x, y).
We then prove the following two lemmas, which imply that $c_{1}\left(\{0,1\}^{d}, e d\right)=\Omega(\log d)$.

Lemma 2.

$$
\mathbb{E}_{\tau}[e d(x, y)] \leq O\left(\frac{1}{d}\right) \cdot \mathbb{E}_{\eta}[e d(x, y)]
$$

Lemma 3. For any boolean function $f:\{0,1\}^{d} \rightarrow\{0,1\}$, we have that

$$
\mathbb{E}_{\tau}[|f(x)-f(y)|]>\Omega\left(\frac{\log d}{d}\right) \cdot \mathbb{E}_{\eta}[|f(x)-f(y)|]
$$

The second lemma is the most technical part of the proof and is proven/discussed in the next section. We prove below the first lemma:

Proof of lemma 2. First we claim that $\mathbb{E}_{\tau}[e d(x, y)] \leq 2$. This results from the fact that for any $(x, y) \in E_{S} \cup E_{H}, e d(x, y) \leq 2$.

Second, we claim that $\mathbb{E}_{\eta}[e d(x, y)] \geq \Omega(d)$. Fix any $x \in\{0,1\}^{d}$. Let's upper bound the number $N_{x, l}$ of strings y that satisfy $e d(x, y) \leq l$. Note that for any pair (x, y), we can assume that we perform first the deletions on x, then the insertions, then all the substitutions. Thus,

$$
N_{x, l} \leq\binom{ 2 d}{l} \cdot\binom{2 d}{l} 2^{l} \cdot\binom{2 d}{l} \leq 2^{l} \cdot\left(\frac{2 d e}{l}\right)^{3 l}
$$

For $l=d / 100$, we get that

$$
N_{x, d / 100} \leq 2^{d / 100} \cdot(200 e)^{3 d / 100} \leq 2^{d / 2}
$$

Finally,

$$
\mathbb{E}_{\eta}[e d(x, y)]=\mathbb{E}_{x}\left[\mathbb{E}_{y}[e d(x, y)]\right] \geq \mathbb{E}_{x}\left[\left(1-N_{x, d / 100} 2^{-d}\right) \cdot(d / 100)\right]=\Omega(d)
$$

2 Proof of lemma 3

To prove this lemma, we will use a deep theorem about boolean functions $f:\{0,1\}^{d} \rightarrow\{0,1\}$. The theorem is that of Kahn-Kalai-Linial [KKL88]. We will not prove the KKL theorem in this lecture. If you are interested in the proof this theorem, see [KKL88] for the original proof (using a Fourier-analytic approach), or, for example, [FSar] (and references therein) for alternative proofs (more combinatorial).

Consider a function $f:\{0,1\}^{d} \rightarrow\{0,1\}$. We define the influence of a variable as follows:

Definition 2. For $i \in[d]$, call the influence of the $i^{\text {th }}$ variable the quantity:

$$
\operatorname{In} f_{i}(f)=\operatorname{Pr}_{x \in\{0,1\}^{d}}\left[f(x) \neq f\left(x \oplus e_{i}\right)\right]
$$

where e_{i} is the vector with 1 in the $i^{\text {th }}$ position and 0 otherwise; \oplus is the operation of coordinatewise sum modulo 2.

Why "influence"? Imagine the following voting procedure. There are n players $x_{1}, x_{2} \ldots x_{n}$ with binary inputs (0 or 1), participating in a referendum. One can view the voting procedure as a function f from their inputs, $\{0,1\}^{d}$, to the outcome of the referendum, $\{0,1\}$. For example:

- In a democracy, the function is a majority: $f\left(x_{1} \ldots x_{d}\right)=1$ iff $\sum_{i} x_{i} \geq d / 2$ (assume d is odd, and ignore vote rigging). We call such function $f=\mathbf{M a j}$.
- The function could be a dictatorship, when $f\left(x_{1} \ldots x_{d}\right)=x_{i}$, i.e., exactly one person $\left(i^{t h}\right)$ establishes the outcome of the referendum.

Now, influence $\operatorname{In} f_{i}(f)$ is the probability that the $i^{t h}$ player has an influence on the result of the referendum after all the other players have fixed their value to random values. For example:

- In the majority, everybody has the same influence. $\operatorname{In} f_{1}(\mathbf{M a j})$ is precisely the probability that $\sum_{i=2}^{d} x_{i}=(d-1) / 2$, which is roughly $\Theta(1 / \sqrt{d})$. Thus $\operatorname{In} f_{i}(\mathbf{M a j})=\Theta(1 / \sqrt{d})$ for all $i \in[d]$.
- In a dictatorship $f(x)=x_{i}, \operatorname{In} f_{i}(f)=1$ and $\operatorname{In} f_{j}(f)=0$ for $j \neq i$.

KKL theorem roughly answers the following question: how small can be the largest influence, i.e., what is $\min _{f} \max _{i} \operatorname{In} f_{i}(f)$? Note that for a constant function $f(x)=0$, all influences are zero, so the above question is trivial. But the question becomes much more non-trivial when we require the function f to be balanced $\left(\operatorname{Pr}_{x}[f(x)=0]=1 / 2\right)$. A relatively simple combinatorial arguments shows that $\sum_{i} \operatorname{In} f_{i}(f) \geq \Omega(1)$ for all balanced f (therefore, the max influence is at least $\Omega(1 / d)$).

There is a function called tribes function, that obtains $\operatorname{In} f_{i}(f)=\Theta\left(\frac{\log d}{d}\right)$ and is roughly balanced. The function is like this. Partition d players into t tribes, each of size $\log t$ (t satisfies $t \log t=d)$. Note that $t \approx d / \log d$. Let the partition be $[d]=S_{1} \cup S_{2} \ldots S_{t}$, where S_{i} is the $i^{t h}$ tribe. Then $f(x)=\vee_{i=1}^{t} \wedge_{j \in S_{i}} x_{j}$.

KKL theorem proves that the tribes function is essentially optimal:
Theorem $4([\mathrm{KKL} 88])$. Let $\mu=\operatorname{Pr}_{x}[f(x)=1]$. There exists some constant $C>1$ such that

$$
\max _{i} \operatorname{In} f_{i}(f) \geq C \mu(1-\mu) \frac{\log d}{d}
$$

In our proof, we will need a slightly stronger theorem than the above one (although, it is possible to modify the proof in [KKL88] to obtain a similar stronger bound - see [KR06] for this).

Theorem 5 ([Tal94]). Let $\mu=\operatorname{Pr}_{x}[f(x)=1]$. There exists some constant $C>1$ such that

$$
\sum_{i} \frac{\operatorname{In} f_{i}(f)}{\log \left(e / \operatorname{In} f_{i}(f)\right)} \geq C \mu(1-\mu)
$$

Note that theorem 5 implies theorem 4.
Ok, we can finally prove lemma 3 .
Proof of lemma 3. Suppose, wlog, $\mu=\operatorname{Pr}_{x}[f(x)=1] \leq 1 / 2$ (otherwise, invert the function). Note that $\mathbb{E}_{\eta}[|f(x)-f(y)|]=\mu(1-\mu) \leq \mu$.

Assume, for contradiction, that, for any small $c>0, \mathbb{E}_{\tau}[|f(x)-f(y)|] \leq \frac{c \log d}{d} \mathbb{E}_{\eta}[|f(x)-f(y)|] \leq$ $\frac{c \mu \log d}{d}$.

Then,

$$
\sum_{i} \operatorname{In} f_{i}(f)=d \mathbb{E}_{\tau_{H}}[|f(x)-f(y)|] \leq 2 d \mathbb{E}_{\tau}[|f(x)-f(y)|]<2 c \mu \log d
$$

By theorem 5, there exists some j_{0} such that $\operatorname{In} f_{j_{0}}(f) \geq d^{-1 / 8}$ (otherwise, $\sum \operatorname{In} f_{i} / \log \left(e / \operatorname{In} f_{i}\right)<$ $\left.O\left(\sum I n f_{i} / \log d\right)=O(\mu)\right)$.

We will prove that there are at least $d^{1 / 4}$ other variables with big influences, concluding that $\sum \operatorname{In} f_{i}(f)=\Omega\left(d^{1 / 8}\right)$, a contradiction.

First, note that

$$
\operatorname{Pr}_{x}[f(x) \neq f(S(x))]=\mathbb{E}_{\tau_{S}}[|f(x)-f(S(x))|] \leq 2 \mathbb{E}_{\tau}[|f(x)-f(y)|] \leq \frac{2 c \mu \log d}{d}
$$

For any $k \in\left\{1, \ldots d^{1 / 4}\right\}$, we have that $\left(\operatorname{define} \operatorname{In} f_{z}(f)=\operatorname{In} f_{z-n}(f)\right.$ if $\left.z>n\right)$:

$$
\begin{gathered}
\operatorname{Inf}_{j_{0}+k}(f)=\operatorname{Pr}_{x}\left[f(x) \neq f\left(x \oplus e_{j_{0}+k}\right)\right]=\mathbb{E}_{x}\left[\mid f(x)-f\left(x \oplus e_{j_{0}+k}\right)\right] \leq \\
\mathbb{E}_{x}[|f(x)-f(S(x))|]+\mathbb{E}_{x}\left[\mid f(S(x))-f\left(S\left(x \oplus e_{j_{0}+k}\right)\right)\right]+\mathbb{E}_{x}\left[\left|f\left(S\left(x \oplus e_{j_{0}+k}\right)\right)-f\left(x \oplus e_{j_{0}+k}\right)\right|\right]= \\
\mathbb{E}_{x}\left[\mid f(S(x))-f\left(S(x) \oplus e_{j_{0}+k+1}\right)\right]+2 \mathbb{E}_{x}[\mid f(x)-f(S(x))]=\operatorname{In} f_{j_{0}+k+1}+2 \operatorname{Pr}[f(x) \neq f(S(x))]
\end{gathered}
$$

Therefore, $\operatorname{In} f_{j_{0}+k+1} \geq \operatorname{In} f_{j_{0}+k}-2 \frac{2 c \mu \log d}{d}$. Since $\operatorname{In} f_{j_{0}} \geq n^{-1 / 8}$, we have that $\operatorname{In} f_{j_{0}+k} \geq$ $d^{-1 / 8}-\frac{c k \mu \log d}{d} \geq d^{-1 / 8} / 2$ for $k \in\left[d^{1 / 4}\right]$.

In total, we have that $\sum_{i} \operatorname{In} f_{i} \geq d^{-1 / 8} / 2 \cdot d^{1 / 4}=d^{1 / 8}>c \mu \log d$, a contradiction.
Remark 1. Lemma 3 is tight for the following function f. Fix some $k=\Theta(\log d)$. Then $f(x)=1$ iff x contains 0^{k} as a substring (allowing the string to wrap-around in x). Then, the function has balance $\mu \in[1 / 10,9 / 10]$, and $\mathbb{E}_{\tau_{H}}[|f(x)-f(y)|] \leq O(k / d)$, whereas $\mathbb{E}_{\tau_{S}}[|f(x)-f(y)|]=0$.

References

[FSar] Dvir Falik and Alex Samorodnitsky. Edge-isoperimetric inequalities and influences. In Combinatorics, Probability, and Computing, to appear.
[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In Proceedings of the Symposium on Foundations of Computer Science, pages 68-80, 1988.
[KN05] Subhash Khot and Assaf Naor. Nonembeddability theorems via fourier analysis. In FOCS '05: Proceedings of the 46 th Annual IEEE Symposium on Foundations of Computer Science, pages 101-112, Washington, DC, USA, 2005. IEEE Computer Society.
[KR06] Robert Krauthgamer and Yuval Rabani. Improved lower bounds for embeddings into l_{1}. In SODA'06: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pages 1010-1017, New York, NY, USA, 2006. ACM Press.
[OR05] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. In Proceedings of the Symposium on Theory of Computing, 2005.
[Ta194] Michel Talagrand. On Russo's approximate 0-1 law. Ann. Probab., 22(3):1576-1587, 1994.

[^0]: ${ }^{1}$ Notation $\tilde{O}(f(n))$ means $O\left(f(n) \cdot(\log f(n))^{O(1)}\right)$.

