Here are some corrections to the book “Tensor categories”. Some of them appear at Ulrich Thiel’s website
http://ulthiel.com/math/teaching-org/tensor-categories/
along with many useful comments and explanations. If you see other mistakes, please let us know!

Corollary 2.25, typo at the beginning: $Y = Z = 1$ should be $Y = X = 1$.

Remark 2.4.2: Section 2.5 should be Section 2.6

Subsection 2.6, Line 3, typo: C_i are not the categories of graded vector spaces (they are not linear). Line 5: The word ”simple” should be deleted. Also we consider only monoidal functors which act trivially on A.

Exercise 2.9.1, typo: the correct answer is the $n - 1$-th Catalan number, $\frac{1}{n}\binom{2(n-1)}{n-1}$.

Remark 2.10.9, typo: in line 3, V^* should be *V.

Example 2.10.14, typo: 2.10.7(ii) should be 2.10.7(b).

Exercise 2.10.16, typo: ”left (respectively, right)” should be replaced by ”right (respectively, left)”.

Remark 4.5.6: “homomorphism of unital \mathbb{Z}-rings” should be “unital homomorphism of \mathbb{Z}-rings”.

Definition 4.7.11: Tr_L in the first line is not needed, but Tr should be Tr^L in the formula right below.

Definition 7.2.2: the diagram (7.8) defining morphisms of C-module functors should read

$$
\begin{array}{ccc}
F(X \otimes M) & \xrightarrow{\sigma_{X,M}} & X \otimes F(M) \\
\downarrow \nu_{X\otimes M} & & \downarrow \text{id}_X \otimes \nu_M \\
G(X \otimes M) & \xrightarrow{\tau_{X,M}} & X \otimes G(M).
\end{array}
$$

Example 7.4.6: $\text{End}_C(M)$ should be $\text{End}(M)$.

Example 7.12.26, last 4 lines: H^* should be H^cop and vice versa.

Exercise 8.18.9(vii). This exercise requires an extension of the semisimplification procedure to non-spherical pivotal categories, see P. Etingof and V. Ostrik, Semisimplification of tensor categories, arXiv:1801.04409, Subsection 2.3. Also the answer is incorrect for even n. The correct answer is the subring of $\mathbb{Z}[\mathbb{Z}/2n] \otimes \text{Ver}_n$ generated by $g \otimes L$, where g is
a generator of $\mathbb{Z}/2n$ and L the tautological object of the Verlinde category (corresponding to the 2-dimensional irreducible representation of the quantum \mathfrak{sl}_2).

Remark 9.7.3 applies to the situation when $\omega = 1$. The general case is discussed in detail by S. Natale in arXiv:1608.04435.

p.306, line 10: "$P \geq P'$" should be replaced with "$P \leq P'$".