Corrections to the book “Introduction to representation theory”
by Etingof et al, AMS, 2011
June 9, 2018

Gabriel’s theorem (Theorem 2.1.2): k is a fixed algebraically closed field.

Before Example 2.2.4: The condition $A \neq 0$ is not needed here, but it is needed in the definition of a simple algebra (Subsection 2.4).

Example 2.3.14: the representations are assumed finite dimensional.

Problem 2.8.6: Q assumed finite, add the relation $\sum_{i \in I} p_i = 1$.

Remark 3.1.3: V is assumed finite dimensional.

Corollary 4.2.4: Any finite dimensional representation...

Subsection 4.4, line 5: To conclude that the eigenvalues of g on V are roots of unity, the group G is assumed finite.

Proof of Theorem 4.6.2: The forms B_1, B_2 are assumed G-invariant.

Lemma 5.13.3: $n!$ should be replaced with $\frac{n!}{|P \lambda||Q \lambda|}$ in the lemma and its proof. The coefficient of 1 in c_λ is $\frac{1}{|P \lambda||Q \lambda|}$.

Corollary 5.15.4: in the numerator of the rightmost expression, replace 1 with $(-1)^n$.

Problem 6.1.5: In (a),(b), it is assumed that Q has no self-loops. In (a), the $1/2$ in the formula should not be there. The condition $x_i \geq 0$ in (a) should be removed.

The formula on p.165, line 3 should look like: $\oplus_{j \to i} V_j \to V_i$.

1
p.170, line 10 of 6.8: \mathcal{Q}_n should be \mathcal{Q}_r.

Line 1 of proof of Corollary 6.8.2: By the proof of Theorem 6.8.1...

Line 1 of proof of Corollary 6.8.3: Let i be the smallest integer such that...

Example 7.2.2(3): The opposite category of a given category \mathcal{C}, denoted by \mathcal{C}^{op}, is...

Proof of Proposition 9.1.1: Starting line 4 of the proof, a should be replaced by $-a$.

p.210, line 4: e_0 should be replaced by e_{k-1}.

If you see more errors, please write to me. Thank you!