Corrections to the book “Introduction to representation theory”
by Etingof et al, AMS, 2011
May 26, 2016

Problem 2.8.6: \(Q \) assumed finite, add the relation \(\sum_{i \in I} p_i = 1 \).

Corollary 4.2.4: Any finite dimensional representation...

p.5 of proof of Proposition 5.2.5: \(p(x) \) should be replaced with \(p(z) \).

Lemma 5.13.3: \(n! \) should be replaced with \(\frac{n!}{|P \Lambda||Q \Lambda|} \) in the lemma and its proof. The coefficient of 1 in \(c_\lambda \) is \(\frac{1}{|P \Lambda||Q \Lambda|} \).

Corollary 5.15.4: in the numerator of the rightmost expression, replace 1 with \((-1)^\sigma\).

p.131, lines 5-9 should read: “Thus, \(R \) is a quotient of a direct sum of representations of the form \(S^r(V \otimes V^*) \otimes (\wedge^N V^*) \otimes s \), where the group action on \(V^* \) in the product \(V \otimes V^* \) is trivial. So we may assume that \(Y \) is contained in a quotient of a (finite) direct sum of such representations. Thus, \(Y \) is contained in a direct sum of representations of the form \(V \otimes^n \otimes (\wedge^N V^*) \otimes s \), and we are done.”

p.131, line 14, replace \(f(gx) = gf(x) \) with \(f(xg) = g^{-1}f(x) \).

Example 7.2.2(3): The opposite category of a given category \(C \), denoted by \(C^{\text{op}} \), is...

Proof of Proposition 9.1.1: Starting line 4 of the proof, \(a \) should be replaced by \(-a\).

p.210, line 4: \(e_0 \) should be replaced by \(e_{k-1} \).