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Chapter 1

Introduction

Very roughly speaking, representation theory studies symmetry in
linear spaces. It is a beautiful mathematical subject which has many
applications, ranging from number theory and combinatorics to ge-
ometry, probability theory, quantum mechanics, and quantum field
theory.

Representation theory was born in 1896 in the work of the Ger-
man mathematician F. G. Frobenius. This work was triggered by a
letter to Frobenius by R. Dedekind. In this letter Dedekind made the
following observation: take the multiplication table of a finite group
G and turn it into a matrix Xg by replacing every entry g of this
table by a variable z,. Then the determinant of X factors into a
product of irreducible polynomials in {z,}, each of which occurs with
multiplicity equal to its degree. Dedekind checked this surprising fact
in a few special cases but could not prove it in general. So he gave
this problem to Frobenius. In order to find a solution of this problem
(which we will explain below), Frobenius created the representation
theory of finite groups.

The goal of this book is to give a “holistic” introduction to rep-
resentation theory, presenting it as a unified subject which studies
representations of associative algebras and treating the representa-
tion theories of groups, Lie algebras, and quivers as special cases. It
is designed as a textbook for advanced undergraduate and beginning

1
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2 1. Introduction

graduate students and should be accessible to students with a strong
background in linear algebra and a basic knowledge of abstract al-
gebra. Theoretical material in this book is supplemented by many
problems and exercises which touch upon a lot of additional topics;
the more difficult exercises are provided with hints.

The book covers a number of standard topics in representation
theory of groups, associative algebras, Lie algebras, and quivers. For
a more detailed treatment of these topics, we refer the reader to the
textbooks [S], [FH], and [CR]. We mostly follow [FH], with the
exception of the sections discussing quivers, which follow [BGP], and
the sections on homological algebra and finite dimensional algebras,
for which we recommend [W] and [CR], respectively.

The organization of the book is as follows.

Chapter 2 is devoted to the basics of representation theory. Here
we review the basics of abstract algebra (groups, rings, modules,
ideals, tensor products, symmetric and exterior powers, etc.), as well
as give the main definitions of representation theory and discuss the
objects whose representations we will study (associative algebras,
groups, quivers, and Lie algebras).

Chapter 3 introduces the main general results about representa-
tions of associative algebras (the density theorem, the Jordan-Holder
theorem, the Krull-Schmidt theorem, and the structure theorem for
finite dimensional algebras).

In Chapter 4 we discuss the basic results about representations of
finite groups. Here we prove Maschke’s theorem and the orthogonality
of characters and matrix elements and compute character tables and
tensor product multiplicities for the simplest finite groups. We also
discuss the Frobenius determinant, which was a starting point for
development of the representation theory of finite groups.

We continue to study representations of finite groups in Chapter
5, treating more advanced and special topics, such as the Frobenius-
Schur indicator, the Frobenius divisibility theorem, the Burnside the-
orem, the Frobenius formula for the character of an induced repre-
sentation, representations of the symmetric group and the general
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1. Introduction 3

linear group over C, representations of GLy(F,), representations of
semidirect products, etc.

In Chapter 6, we give an introduction to the representation theory
of quivers (starting with the problem of the classification of configura-
tions of n subspaces in a vector space) and present a proof of Gabriel’s
theorem, which classifies quivers of finite type.

In Chapter 7, we give an introduction to category theory, in par-
ticular, abelian categories, and explain how such categories arise in
representation theory.

In Chapter 8, we give a brief introduction to homological algebra
and explain how it can be applied to categories of representations.

Finally, in Chapter 9 we give a short introduction to the repre-
sentation theory of finite dimensional algebras.

Besides, the book contains six historical interludes written by Dr.
Slava Gerovitch.! These interludes, written in an accessible and ab-
sorbing style, tell about the life and mathematical work of some of
the mathematicians who played a major role in the development of
modern algebra and representation theory: F. G. Frobenius, S. Lie,
W. Burnside, W. R. Hamilton, H. Weyl, S. Mac Lane, and S. Eilen-
berg. For more on the history of representation theory, we recommend
that the reader consult the references to the historical interludes, in
particular the excellent book [Cul.

Acknowledgments. This book arose from the lecture notes of
a representation theory course given by the first author to the re-
maining six authors in March 2004 within the framework of the Clay
Mathematics Institute Research Academy for high school students
and its extended version given by the first author to MIT undergrad-
uate mathematics students in the fall of 2008.

The authors are grateful to the Clay Mathematics Institute for
hosting the first version of this course. The first author is very in-
debted to Victor Ostrik for helping him prepare this course and thanks

11 wish to thank Prof. Pavel Etingof and his co-authors for adding technical notes
to my historical monograph. While they have made a commendable effort at a concise
exposition, their notes, unfortunately, have grown in size and in the end occupied
a better part of this volume. I hope the reader will forgive this preponderance of
technicalities in what, in essence, is a history book. — S. Gerovitch.
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4 1. Introduction

Josh Nichols-Barrer and Thomas Lam for helping run the course in
2004 and for useful comments. He is also very grateful to Darij Grin-
berg for his very careful reading of the text, for many useful comments
and corrections, and for suggesting Problems 2.11.6, 3.3.3, 3.8.3, 3.8.4,
4.5.2, 5.10.2 and Exercises 5.27.2, 5.27.3, 7.9.8. Finally, the authors
gratefully acknowledge the use of the Dynkin diagram pictures pre-
pared by W. Casselman.
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Chapter 2

Basic notions of
representation theory

2.1. What is representation theory?

In technical terms, representation theory studies representations of
associative algebras. Its general content can be very briefly summa-
rized as follows.

An associative algebra over a field k is a vector space A over
k equipped with an associative bilinear multiplication a,b +— ab,
a,b € A. We will always consider associative algebras with unit,
i.e., with an element 1 such that 1-a =a-1=a for alla € A. A
basic example of an associative algebra is the algebra EndV of linear
operators from a vector space V to itself. Other important examples
include algebras defined by generators and relations, such as group
algebras and universal enveloping algebras of Lie algebras.

A representation of an associative algebra A (also called a left
A-module) is a vector space V equipped with a homomorphism p :
A — EndV, i.e., a linear map preserving the multiplication and unit.

A subrepresentation of a representation V' is a subspace U C V'
which is invariant under all operators p(a), a € A. Also, if V1, Vs are
two representations of A, then the direct sum V; @& V5 has an obvious
structure of a representation of A.

)
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6 2. Basic notions of representation theory

A nonzero representation V of A is said to be irreducible if its
only subrepresentations are 0 and V itself, and it is said to be inde-
composable if it cannot be written as a direct sum of two nonzero
subrepresentations. Obviously, irreducible implies indecomposable,
but not vice versa.

Typical problems of representation theory are as follows:
(1) Classify irreducible representations of a given algebra A.
(2) Classify indecomposable representations of A.

(3) Do (1) and (2) restricting to finite dimensional representa-
tions.

As mentioned above, the algebra A is often given to us by gener-
ators and relations. For example, the universal enveloping algebra U
of the Lie algebra sl(2) is generated by h, e, f with defining relations

(2.1.1) he —eh =2e, hf— fh=—2f ef— fe=h.

This means that the problem of finding, say, N-dimensional represen-
tations of A reduces to solving a bunch of nonlinear algebraic equa-
tions with respect to a bunch of unknown N x N matrices, for example
system (2.1.1) with respect to unknown matrices h, e, f.

It is really striking that such, at first glance hopelessly compli-
cated, systems of equations can in fact be solved completely by meth-
ods of representation theory! For example, we will prove the following
theorem.

Theorem 2.1.1. Let k = C be the field of complex numbers. Then:

(i) The algebra U has exactly one irreducible representation Vy of
each dimension, up to equivalence; this representation is realized in
the space of homogeneous polynomials of two variables x,y of degree
d—1 and is defined by the formulas

0 0 0 0
h pr— —_— 7) = 77 = _—
p(h) =25~ Yoy ple) > r(f) =y,

(i) Any indecomposable finite dimensional representation of U is
wrreducible. That is, any finite dimensional representation of U is a
direct sum of irreducible representations.

As another example consider the representation theory of quivers.
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2.1. What is representation theory? 7

A quiver is an oriented graph @ (which we will assume to be
finite). A representation of @) over a field k is an assignment of
a k-vector space V; to every vertex i of () and of a linear operator
Ap, Vi = Vj to every directed edge h going from i to j (loops and
multiple edges are allowed). We will show that a representation of a
quiver @ is the same thing as a representation of a certain algebra
Pg called the path algebra of (). Thus one may ask: what are the
indecomposable finite dimensional representations of Q7

More specifically, let us say that @) is of finite type if it has
finitely many indecomposable representations.

We will prove the following striking theorem, proved by P. Gabriel
in early 1970s:

Theorem 2.1.2. The finite type property of Q does not depend on
the orientation of edges. The connected graphs that yield quivers of
finite type are given by the following list:

o A, :
0o—o0—0-+-0—0—0
o D,
0—0—0-+-0—0
o
o I
O——O0—O0—0—0
(o]
° E7
oO—O0—O0—0—0—0
o
[ ] ES
oO—O—O0—0—0—0—0
o
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8 2. Basic notions of representation theory

The graphs listed in the theorem are called (simply laced) Dyn-
kin diagrams. These graphs arise in a multitude of classification
problems in mathematics, such as the classification of simple Lie al-
gebras, singularities, platonic solids, reflection groups, etc. In fact, if
we needed to make contact with an alien civilization and show them
how sophisticated our civilization is, perhaps showing them Dynkin
diagrams would be the best choice!

As a final example consider the representation theory of finite
groups, which is one of the most fascinating chapters of represen-
tation theory. In this theory, one considers representations of the
group algebra A = C[G] of a finite group G — the algebra with basis
ag,9 € G, and multiplication law agaj, = agn. We will show that any
finite dimensional representation of A is a direct sum of irreducible
representations, i.e., the notions of an irreducible and indecompos-
able representation are the same for A (Maschke’s theorem). Another
striking result discussed below is the Frobenius divisibility theorem:
the dimension of any irreducible representation of A divides the or-
der of G. Finally, we will show how to use the representation theory
of finite groups to prove Burnside’s theorem: any finite group of or-
der p*q®, where p, ¢ are primes, is solvable. Note that this theorem
does not mention representations, which are used only in its proof; a
purely group-theoretical proof of this theorem (not using representa-
tions) exists but is much more difficult!

2.2. Algebras

Let us now begin a systematic discussion of representation theory.

Let k£ be a field. Unless stated otherwise, we will always assume
that k is algebraically closed, i.e., any nonconstant polynomial with
coefficients in k£ has a root in k. The main example is the field of
complex numbers C, but we will also consider fields of characteristic
p, such as the algebraic closure Fp of the finite field F,, of p elements.

Definition 2.2.1. An associative algebra over k is a vector space
A over k together with a bilinear map A x A — A, (a,b) — ab, such
that (ab)c = a(be).
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2.3. Representations 9

Definition 2.2.2. A unit in an associative algebra A is an element
1 € A such that la = al = a.

Proposition 2.2.3. If a unit exists, it is unique.
Proof. Let 1,1’ be two units. Then 1 =11 = 1. O

From now on, by an algebra A we will mean an associative algebra
with a unit. We will also assume that A # 0.

Example 2.2.4. Here are some examples of algebras over k:

1. A=k.
2. A = k[xy,...,x,] — the algebra of polynomials in variables
TlyeoeyTp.

3. A =EndV — the algebra of endomorphisms of a vector space
V over k (i.e., linear maps, or operators, from V to itself). The
multiplication is given by composition of operators.

4. The free algebra A = k(x1,...,x,). A basis of this algebra
consists of words in letters 1, ..., z,, and multiplication in this basis
is simply the concatenation of words.

5. The group algebra A = k[G] of a group G. Its basis is
{ag, g9 € G}, with multiplication law aga) = ags.

Definition 2.2.5. An algebra A is commutative if ab = ba for all
a,be A

For instance, in the above examples, A is commutative in cases 1
and 2 but not commutative in cases 3 (if dim V' > 1) and 4 (if n > 1).
In case 5, A is commutative if and only if G is commutative.

Definition 2.2.6. A homomorphism of algebras f: A — Bisa
linear map such that f(zy) = f(x)f(y) for all z,y € A and f(1) = 1.

2.3. Representations

Definition 2.3.1. A representation of an algebra A (also called a
left A-module) is a vector space V' together with a homomorphism
of algebras p: A — EndV.
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10 2. Basic notions of representation theory

Similarly, a right A-module is a space V equipped with an
antihomomorphism p : A — EndV; i.e., p satisfies p(ab) = p(b)p(a)
and p(1) = 1.

The usual abbreviated notation for p(a)v is av for a left mod-
ule and va for a right module. Then the property that p is an
(anti)homomorphism can be written as a kind of associativity law:
(ab)v = a(bv) for left modules, and (va)b = v(ab) for right modules.

Remark 2.3.2. Let M be a left module over a commutative ring
A. Then one can regard M as a right A-module, with ma := am.
Similarly, any right A-module can be regarded as a left A-module. For
this reason, for commutative rings one does not distinguish between
left and right A-modules and just calls them A-modules.

Here are some examples of representations.

Example 2.3.3. 1. V =0.

2. V=2A, and p: A — EndA is defined as follows: p(a) is the
operator of left multiplication by a, so that p(a)b = ab (the usual
product). This representation is called the regular representation of
A. Similarly, one can equip A with a structure of a right A-module
by setting p(a)b := ba.

3. A = k. Then a representation of A is simply a vector space
over k.

4. A = k(x1,...,2,). Then a representation of A is just a vec-
tor space V over k with a collection of arbitrary linear operators
p(x1),...,p(xy) : V =V (explain why!).

Definition 2.3.4. A subrepresentation of a representation V' of
an algebra A is a subspace W C V which is invariant under all the
operators p(a) : V =V, a € A.

For instance, 0 and V are always subrepresentations.
Definition 2.3.5. A representation V' # 0 of A is irreducible (or

simple) if the only subrepresentations of V are 0 and V.

Definition 2.3.6. Let Vi, V5 be two representations of an algebra A.
A homomorphism (or intertwining operator) ¢ : V; — Vs is a
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2.3. Representations 11

linear operator which commutes with the action of A, i.e., ¢(av) =
ap(v) for any v € V3. A homomorphism ¢ is said to be an isomor-
phism of representations if it is an isomorphism of vector spaces.
The set (space) of all homomorphisms of representations V7 — V4 is
denoted by Hom 4 (V1, Va).

Note that if a linear operator ¢ : V3 — V5 is an isomorphism of
representations, then so is the linear operator ¢~! : Vo — V; (check
it!).

Two representations between which there exists an isomorphism
are said to be isomorphic. For practical purposes, two isomorphic
representations may be regarded as “the same”, although there could
be subtleties related to the fact that an isomorphism between two
representations, when it exists, is not unique.

Definition 2.3.7. Let Vi, V5 be representations of an algebra A.
Then the space Vi @ V5 has an obvious structure of a representation
of A, given by a(v1 @ v2) = avy @ ave. This representation is called
the direct sum of V] and V5.

Definition 2.3.8. A nonzero representation V' of an algebra A is said
to be indecomposable if it is not isomorphic to a direct sum of two
nonzero representations.

It is obvious that an irreducible representation is indecomposable.
On the other hand, we will see below that the converse statement is
false in general.

One of the main problems of representation theory is to classify
irreducible and indecomposable representations of a given algebra up
to isomorphism. This problem is usually hard and often can be solved
only partially (say, for finite dimensional representations). Below we
will see a number of examples in which this problem is partially or
fully solved for specific algebras.

We will now prove our first result — Schur’s lemma. Although
it is very easy to prove, it is fundamental in the whole subject of
representation theory.

Proposition 2.3.9 (Schur’s lemma). Let Vi, Vs be representations of
an algebra A over any field F' (which need not be algebraically closed).
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12 2. Basic notions of representation theory

Let ¢ : Vi — V3 be a nonzero homomorphism of representations.
Then:

(i) If V1 is irreducible, ¢ is injective.
(i) If Va is irreducible, ¢ is surjective.

Thus, if both V1 and Va are irreducible, ¢ is an isomorphism.

Proof. (i) The kernel K of ¢ is a subrepresentation of Vi. Since
¢ # 0, this subrepresentation cannot be V;. So by irreducibility of V;
we have K = 0.

(ii) The image I of ¢ is a subrepresentation of V. Since ¢ # 0,
this subrepresentation cannot be 0. So by irreducibility of V5 we have
1=V O

Corollary 2.3.10 (Schur’s lemma for algebraically closed fields). Let
V' be a finite dimensional irreducible representation of an algebra A
over an algebraically closed field k, and let ¢ : V — V be an inter-
twining operator. Then ¢ = X-1d for some X € k (a scalar operator).

Remark 2.3.11. Note that this corollary is false over the field of
real numbers: it suffices to take A = C (regarded as an R-algebra)
and V = A.

Proof. Let A be an eigenvalue of ¢ (a root of the characteristic poly-
nomial of ¢). It exists since k is an algebraically closed field. Then
the operator ¢ — A\ 1d is an intertwining operator V' — V| which is not
an isomorphism (since its determinant is zero). Thus by Proposition
2.3.9 this operator is zero, hence the result. O

Corollary 2.3.12. Let A be a commutative algebra. Then every
irreducible finite dimensional representation V' of A is 1-dimensional.

Remark 2.3.13. Note that a 1-dimensional representation of any

algebra is automatically irreducible.

Proof. Let V be irreducible. For any element a € A, the operator
p(a) : V = V is an intertwining operator. Indeed,

p(a)p(b)v = p(ab)v = p(ba)v = p(b)p(a)v
(the second equality is true since the algebra is commutative). Thus,
by Schur’s lemma, p(a) is a scalar operator for any a € A. Hence
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2.3. Representations 13

every subspace of V' is a subrepresentation. But V is irreducible, so
0 and V are the only subspaces of V. This means that dimV =1
(since V # 0). O

Example 2.3.14. 1. A = k. Since representations of A are simply
vector spaces, V = A is the only irreducible and the only indecom-
posable representation.

2. A = k[z]. Since this algebra is commutative, the irreducible
representations of A are its 1-dimensional representations. As we
discussed above, they are defined by a single operator p(x). In the 1-
dimensional case, this is just a number from k. So all the irreducible
representations of A are V\, = k, A € k, in which the action of A
is defined by p(z) = A. Clearly, these representations are pairwise
nonisomorphic.

The classification of indecomposable representations of k[z] is
more interesting. To obtain it, recall that any linear operator on
a finite dimensional vector space V' can be brought to Jordan nor-
mal form. More specifically, recall that the Jordan block Jy ,, is the
operator on k™ which in the standard basis is given by the formulas
Jan€i = Aej+e;_1 for i > 1 and Jy n,eq; = Aej. Then for any linear
operator B : V — V there exists a basis of V' such that the matrix
of B in this basis is a direct sum of Jordan blocks. This implies that
all the indecomposable representations of A are V), = k", A € k,
with p(z) = Jy . The fact that these representations are indecom-
posable and pairwise nonisomorphic follows from the Jordan normal
form theorem (which in particular says that the Jordan normal form
of an operator is unique up to permutation of blocks).

This example shows that an indecomposable representation of an
algebra need not be irreducible.

3. The group algebra A = k[G], where G is a group. A represen-
tation of A is the same thing as a representation of G, i.e., a vector
space V together with a group homomorphism p : G — Aut(V),
where Aut(V) = GL(V') denotes the group of invertible linear maps
from the space V to itself (the general linear group of V).
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14 2. Basic notions of representation theory

Problem 2.3.15. Let V' be a nonzero finite dimensional representa-
tion of an algebra A. Show that it has an irreducible subrepresen-
tation. Then show by example that this does not always hold for
infinite dimensional representations.

Problem 2.3.16. Let A be an algebra over a field k. The center
Z(A) of A is the set of all elements z € A which commute with all
elements of A. For example, if A is commutative, then Z(A) = A.

(a) Show that if V' is an irreducible finite dimensional representa-
tion of A, then any element z € Z(A) acts in V' by multiplication by
some scalar xv(z). Show that xy : Z(A) — k is a homomorphism.
It is called the central character of V.

(b) Show that if V' is an indecomposable finite dimensional rep-
resentation of A, then for any z € Z(A), the operator p(z) by which z
acts in V has only one eigenvalue xv (z), equal to the scalar by which z
acts on some irreducible subrepresentation of V. Thus xy : Z(4) — k
is a homomorphism, which is again called the central character of V.

(¢c) Does p(z) in (b) have to be a scalar operator?

Problem 2.3.17. Let A be an associative algebra, and let V be
a representation of A. By End4 (V) one denotes the algebra of all
homomorphisms of representations V' — V. Show that Ends(A) =
A°P the algebra A with opposite multiplication.

Problem 2.3.18. Prove the following “infinite dimensional Schur
lemma” (due to Dixmier): Let A be an algebra over C and let V/
be an irreducible representation of A with at most countable basis.
Then any homomorphism of representations ¢ : V' — V is a scalar
operator.

Hint: By the usual Schur’s lemma, the algebra D := End 4 (V) is
an algebra with division. Show that D is at most countably dimen-
sional. Suppose ¢ is not a scalar, and consider the subfield C(¢) C D.
Show that C(¢) is a transcendental extension of C. Derive from this
that C(¢) is uncountably dimensional and obtain a contradiction.
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2.5. Quotients 15

2.4. Ideals

A left ideal of an algebra A is a subspace I C A such that al C [
for all a € A. Similarly, a right ideal of an algebra A is a subspace
I C A such that Ia C I for all a € A. A two-sided ideal is a
subspace that is both a left and a right ideal.

Left ideals are the same as subrepresentations of the regular rep-
resentation A. Right ideals are the same as subrepresentations of the
regular representation of the opposite algebra A°P.

Below are some examples of ideals:

e If A is any algebra, 0 and A are two-sided ideals. An algebra
A is called simple if 0 and A are its only two-sided ideals.

e If ¢ : A — B is a homomorphism of algebras, then ker ¢ is
a two-sided ideal of A.

e If S is any subset of an algebra A, then the two-sided ideal
generated by S is denoted by (S) and is the span of ele-
ments of the form asb, where a,b € A and s € S. Similarly,
we can define (S), = span{as} and (S), = span{sb}, the
left, respectively right, ideal generated by S.

Problem 2.4.1. A maximal ideal in a ring A is an ideal I # A
such that any strictly larger ideal coincides with A. (This definition
is made for left, right, or two-sided ideals.) Show that any unital
ring has a maximal left, right, and two-sided ideal. (Hint: Use Zorn’s
lemma.)

2.5. Quotients

Let A be an algebra and let I be a two-sided ideal in A. Then A/I
is the set of (additive) cosets of I. Let m: A — A/I be the quotient
map. We can define multiplication in A/I by 7w(a) - w(b) := w(ab).
This is well defined because if m(a) = 7(a’), then

7(a’b) = w(ab+ (@' — a)b) = w(ab) + 7((a’ — a)b) = w(ab)
because (o' —a)b € Ib C I = kerm, as [ is a right ideal; similarly, if
7(b) = w ('), then

m(ab’) = m(ab+ a(d — b)) = w(ab) + w(a() — b)) = 7w(ab)
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16 2. Basic notions of representation theory

because a(b' —b) € al C I =kerm, as I is also a left ideal. Thus, A/T
is an algebra.

Similarly, if V' is a representation of A and W C V is a subrep-
resentation, then V/W is also a representation. Indeed, let 7 : V —
V/W be the quotient map, and set py/w (a)7(x) := 7(py (a)z).

Above we noted that left ideals of A are subrepresentations of the
regular representation of A, and vice versa. Thus, if I is a left ideal
in A, then A/I is a representation of A.

Problem 2.5.1. Let A = k[x1,...,x,] and let I # A be any ideal
in A containing all homogeneous polynomials of degree > N. Show
that A/I is an indecomposable representation of A.

Problem 2.5.2. Let V' # 0 be a representation of A. We say that a
vector v € V is cyclic if it generates V', i.e., Av = V. A representation
admitting a cyclic vector is said to be cyclic. Show the following:

(a) V is irreducible if and only if all nonzero vectors of V are
cyclic.

(b) V is cyclic if and only if it is isomorphic to A/I, where I is a
left ideal in A.

(c) Give an example of an indecomposable representation which
is not cyclic.

Hint: Let A = C[z,y]/I2, where I5 is the ideal spanned by ho-
mogeneous polynomials of degree > 2 (so A has a basis 1,z,y). Let

V = A* be the space of linear functionals on A, with the action of A
given by (p(a)f)(b) = f(ba). Show that V' provides such an example.

2.6. Algebras defined by generators and

relations
If f1,..., fm are elements of the free algebra k(zy,...,x,), we say
that the algebra A := k(x1,...,2n)/{{f1,..., fm}) is generated by
Z1,...,T, with defining relations f; =0, ..., f, =0.
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2.7. Examples of algebras 17

2.7. Examples of algebras

The following two examples are among the simplest interesting ex-
amples of noncommutative associative algebras:
(1) the Weyl algebra, k(z,y)/(yz — zy — 1);
(2) the ¢-Weyl algebra, generated by z, 771, y,y~! with defin-
ing relations yr = qzy and zx ' =2 o = yy l =y ly =
1.

Proposition 2.7.1. (i) A basis for the Weyl algebra A is {x'y? i, j >
0}.
(ii) A basis for the ¢-Weyl algebra A, is {x'y?,i,j € Z}.

Proof. (i) First let us show that the elements z%y’ are a spanning set
for A. To do this, note that any word in x,y can be ordered to have
all the ’s on the left of the y’s, at the cost of interchanging some x
and y. Since yr—xy = 1, this will lead to error terms, but these terms
will be sums of monomials that have a smaller number of letters z,y
than the original word. Therefore, continuing this process, we can
order everything and represent any word as a linear combination of
xtyl.

The proof that 2’y? are linearly independent is based on represen-
tation theory. Namely, let a be a variable, and let E = t%k[a][t,t™!]
(here t is just a formal symbol, so really E = k[a][t,t7!]). Then E

is a representation of A with action given by xf = tf and yf = %
(where d(t;:n) := (a + n)t*™~1). Suppose now that we have a non-

trivial linear relation > ¢;;2'y? = 0. Then the operator

/d\?
L:ZCijtl <dt>

acts by zero in E. Let us write L as

T d 7
L= ZQj(t) (dt> ,
j=0
where @, # 0. Then we have

Lt =Y " Qj(t)a(a—1)...(a—j+ 1)t 7.
§=0
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18 2. Basic notions of representation theory

This must be zero, so we have Z;:O Qj(t)ala—1)...(a—j+1)t77 =0
in k[a][t,t7!]. Taking the leading term in a, we get Q.(t) = 0, a
contradiction.

(ii) Any word in x,y,2~!,y~! can be ordered at the cost of mul-
tiplying it by a power of gq. This easily implies both the spanning
property and the linear independence. O
Remark 2.7.2. The proof of (i) shows that the Weyl algebra A can

be viewed as the algebra of polynomial differential operators in one
variable ¢.

The proof of (i) also brings up the notion of a faithful represen-
tation.

Definition 2.7.3. A representation p: A — End V of an algebra A
is faithful if p is injective.

For example, k[t] is a faithful representation of the Weyl algebra if
k has characteristic zero (check it!), but not in characteristic p, where
(d/dt)?@Q = 0 for any polynomial Q. However, the representation
E = t%k[a][t,t~ ], as we've seen, is faithful in any characteristic.

Problem 2.7.4. Let A be the Weyl algebra.

(a) If char k = 0, what are the finite dimensional representations
of A7 What are the two-sided ideals in A?

Hint: For the first question, use the fact that for two square
matrices B,C, Tr(BC) = Tr(CB). For the second question, show
that any nonzero two-sided ideal in A contains a nonzero polynomial
in x, and use this to characterize this ideal.

Suppose for the rest of the problem that char k = p.

(b) What is the center of A?

Hint: Show that xP and y? are central elements.

(c) Find all irreducible finite dimensional representations of A.

Hint: Let V be an irreducible finite dimensional representation
of A, and let v be an eigenvector of y in V. Show that the collection

of vectors {v, zv,z?v,..., 2P~ 1o} is a basis of V.

Problem 2.7.5. Let ¢ be a nonzero complex number, and let A be
the g-Weyl algebra over C.
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2.8. Quivers 19

(a) What is the center of A for different ¢7? If ¢ is not a root of
unity, what are the two-sided ideals in A7

(b) For which ¢ does this algebra have finite dimensional repre-
sentations?

Hint: Use determinants.

(c) Find all finite dimensional irreducible representations of A for
such gq.

Hint: This is similar to part (c) of the previous problem.

2.8. Quivers

Definition 2.8.1. A quiver @ is a directed graph, possibly with
self-loops and/or multiple edges between two vertices.

Example 2.8.2.

We denote the set of vertices of the quiver ) as I and the set
of edges as E. For an edge h € E, let b/, h” denote the source and
target of h, respectively:

e ———> 0

1% h h
Definition 2.8.3. A representation of a quiver @ is an assign-
ment to each vertex i € I of a vector space V; and to each edge h € E
of a linear map xy, : Vi —> Vjor.

It turns out that the theory of representations of quivers is a part
of the theory of representations of algebras in the sense that for each
quiver @, there exists a certain algebra Pgp, called the path algebra
of @, such that a representation of the quiver @) is “the same” as
a representation of the algebra Pg. We shall first define the path
algebra of a quiver and then justify our claim that representations of
these two objects are “the same”.
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20 2. Basic notions of representation theory

Definition 2.8.4. The path algebra Py of a quiver () is the algebra
whose basis is formed by oriented paths in @), including the trivial
paths p;, i € I, corresponding to the vertices of @), and multiplication
is the concatenation of paths: ab is the path obtained by first tracing
b and then a. If two paths cannot be concatenated, the product is
defined to be zero.

Remark 2.8.5. It is easy to see that for a finite quiver Y p; =1, so
il

FPg is an algebra with unit.

Problem 2.8.6. Show that for a finite quiver @} the algebra Py is

generated by p; for i € I and ay, for h € E with the following defining

relations:

(1) Zie]pi =1,

(2) P} = pi, pip; = 0 for i # j,

(3) anpn = an, app; =0 for j # I,
(4) puran = ap, piap, = 0 for i # h".

We now justify our statement that a representation of a quiver is
the same thing as a representation of the path algebra of a quiver.

Let V be a representation of the path algebra FPg. From this
representation, we can construct a representation of @ as follows: let
Vi = p;V, and for any edge h, let x;, = ah|ph,v :pw'V — pp'V be
the operator corresponding to the one-edge path h.

Similarly, let (V;, ) be a representation of a quiver Q. From this
representation, we can construct a representation of the path algebra
Pg:let V=@,V let p; : V= V; = V be the projection onto V;,
and for any path p = hy ... hy, let ap = xp, ... 2p,, : Vi, — Vi be
the composition of the operators corresponding to the edges occurring
in p (and the action of this operator on the other V; is zero).

It is clear that the above assignments V — (p;V) and (V;) —
P, Vi are inverses of each other. Thus, we have a bijection between
isomorphism classes of representations of the algebra Py and of the
quiver Q.
Remark 2.8.7. In practice, it is generally easier to consider a rep-
resentation of a quiver as in Definition 2.8.3.
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2.8. Quivers 21

We lastly define several previous concepts in the context of quiver
representations.

Definition 2.8.8. A subrepresentation of a representation (V;, )
of a quiver @ is a representation (W;, ) where W; CV; for alli € I
and where x,(Wj) € Wy and 2}, = zp|w,, : Wi — Wy for all
hekE.

Definition 2.8.9. The direct sum of two representations (V;, xp)
and (W;,yp) is the representation (V; ® Wi, xp, @ yp).

As with representations of algebras, a nonzero representation (V;)
of a quiver @ is said to be irreducible if its only subrepresentations
are (0) and (V;) itself, and it is said to be indecomposable if it is not
isomorphic to a direct sum of two nonzero representations.

Definition 2.8.10. Let (V;,x) and (W;,yn) be representations of
the quiver @. A homomorphism ¢ : (V;) — (W;) of quiver
representations is a collection of maps ¢; : V; — W; such that
Yn © Ppr = ppr o xp for all h € E.

Problem 2.8.11. Let A be aZ,-graded algebra, i.e., A = P,,5, Aln],
and A[n] - Am] C A[n 4+ m]. If A[n] is finite dimensional, it is useful
to consider the Hilbert series ha(t) = > dim A[n]t" (the generating
function of dimensions of A[n]). Often this series converges to a ratio-
nal function, and the answer is written in the form of such a function.
For example, if A = k[z] and deg(z™) = n, then

1
ha(t)=1+t+t>+- - t" 4. = Tt

Find the Hilbert series of the following graded algebras:

(a) A=k[z1,...,2zm,] (where the grading is by degree of polyno-
mials).

(b) A=k(x1,...,2m ) (the grading is by length of words).

(c) A is the exterior (= Grassmann) algebra Ag[z1,...,Zn] gen-
erated over some field k by x1,...,x,, with the defining relations
z;x; +x;x; = 0 and 27 = 0 for all 4,5 (the grading is by degree).

(d) A is the path algebra Py of a quiver @) (the grading is defined
by deg(p;) = 0, deg(an) = 1).

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



22 2. Basic notions of representation theory

Hint: The closed answer is written in terms of the adjacency
matrix Mg of Q.

2.9. Lie algebras

Let g be a vector space over a field k, and let [, | : gxg — g
be a skew-symmetric bilinear map. (That is, [a,a] = 0, and hence
[CI,, b] = _[bv a])

Definition 2.9.1. (g, [, ]) is a Lie algebra if [, ] satisfies the Jacobi
identity

(2.9.1) [[a,b],c] + [[b.],a] + [[c,a],b] = 0.

Example 2.9.2. Some examples of Lie algebras are:
(1) Any space g with [, ] =0 (abelian Lie algebra).
(2) Any associative algebra A with [a, b] = ab—ba , in particular,
the endomorphism algebra A = End(V'), where V is a vector

space. When such an A is regarded as a Lie algebra, it is
often denoted by gl(V') (general linear Lie algebra).

(3) Any subspace U of an associative algebra A such that [a, b] €
U for all a,b € U.

(4) The space Der(A) of derivations of an algebra A, i.e. linear
maps D : A — A which satisfy the Leibniz rule:

D(ab) = D(a)b+ aD(b).

(5) Any subspace a of a Lie algebra g which is closed under the
commutator map [, ], i.e., such that [a,b] € a if a,b € a.
Such a subspace is called a Lie subalgebra of g.

Remark 2.9.3. Ado’s theorem says that any finite dimensional Lie
algebra is a Lie subalgebra of gl(V') for a suitable finite dimensional
vector space V.

[43

Remark 2.9.4. Derivations are important because they are the “in-
finitesimal version” of automorphisms (i.e., isomorphisms onto itself).
For example, assume that g(¢) is a differentiable family of automor-
phisms of a finite dimensional algebra A over R or C parametrized
by t € (—¢,¢€) such that g(0) = Id. Then D := ¢’(0) : A — A is a
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2.9. Lie algebras 23

derivation (check it!). Conversely, if D : A — A is a derivation, then

e'P is a 1-parameter family of automorphisms (give a proof!).

This provides a motivation for the notion of a Lie algebra. Namely,
we see that Lie algebras arise as spaces of infinitesimal automorphisms
(= derivations) of associative algebras. In fact, they similarly arise as
spaces of derivations of any kind of linear algebraic structures, such
as Lie algebras, Hopf algebras, etc., and for this reason play a very
important role in algebra.

Here are a few more concrete examples of Lie algebras:

(1) R? with [u,v] = u x v, the cross-product of u and v.

(2) sl(n), the set of n x n matrices with trace 0.
For example, s[(2) has the basis

0 1 0 0 1 0
(o) =00 = 0)
with relations
[h,e] = 2e, [h, f]==2f, [e,f] = h.

(3) The Heisenberg Lie algebra H of matrices (§ § g)
It has the basis

00 0 010 00 1
z=10 0 1|, y=(0 0 0], ec=[0 0 0
00 0 00 0 00 0

with relations [y, z] = ¢ and [y,c] = [z, ] =

(4) The algebra aff(1) of matrices (§¢).
Its basis consists of X = (3 9) and Y = (J ), with [X,Y] =
Y.

(5) so(n), the space of skew-symmetric n x n matrices, with
[a,b] = ab — ba.

Exercise 2.9.5. Show that example (1) is a special case of example

(5) (for n = 3).

Definition 2.9.6. Let g1,g2 be Lie algebras. A homomorphism
of Lie algebras ¢ : g1 — g2 is a linear map such that ¢([a,b]) =
[p(a), (b))
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24 2. Basic notions of representation theory

Definition 2.9.7. A representation of a Lie algebra g is a vector
space V with a homomorphism of Lie algebras p: g — End V.

Example 2.9.8. Some examples of representations of Lie algebras
are:

(1) V=0.

(2) Any vector space V' with p = 0 (the trivial representation).

(3) The adjoint representation V = g with p(a)(b) := [a, b].
That this is a representation follows from equation (2.9.1).

Thus, the meaning of the Jacobi identity is that it is equiv-
alent to the existence of the adjoint representation.

It turns out that a representation of a Lie algebra g is the same
thing as a representation of a certain associative algebra U(g). Thus,
as with quivers, we can view the theory of representations of Lie alge-
bras as a part of the theory of representations of associative algebras.

Definition 2.9.9. Let g be a Lie algebra with basis z; and [ , |
defined by [z;, z;] = >, ijxk. The universal enveloping algebra
U(g) is the associative algebra generated by the x;’s with the defining
relations x;z; — zjz; = Y, cfjxk.

Remark 2.9.10. This is not a very good definition since it depends
on the choice of a basis. Later we will give an equivalent definition
which will be basis-independent.

Exercise 2.9.11. Explain why a representation of a Lie algebra is
the same thing as a representation of its universal enveloping algebra.

Example 2.9.12. The associative algebra U(sl(2)) is the algebra
generated by e, f, h, with relations

he — eh = 2e, hf— fh==2f, ef — fe=h.
Example 2.9.13. The algebra U(#), where H is the Heisenberg Lie

algebra, is the algebra generated by x, y, ¢ with the relations
YT — TY = C, yc—cy =0, zc—cxr = 0.

Note that the Weyl algebra is the quotient of U(H) by the relation
c=1.
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2.9. Lie algebras 25

Remark 2.9.14. Lie algebras were introduced by Sophus Lie (see
Section 2.10) as an infinitesimal version of Lie groups (in early texts
they were called “infinitesimal groups” and were called Lie algebras
by Hermann Weyl in honor of Lie). A Lie group is a group G which is
also a manifold (i.e., a topological space which locally looks like R™)
such that the multiplication operation is differentiable. In this case,
one can define the algebra of smooth functions C°°(G) which carries
an action of G by right translations ((g o f)(x) := f(xg)), and the
Lie algebra Lie(G) of G consists of derivations of this algebra which
are invariant under this action (with the Lie bracket being the usual
commutator of derivations). Clearly, such a derivation is determined
by its action at the unit element e € G, so Lie(G) can be identified
as a vector space with the tangent space T.G to G at e.

Sophus Lie showed that the attachment G — Lie(G) is a bijec-
tion between isomorphism classes of simply connected Lie groups (i.e.,
connected Lie groups on which every loop contracts to a point) and
finite dimensional Lie algebras over R. This allows one to study (dif-
ferentiable) representations of Lie groups by studying representations
of their Lie algebras, which is easier since Lie algebras are “linear” ob-
jects while Lie groups are “nonlinear”. Namely, a finite dimensional
representation of G can be differentiated at e to yield a representa-
tion of Lie(G), and conversely, a finite dimensional representation of
Lie(G) can be exponentiated to give a representation of G. Moreover,
this correspondence extends to certain classes of infinite dimensional
representations.

The most important examples of Lie groups are linear algebraic
groups, which are subgroups of GL,,(R) defined by algebraic equa-~
tions (such as, for example, the group of orthogonal matrices O, (R)).

Also, given a Lie subalgebra g C gl,(R) (which, by Ado’s theo-
rem, can be any finite dimensional real Lie algebra), we can define G
to be the subgroup of GL, (R) generated by the elements eX, X € g.
One can show that this group has a natural structure of a connected
Lie group, whose Lie algebra is g (even though it is not always a
closed subgroup). While this group is not always simply connected,
its universal covering G is, and it is the Lie group corresponding to g
under Lie’s correspondence.
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26 2. Basic notions of representation theory

For more on Lie groups and their relation to Lie algebras, the
reader is referred to textbooks on this subject, e.g. [Ki].

2.10. Historical interlude: Sophus Lie’s trials
and transformations

To call Sophus Lie (1842-1899) an overachiever would be an under-
statement. Scoring first at the 1859 entrance examinations to the
University of Christiania (now Oslo) in Norway, he was determined
to finish first as well. When problems with his biology class derailed
this project, Lie received only the second-highest graduation score.
He became depressed, suffered from insomnia, and even contemplated
suicide. At that time, he had no desire to become a mathematician.
He began working as a mathematics tutor to support himself, read
more and more on the subject, and eventually began publishing re-
search papers. He was 26 when he finally decided to devote himself
to mathematics.

The Norwegian government realized that the best way to edu-
cate their promising scientists was for them to leave Norway, and
Lie received a fellowship to travel to Europe. Lie went straight to
Berlin, a leading Furopean center of mathematical research, but the
mathematics practiced by local stars — Weierstrass and Kronecker —
did not impress him. There Lie met young Felix Klein, who eagerly
shared this sentiment. The two had a common interest in line geome-
try and became friends. Klein’s and Lie’s personalities complemented
each other very well. As the mathematician Hans Freudenthal put it,
“Lie and Klein had quite different characters as humans and math-
ematicians: the algebraist Klein was fascinated by the peculiarities
of charming problems; the analyst Lie, parting from special cases,
sought to understand a problem in its appropriate generalization”
[16, p. 323].

Lie liked to bounce ideas off his friend’s head, and Klein’s returns
were often quite powerful. In particular, Klein pointed out an anal-
ogy between Lie’s research on the tetrahedral complex and the Galois
theory of commutative permutation groups. Blissfully unaware of
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2.10. Historical interlude: Sophus Lie 27

the difficulties on his path, Lie enthusiastically embraced this sugges-
tion. Developing a continuous analog of the Galois theory of algebraic
equations became Lie’s idée fize for the next several years.

Lie and Klein traveled to Paris together, and there Lie produced
the famous contact transformation, which mapped straight lines into
spheres. An application of this expertise to the Earth sphere, however,
did not serve him well. After the outbreak of the Franco-Prussian war,
Lie could not find a better way to return to Norway than by first
hiking to Italy. With his peculiar hiking habits, such as taking off his
clothes in the rain and putting them into his backpack, he was not
able to flee very far. The French quickly apprehended him and found
papers filled with mysterious symbols. Lie’s efforts to explain the
meaning of his mathematical notation did not dispel the authorities’
suspicion that he was a German spy. A short stay in prison afforded
him some quiet time to complete his studies, and upon return to
Norway, Lie successfully defended his doctoral dissertation. Unable
to find a job in Norway, Lie resolved to go to Sweden, but Norwegian
patriots intervened, and the Norwegian National Assembly voted by
a large majority to establish a personal extraordinary professorship
for Lie at the University of Christiania. Although the salary offered
was less than extraordinary, he stayed.

Lie’s research on sphere mapping and his lively exchanges with
Klein led both of them to think of more general connections between
group theory and geometry. In 1872 Klein presented his famous FEr-
langen Program, in which he suggested unifying specific geometries
under a general framework of projective geometry and using group
theory to organize all geometric knowledge. Lie and Klein clearly ar-
ticulated the notion of a transformation group, the continuous analog
of a permutation group, with promising applications to geometry and
differential equations, but they lacked a general theory of the sub-
ject. The Erlangen Program implied one aspect of this project — the
group classification problem — but Lie had no intention of attacking
this bastion at the time. As he later wrote to Klein, “[IJn your essay
the problem of determining all groups is not posited, probably on the
grounds that at the time such a problem seemed to you absurd or
impossible, as it did to me” [22, pp. 41-42].

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



28 2. Basic notions of representation theory

By the end of 1873, Lie’s pessimism gave way to a much brighter
outlook. After dipping into the theory of first order differential equa-
tions, developed by Jacobi and his followers, and making considerable
advances with his idée fize, Lie finally acquired the mathematical
weaponry needed to answer the challenge of the Erlangen Program
and to tackle the theory of continuous transformation groups.

Living on the outskirts of Europe, Lie felt quite marginalized in
the European mathematics community. No students and very few for-
eign colleagues were interested in his research. He wrote his papers
in German but published them almost exclusively in Norwegian jour-
nals, preferring publication speed over wide accessibility. A few years
later he learned, however, that one French mathematician had won
the Grand Priz from the Académie des Sciences for independently
obtained results that yielded some special cases of Lie’s work on dif-
ferential equations. Lie realized that his Norwegian publications were
not the greatest publicity vehicle, and that he needed to make his
work better known in Europe. “If only I could collect together and
edit all my results,” he wistfully wrote to Klein [22, p. 77]. Klein’s
practical mind quickly found a solution. Klein, who then taught at
Leipzig, arranged for the young mathematician Friedrich Engel, a re-
cent doctoral student of his colleague, to go to Christiania and to
render Lie a helping mathematical hand.

Lie and Engel met twice daily for a polite conversation about
transformation groups. As Engel recalled, Lie carried his theory al-
most entirely in his head and dictated to Engel an outline of each
chapter, “a sort of skeleton, to be clothed by me with flesh and blood”
[22, p. 77]. Lie read and revised Engel’s notes, eventually producing
the first draft of a book-length manuscript.

When Klein left Leipzig to take up a professorship at Gottingen,
he arranged for the vacated chair of geometry to be offered to Lie.
Lie somewhat reluctantly left his homeland and arrived at Leipzig
with the intention of building “a healthy mathematical school” there
[22, p. 226]. He continued his collaboration with Engel, which cul-
minated in the publication of their joint three-volume work, Theorie
der Transformationsgruppen.
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Lie’s ideas began to spread around Europe, finding a particularly
fertile ground in Paris. Inspired by Lie, Henri Poincaré remarked that
all mathematics was a tale about groups, and Emile Picard wrote to
Lie, “Paris is becoming a center for groups; it is all fermenting in
young minds, and one will have an excellent wine after the liquors
have settled a bit”. German mathematicians were less impressed.
Weierstrass believed that Lie’s theory lacked rigor and had to be re-
built from the foundations, and Frobenius labeled it a “theory of
methods” for solving differential equations in a roundabout way, in-
stead of the natural methods of Euler and Lagrange [22, pp. 186,
188-189).

Students flocked to Lie’s lectures on his own research, but this
only exacerbated his heavy teaching load at Leipzig — 8-10 lectures
per week — compared to the leisurely pace of his work in Christia-
nia. An outdoor man, who was used to weeks-long hikes in Norway,
Lie felt homesick, longing for the forests and mountains of his native
country. All this began taking its toll on Lie. Most importantly, he
felt underappreciated and became obsessed with the idea that others
plundered his work and betrayed his trust. His relations with col-
leagues gradually deteriorated, particularly with those closest to him.
He broke with Engel and eventually with Klein. Lie felt that his role
in the development of the Erlangen Program was undervalued, and he
publicly attacked Klein, claiming, “I am no pupil of Klein, nor is the
opposite the case, although this might be closer to the truth. I value
Klein’s talent highly and will never forget the sympathetic interest
with which he has always followed my scientific endeavors. But I do
not feel that he has a satisfactory understanding of the difference be-
tween induction and proof, or between a concept and its application”
[66, p. 371]. Whoever was right in this dispute, Lie’s public accu-
sations against widely respected and influential Klein reflected badly
on Lie’s reputation.

Eventually Lie suffered a nervous breakdown and was diagnosed
with “neurasthenia”, a popular mental disease dubbed the “American
Nervousness”, or “Americanitis”. Its cause was ascribed to the stress
of modern urban life and the exhaustion of an individual’s “nervous
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energy”. Lie spent some months in the supposedly less stressful envi-
ronment of a psychiatric clinic and upon some reflection decided that
he was better off in his mathematics department. His mathemati-
cal abilities returned, but his psyche never fully recovered. Rumors
spread of his mental illness, possibly fueled by his opponents, who
tried to invalidate his accusations.

In the meantime, trying to assert its cultural (and eventually
political) independence from Sweden, Norway took steps to bring back
its leading intellectuals. The Norwegian National Assembly voted to
establish a personal chair in transformation group theory for Lie,
matching his high Leipzig salary. Lie was anxious to return to his
homeland, but his wife and three children did not share his nostalgia.
He eventually returned to Norway in 1898 with only a few months to
live.

Lie “thought and wrote in grandiose terms, in a style that has
now gone out of fashion, and that would be censored by our scientific
journals”, wrote one commentator [26, p. iii]. Lie was always more
concerned with originality than with rigor. “Let us reason with con-
cepts!” he often exclaimed during his lectures and drew geometrical
pictures instead of providing analytical proofs [22, p. 244]. “With-
out Phantasy one would never become a Mathematician”, he wrote.
“[W]hat gave me a Place among the Mathematicians of our Day,
despite my Lack of Knowledge and Form, was the Audacity of my
Thinking” [56, p. 409]. Hardly lacking relevant knowledge, Lie indeed
had trouble putting his ideas into publishable form. Due to Engel’s
diligence, Lie’s research on transformation groups was summed up
in three grand volumes, but Lie never liked this ghost-written work
and preferred citing his own earlier papers [47, p. 310]. He had even
less luck with the choice of assistant to write up results on contact
transformations and partial differential equations. Felix Hausdorff’s
interests led him elsewhere, and Lie’s thoughts on these subjects were
never completely spelled out [16, p. 324]. Thus we may never discover
the “true Lie”.
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2.11. Tensor products

In this subsection we recall the notion of tensor product of vector
spaces, which will be extensively used below.

Definition 2.11.1. The tensor product V @ W of vector spaces V'
and W over a field k is the quotient of the space V x W whose basis
is given by formal symbols v ® w, v € V, w € W, by the subspace
spanned by the elements

(V1 +v2) @W — v QW — vy @ w,

v® (W +ws) —vRw — v wa,

av @ w — alv @ w),

VR aw — alv @ w),

where v € V,w € W,a € k.

Exercise 2.11.2. Show that V ® W can be equivalently defined as
the quotient of the free abelian group V e W generated by v ® w,
v € V,w € W by the subgroup generated by

(V1 +v2) @W — V1 W — vy ®w,
VR (w1 +w2) —v @ wy — v wa,
av @w — v & aw,

where v € V,w € W,a € k.

The elements v @ w € V@ W, for v € V,w € W are called pure
tensors. Note that in general, there are elements of V ® W which are
not pure tensors.

This allows one to define the tensor product of any number of
vector spaces, V1 ® --- ® V,,. Note that this tensor product is associa-
tive, in the sense that (V4 ® V2) ® V3 can be naturally identified with
Vi@ (Va® V3).

In particular, people often consider tensor products of the form
VO — V...V (n times) for a given vector space V', and, more
generally, E := V®" @ (V*)®™ This space is called the space of
tensors of type (m,n) on V. For instance, tensors of type (0,1)
are vectors, tensors of type (1,0) — linear functionals (covectors),

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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tensors of type (1,1) — linear operators, of type (2,0) — bilinear
forms, tensors of type (2,1) — algebra structures, etc.

If V is finite dimensional with basis e;, i = 1,..., N, and €’ is the
dual basis of V*, then a basis of E is the set of vectors

e, ® Qe ReNQ---®elm,
and a typical element of E is
N
>, Thinen® 86,00 @,
11 yeesins g1y fim=1
where T is a multidimensional table of numbers.

Physicists define a tensor as a collection of such multidimensional
tables T's attached to every basis B in V', which change according to a
certain rule when the basis B is changed (derive this rule!). Here it is
important to distinguish upper and lower indices, since lower indices
of T correspond to V and upper ones to V*. The physicists don’t
write the sum sign, but remember that one should sum over indices
that repeat twice — once as an upper index and once as lower. This
convention is called the Finstein summation, and it also stipulates
that if an index appears once, then there is no summation over it,
while no index is supposed to appear more than once as an upper
index or more than once as a lower index.

One can also define the tensor product of linear maps. Namely,
if A:V =V’ and B: W — W’ are linear maps, then one can define
the linear map A B : V@ W — V' @ W’ given by the formula
(A® B)(v ® w) = Av ® Bw (check that this is well defined!). The
most important properties of tensor products are summarized in the
following problem.

Problem 2.11.3. (a) Let U be any k-vector space. Construct a
natural bijection between bilinear maps V' x W — U and linear maps
V®@W — U (“natural” means that the bijection is defined without
choosing bases).

(b) Show that if {v;} is a basis of V and {w;} is a basis of W,
then {v; ® w;} is a basis of V@ W.

(¢) Construct a natural isomorphism V* @ W — Hom(V, W) in
the case when V is finite dimensional.
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(d) Let V be a vector space over a field k. Let S™V be the quotient
of V®™ (n-fold tensor product of V') by the subspace spanned by the
tensors T — s(T) where T € V®" and s is a transposition. Also let
A"V be the quotient of V& ™ by the subspace spanned by the tensors
T such that s(T') = T for some transposition s. These spaces are
called the nth symmetric power, respectively exterior power of
V. 1If {v;} is a basis of V, can you construct a basis of S"V, A"V?
If dimV = m, what are their dimensions?

(e) If k has characteristic zero, find a natural identification of S™V
with the space of T € V& such that T = sT for all transpositions s,
and find a natural identification of A"V with the space of T € V®"
such that T'= —sT for all transpositions s.

(f) Let A:V — W be a linear operator. Then we have an op-
erator A" . Y&®" _ Jy®7 and its symmetric and exterior powers
S"A : S"V — S"W, A"A : A"V — A"™W which are defined in an
obvious way. Suppose that V = W and that dimV = N, and that
the eigenvalues of A are A1, ..., Ay. Find Tr(S™A) and Tr(A™A).

(g) Show that AN A = det(A)Id, and use this equality to give a
one-line proof of the fact that det(AB) = det(A) det(B).

Remark 2.11.4. Note that a similar definition to the above can be
used to define the tensor product V ®4 W, where A is any ring, V'
is a right A-module, and W is a left A-module. Namely, V ® 4 W
is the abelian group which is the quotient of the group V e W freely
generated by formal symbols v ® w, v € V, w € W, modulo the
relations

(1 +v2) ®W —v1 W — vy ® W,
v® (W +ws) — v w — v ws,

va@w—vRaw, aé€A.

Exercise 2.11.5. Let K be a field, and let L be an extension of K.
If A is an algebra over K, show that A ® ¢ L is naturally an algebra
over L. Show that if V' is an A-module, then V ® ¢ L has a natural
structure of a module over the algebra A @ L.
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Problem 2.11.6. Throughout this problem, we let k£ be an arbi-
trary field (not necessarily of characteristic zero and not necessarily
algebraically closed).

If A and B are two k-algebras, then an (A, B)-bimodule will
mean a k-vector space V with both a left A-module structure and a
right B-module structure which satisfy (av)b = a (vd) for any v € V,
a € A, and b € B. Note that both the notions of “left A-module”
and “right A-module” are particular cases of the notion of bimodules;
namely, a left A-module is the same as an (A, k)-bimodule, and a right
A-module is the same as a (k, A)-bimodule.

Let B be a k-algebra, W a left B-module, and V a right B-
module. We denote by V ®p W the k-vector space
(VerW)/(vwb@w—-—v@bw|veV, weW, be B). Wedenote the
projection of a pure tensor v ® w (with v € V and w € W) onto the
space V ®@p W by v ® g w. (Note that this tensor product V @5 W
is the one defined in Remark 2.11.4.)

If, additionally, A is another k-algebra and if the right B-module
structure on V' is part of an (A, B)-bimodule structure, then V@p W
becomes a left A-module by a (v ®p w) = av ®p w for any a € A,
veV,and weW.

Similarly, if C' is another k-algebra, and if the left B-module
structure on W is part of a (B, C')-bimodule structure, then V @z W
becomes a right C-module by (v ®p w)c = v ®p we for any ¢ € C,
veV,and weW.

If V is an (A, B)-bimodule and W is a (B, C)-bimodule, then
these two structures on V ®p W can be combined into one (A, C)-
bimodule structure on V ®pg W.

(a) Let A, B, C, D be four algebras. Let V be an (A, B)-
bimodule, W a (B, C)-bimodule, and X a (C, D)-bimodule. Prove
that (V@ W) ®@c X 2V @ (W ®¢ X) as (A, D)-bimodules. The
isomorphism (from left to right) is given by the formula

(v®pw)®cz—v&p (WRc )
forallveV,weW,and z € X.

(b) If A, B, C are three algebras and if V' is an (A, B)-bimodule
and W an (A, C)-bimodule, then the vector space Hom 4 (V, W) (the
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space of all left A-linear homomorphisms from V' to W) canonically
becomes a (B, C')-bimodule by setting (bf) (v) = f (vb) for all b € B,
f € Homy (V,W), and v € V and setting (fc) (v) = f(v)c for all
ceC, feHomy (V,W)and veV.

Let A, B, C, D be four algebras. Let V be a (B, A)-bimodule,
W a (C, B)-bimodule, and X a (C, D)-bimodule. Prove that

Homp (V,Home (W, X)) =2 Home (W @V, X)
as (A, D)-bimodules. The isomorphism (from left to right) is given
by
fr(wepve f(v)w)
forallv € V, w € W and f € Homp (V, Home (W, X)).

Exercise 2.11.7. Show that if M and N are modules over a commu-
tative ring A, then M ® 4 N has a natural structure of an A-module.

2.12. The tensor algebra

The notion of tensor product allows us to give more conceptual (i.e.,
coordinate-free) definitions of the free algebra, polynomial algebra,
exterior algebra, and universal enveloping algebra of a Lie algebra.

Namely, given a vector space V, define its tensor algebra TV
over a field k tobe TV = @, -, V& with multiplication defined by
a-b:=a®b acV®" pe V®m_ Observe that a choice of a basis
Z1,...,xy in V defines an isomorphism of T'V with the free algebra
k’<.731,...,$”>.

Also, one can make the following definition.
Definition 2.12.1. (i) The symmetric algebra SV of V is the
quotient of T'V by the ideal generated by v @ w — w ® v, v,w € V.

(ii) The exterior algebra AV of V is the quotient of TV by the
ideal generated by v @ v, v € V.

(iii) If V is a Lie algebra, the universal enveloping alge-
bra U(V) of V is the quotient of TV by the ideal generated by
VW —w®v— [v,w], v,w V.

It is easy to see that a choice of a basis x1,...,zx in V identifies
SV with the polynomial algebra k[z1,...,zn], AV with the exterior
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algebra Ag(z1,...,2n), and the universal enveloping algebra U(V)
with one defined previously.

Moreover, it is easy to see that we have decompositions

SV:@S"V, AV:@A”V.

n>0 n>0

2.13. Hilbert’s third problem

Problem 2.13.1. It is known that if A and B are two polygons of the
same area, then A can be cut by finitely many straight cuts into pieces
from which one can make B (check it — it is fun!). David Hilbert
asked in 1900 whether it is true for polyhedra in three dimensions. In
particular, is it true for a cube and a regular tetrahedron of the same
volume?

The answer is “no”, as was found by Dehn in 1901. The proof is
very beautiful. Namely, to any polyhedron A, let us attach its “Dehn
invariant” D(A) in V = R® (R/Q) (the tensor product of Q-vector
spaces). Namely,

D) =Y iy 12,

where a runs over edges of A and [(a), 3(a) are the length of a and
the angle at a.
(a) Show that if you cut A into B and C by a straight cut, then
D(A) =D(B)+ D(C).
(b) Show that v = arccos(1/3)/7 is not a rational number.
Hint: Assume that o = 2m/n, for integers m,n. Deduce that
roots of the equation x + =1 = 2/3 are roots of unity of degree n.
Then show that 2* +2~% has denominator 3* and get a contradiction.
(c) Using (a) and (b), show that the answer to Hilbert’s question

is negative. (Compute the Dehn invariant of the regular tetrahedron
and the cube.)
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2.14. Tensor products and duals of
representations of Lie algebras

Definition 2.14.1. The tensor product of two representations
V,W of a Lie algebra g is the space V ® W with

pvew(z) = pv(z) ® Id+ Id®@pw (2).

Definition 2.14.2. The dual representation V* to a representa-
tion V of a Lie algebra g is the dual space V* to V with py«(z) =

—pv (z)*.
It is easy to check that these are indeed representations.

Problem 2.14.3. Let V, W, U be finite dimensional representations
of a Lie algebra g. Show that the space Homgy(V @W, U) is isomorphic
to Homg(V,U ® W*). (Here Homg := Homy,(g).)

2.15. Representations of s[(2)

This subsection is devoted to the representation theory of s{(2), which
is of central importance in many areas of mathematics. It is useful to
study this topic by solving the following sequence of exercises, which
every mathematician should do, in one form or another.

Problem 2.15.1. According to the above, a representation of s[(2)
is just a vector space V with a triple of operators E, F, H such that
HE—-FH =2F, HF —FH = —2F, EF — FFE = H (the correspond-
ing map p is given by p(e) = E, p(f) = F, p(h) = H).

Let V be a finite dimensional representation of s[(2) (the ground
field in this problem is C).

(a) Take eigenvalues of H and pick one with the biggest real part.
Call it \. Let V(\) be the generalized eigenspace corresponding to \.
Show that E|y () = 0.

(b) Let W be any representation of sl(2) and let w € W be a
nonzero vector such that Fw = 0. For any k& > 0 find a polynomial
Py(x) of degree k such that E¥FFw = P(H)w. (First compute
EF*w; then use induction in k.)

(c) Let v € V() be a generalized eigenvector of H with eigenvalue
A. Show that there exists N > 0 such that FNv = 0.
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(d) Show that H is diagonalizable on V()). (Take N to be such
that FV =0 on V(\), and compute ENFNv, v € V()), by (b). Use
the fact that Py(z) does not have multiple roots.)

(e) Let N, be the smallest N satisfying (c¢). Show that A = N, —1.

(f) Show that for each N > 0, there exists a unique up to isomor-
phism irreducible representation of s[(2) of dimension N. Compute
the matrices E, F, H in this representation using a convenient basis.
(For V finite dimensional irreducible take A as in (a) and v € V/(A)
an eigenvector of H. Show that v, Fv,..., F v is a basis of V, and
compute the matrices of the operators E, F, H in this basis.)

Denote the (A+1)-dimensional irreducible representation from (f)
by V. Below you will show that any finite dimensional representation
is a direct sum of V).

(g) Show that the operator C = EF + FE + H?/2 (the so-called
Casimir operator) commutes with F, F, H and equals w Id on
V.

Now it is easy to prove the direct sum decomposition. Namely,
assume the contrary, and let V be a reducible representation of the
smallest dimension, which is not a direct sum of smaller representa-

tions.

(h) Show that C has only one eigenvalue on V', namely w
for some nonnegative integer A (use the fact that the generalized
eigenspace decomposition of C' must be a decomposition of represen-

tations).

(i) Show that V has a subrepresentation W = V) such that
V/W = nV) for some n (use (h) and the fact that V is the smallest
reducible representation which cannot be decomposed).

(j) Deduce from (i) that the eigenspace V(A) of H is (n + 1)-
dimensional. If vy,...,v,41 is its basis, show that Fiy;, 1 <i<n+1,
0 < j < A, are linearly independent and therefore form a basis of V'
(establish that if Foz = 0 and Hz = px for x # 0, then Cx = WI
and hence = —\).

(k) Define W; = span(v;, Fv;, ..., F ;). Show that W; are sub-
representations of V' and derive a contradiction to the fact that V'
cannot be decomposed.
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(1) (Jacobson-Morozov lemma) Let V' be a finite dimensional com-
plex vector space and A : V — V a nilpotent operator. Show that
there exists a unique, up to an isomorphism, representation of sl(2)
on V such that £ = A. (Use the classification of the representations
and the Jordan normal form theorem.)

(m) (Clebsch-Gordan decomposition) Find the decomposition of
the representation Vi ® V,, of s[(2) into irreducibles components.

Hint: For a finite dimensional representation V of s[(2) it is use-
ful to introduce the character xy (z) = Tr(e*¥), z € C. Show that
xvew(z) = xv(z) + xw(z) and xvew(z) = xv(z)xw(z). Then
compute the character of V) and of V) ® V,, and derive the decompo-
sition. This decomposition is of fundamental importance in quantum
mechanics.

(n) Let V=CM @CN and A = Jo s ® Idy +1dy ®Jo n, where
Jon is the Jordan block of size n with eigenvalue zero (i.e., Jone; =
ei—1,1=2,...,n, and Jy,e1 = 0). Find the Jordan normal form of
A using (1) and (m).

2.16. Problems on Lie algebras

Problem 2.16.1 (Lie’s theorem). The commutant K(g) of a Lie
algebra g is the linear span of elements [z, 3], x,y € g. This is an ideal
in g (i.e., it is a subrepresentation of the adjoint representation). A
finite dimensional Lie algebra g over a field k is said to be solvable if
there exists n such that K"(g) = 0. Prove the Lie theorem: if £k = C
and V is a finite dimensional irreducible representation of a solvable
Lie algebra g, then V is 1-dimensional.

Hint: Prove the result by induction in dimension. By the in-
duction assumption, K(g) has a common eigenvector v in V; that is,
there is a linear function x : K(g) — C such that av = x(a)v for any
a € K(g). Show that g preserves common eigenspaces of K(g). (For
this you will need to show that x([x,a]) =0 for z € g and a € K(g).
To prove this, consider the smallest subspace U containing v and
invariant under z. This subspace is invariant under K(g) and any
a € K(g) acts with trace dim(U)x(a) in this subspace. In particular
0 = Tx([z, a]) = dim(U)x([z a]).)
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Problem 2.16.2. Classify irreducible finite dimensional representa-
tions of the two-dimensional Lie algebra with basis X, Y and commu-
tation relation [X,Y] =Y. Consider the cases of zero and positive
characteristic. Is the Lie theorem true in positive characteristic?

Problem 2.16.3. (Hard!) For any element x of a Lie algebra g
let ad(z) denote the operator g — g,y — [z,y]. Consider the Lie
algebra g,, generated by two elements x,y with the defining relations
ad(2)*(y) = ad(y)"*(z) = 0.

(a) Show that the Lie algebras g1, g2,9s are finite dimensional
and find their dimensions.

(b) (Harder!) Show that the Lie algebra g4 has infinite dimension.
Construct explicitly a basis of this algebra.

Problem 2.16.4. Classify irreducible representations of the Lie al-
gebra s[(2) over an algebraically closed field k of characteristic p > 2.

Problem 2.16.5. Let k be an algebraically closed field of character-
istic zero, and let ¢ € k*,q # +1. The quantum enveloping algebra
U,(s1(2)) is the algebra generated by e, f, K, K~ with relations

_ _ _ K—-K!
KeK™'=¢, KfK~ ' =q7°f, [evf]:ﬁ

(if you formally set K = ¢", you’ll see that this algebra, in an appro-
priate sense, “degenerates” to U(sl(2)) as ¢ — 1). Classify irreducible
representations of U, (sl(2)). Consider separately the cases of ¢ being
a root of unity and ¢ not being a root of unity.
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Chapter 3

General results of
representation theory

3.1. Subrepresentations in semisimple
representations

Let A be an algebra.

Definition 3.1.1. A semisimple (or completely reducible) rep-
resentation of A is a direct sum of irreducible representations.

Example 3.1.2. Let V be an irreducible representation of A of di-
mension n. Then Y = End(V), with action of A by left multipli-
cation, is a semisimple representation of A, isomorphic to nV (the

direct sum of n copies of V). Indeed, any basis v1,...,v, of V gives
rise to an isomorphism of representations End(V) — nV, given by
x — (zv1,...,20,).

Remark 3.1.3. Note that by Schur’s lemma, any semisimple repre-
sentation V' of A is canonically identified with @y Homa (X, V)® X,
where X runs over all irreducible representations of A. Indeed, we
have a natural map f: @y Hom(X,V)® X — V, given by g ® v —
g(x), z € X, g € Hom(X,V), and it is easy to verify that this map is
an isomorphism.
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We’ll see now how Schur’s lemma allows us to classify subrepre-
sentations in finite dimensional semisimple representations.

Proposition 3.1.4. Let V;,1 < i < m, be irreducible finite dimen-
sional pairwise nonisomorphic representations of A, and let W be
a subrepresentation of V.= @~ n;V;. Then W is isomorphic to
@;11 riVi, 7 < n;, and the inclusion ¢ : W — V is a direct sum
of inclusions ¢; : r;V; — n;V; given by multiplication of a row vector
of elements of V; (of length r;) by a certain r; X n; matriz X; with
linearly independent rows: ¢(v1,...,vr,) = (v1,...,0.,)X;.

Proof. The proof is by induction in n := Y ;" n;. The base of
induction (n = 1) is clear. To perform the induction step, let us
assume that W is nonzero, and fix an irreducible subrepresentation
P C W. Such P exists (Problem 2.3.15).! Now, by Schur’s lemma,
P is isomorphic to V; for some i, and the inclusion ¢|p : P — V
factors through n;V; and upon identification of P with V; is given by
the formula v — (vq,...,vqy,), where ¢; € k are not all zero.

Now note that the group G; = GL,, (k) of invertible n; X n;
matrices over k acts on n;V; by (vi,...,vp,) — (v1,...,0,,)9; (and
by the identity on n;V;, j # i) and therefore acts on the set of
subrepresentations of V| preserving the property we need to estab-
lish: namely, under the action of g;, the matrix X; goes to X;g;,
while the matrices X;,j # 4, don’t change. Take g; € G; such
that (q1,...,qn,;)gi = (1,0,...,0). Then Wy, contains the first sum-
mand V; of n;V; (namely, it is Pg;); hence Wg; = V; @ W/, where
W Vi@ @ (n;—1)V; & Bny, Vi, is the kernel of the projec-
tion of Wg; to the first summand V; along the other summands. Thus
the required statement follows from the induction assumption. g

Remark 3.1.5. In Proposition 3.1.4, it is not important that k is
algebraically closed, nor does it matter that V is finite dimensional.
If these assumptions are dropped, the only change needed is that the
entries of the matrix X; are no longer in & but in D; = Enda(V;),

1 Another proof of the existence of P, which does not use the finite dimensionality
of V, is by induction in n. Namely, if W itself is not irreducible, let K be the kernel
of the projection of W to the first summand V;. Then K is a subrepresentation of
(n1 —1)V3 @ -+ - @ ny, Vin, which is nonzero since W is not irreducible, so K contains
an irreducible subrepresentation by the induction assumption.
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which is, as we know, a division algebra. The proof of this generalized
version of Proposition 3.1.4 is the same as before (check it!).

3.2. The density theorem

Let A be an algebra over an algebraically closed field k.

Corollary 3.2.1. Let V be an irreducible finite dimensional repre-
sentation of A, and let vy,...,v, € V be any linearly independent
vectors. Then for any wi,...,w, € V there exists an element a € A
such that av; = w;.

Proof. Assume the contrary. Then the image of the map A — nV
given by a — (avy,...,av,) is a proper subrepresentation, so by
Proposition 3.1.4 it corresponds to an r X n matrix X, r < n. Thus,
taking a = 1, we see that there exist vectors uj,...,u, € V such
that (u1,...,u)X = (v1,...,v,). Let (q1,...,¢n) be a nonzero vec-
tor such that X(qi,...,¢,)7 = 0 (it exists because r < n). Then
Sqivi = (ur, - ur) X (q1, .- q0)T =0, ie. Y giv; = 0 — a contra-
diction to the linear independence of v;. O

Theorem 3.2.2 (The density theorem). (i) Let V be an irreducible
finite dimensional representation of A. Then the map p : A — EndV
18 surjective.

(ii) Let V.= V1 & --- ® V,., where V; are irreducible pairwise
nonisomorphic finite dimensional representations of A. Then the map
@D._,pi: A— @D,_, End(V;) is surjective.

Proof. (i) Let B be the image of A in End(V). We want to show
that B = End(V). Let ¢ € End(V), let v1,...,v, be a basis of V,
and let w; = cv;. By Corollary 3.2.1, there exists a € A such that
av; = w;. Then a maps to ¢, so ¢ € B, and we are done.

(ii) Let B; be the image of A in End(V;), and let B be the im-
age of A in @;_, End(V;). Recall that as a representation of A,
@._, End(V;) is semisimple: it is isomorphic to @;_, d;V;, where
d; = dimV;. Then by Proposition 3.1.4, B = @, B;. On the other
hand, (i) implies that B; = End(V;). Thus (ii) follows. O
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3.3. Representations of direct sums of matrix
algebras

In this section we consider representations of algebras A = @, Matg, (k)
for any field k.

Theorem 3.3.1. Let A = @;_, Maty, (k). Then the irreducible rep-
resentations of A are Vi = k%, ..., V.. = k%, and any finite dimen-
sional representation of A is a direct sum of copies of Vi,..., V.

In order to prove Theorem 3.3.1, we shall need the notion of a
dual representation.

Definition 3.3.2 (Dual representation). Let V' be a representation
of any algebra A. Then the dual representation V* is the represen-
tation of the opposite algebra A°P (or, equivalently, right A-module)
with the action

Proof of Theorem 3.3.1. First, the given representations are clearly
irreducible, since for any v # 0,w € V;, there exists a € A such that
av = w. Next, let X be an n-dimensional representation of A. Then,
X* is an n-dimensional representation of A°?. But (Matg, (k))?" =
Matg, (k) with isomorphism ¢(X) = X7 as (BC)T = CTBT. Thus,
A = A°P and X* may be viewed as an n-dimensional representation

of A. Define
p:AD--- DA — X*
———
n copies
by

¢(a17"'aan):a1y1+"'+anyn

where {y;} is a basis of X*. The map ¢ is clearly surjective, as
k c A. Thus, the dual map ¢* : X — A™" is injective. But
A™* 22 A™ as representations of A (check it!). Hence, Im¢* = X is a
subrepresentation of A™. Next, Matq, (k) = d;V;, so A = @._, d;V;,
A" = @._, nd;V;, as a representation of A. Hence by Proposition
3.14, X = P;_, m;V;, as desired. O
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Problem 3.3.3. The goal of this problem is to give an alternative
proof of Theorem 3.3.1, not using any of the previous results of Chap-
ter 3.

Let Ay, As, ..., A, be n algebras with units 11, 1o, ..., 1,
respectively. Let A=A ® Ay @ --- @ A,,. Clearly, 1;1; = d;;1;, and
the unitof Ais1=1; + 13+ --- + 1,.

For every representation V of A, it is easy to see that 1,V is a
representation of A; for every i € {1,2,...,n}. Conversely, if V7,
Vs, ..., V, are representations of Ay, Ao, ..., A,, respectively, then
Vi®Vo® - - @V, canonically becomes a representation of A (with
(a1,a2,...,a,) € Aactingon Vi @Vo®---®V, as (v1,v2,...,0,) —
(Cll’Ul, asvg, . .. ,anvn)).

(a) Show that a representation V' of A is irreducible if and only
if 1;V is an irreducible representation of A; for exactly one i €
{1,2,...,n}, while 1,V = 0 for all the other i. Thus, classify the
irreducible representations of A in terms of those of Ay, Ao, ..., A,.

(b) Let d € N. Show that the only irreducible representation of
Matq(k) is k¢, and every finite dimensional representation of Matg(k)
is a direct sum of copies of k.

Hint: For every (i,j) € {1,2,...,d}", let E;; € Matg(k) be the
matrix with 1 in the ith row of the jth column and 0’s everywhere
else. Let V be a finite dimensional representation of Matgy(k). Show
that V = E11V @ EV ® --- & E4qV, and that ®; : £,V — E;V,
v — F;v is an isomorphism for every i € {1,2,...,d}. For every
v € E11V, denote S (v) = (E11v, Ea1v,. .., Eqv). Prove that S (v)
is a subrepresentation of V' isomorphic to k¢ (as a representation of
Matg(k)), and that v € S (v). Conclude that V = S (v1) ® S (v2) B
- @ S (vg), where {v1,vq,...,u;} is a basis of E1;V.

(c) Deduce Theorem 3.3.1.

3.4. Filtrations

Let A be an algebra. Let V' be a representation of A.

Definition 3.4.1. A (finite) filtration of V is a sequence of subrep-
resentations 0 =V Cc Vi, C---CV, =V.
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46 3. General results of representation theory

Lemma 3.4.2. Any finite dimensional representation V' of an algebra
A admits a finite filtration 0 =V, C V3 C --- C V;, =V such that the
successive quotients V;/Vi_1 are irreducible.

Proof. The proof is by induction in dim(V'). The base is clear, and
only the induction step needs to be justified. Pick an irreducible
subrepresentation V3 C V| and consider the representation U = V/V;.
Then by the induction assumption U has a filtration 0 = Uy C U; C

- C Up—1 = U such that U;/U;_; are irreducible. Define V; for
i > 2 to be the preimages of U;_; under the tautological projection
V-sV/Vi=U Then0=V, cVycWVcC ---CV,=Visa
filtration of V' with the desired property. O

3.5. Finite dimensional algebras

Definition 3.5.1. The radical of a finite dimensional algebra A is
the set of all elements of A which act by 0 in all irreducible represen-
tations of A. It is denoted Rad(A).

Proposition 3.5.2. Rad(A) is a two-sided ideal.

Proof. Easy. O

Proposition 3.5.3. Let A be a finite dimensional algebra.

(i) Let I be a nilpotent two-sided ideal in A; i.e., I"™ = 0 for some
n. Then I C Rad(A).

(ii) Rad(A) is a nilpotent ideal. Thus, Rad(A) is the largest
nilpotent two-sided ideal in A.

Proof. (i) Let V be an irreducible representation of A. Let v € V.
Then Iv C V is a subrepresentation. If Iv # 0, then Iv =V so there
is x € I such that zv = v. Then ™ # 0, a contradiction. Thus
Iv =0, so I acts by 0 in V and hence I C Rad(A).

(ii) Let 0 = Ag C A1 C --- C A, = A be a filtration of the
regular representation of A by subrepresentations such that A;41/A4;
are irreducible. It exists by Lemma 3.4.2. Let z € Rad(A). Then x
acts on A;41/4; by zero, so x maps A; 1 to A;. This implies that
Rad(A)™ = 0, as desired. O
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3.5. Finite dimensional algebras 47

Theorem 3.5.4. A finite dimensional algebra A has only finitely
many irreducible representations V; up to an isomorphism. These
representations are finite dimensional, and

A/Rad(A) = @) End V;.

Proof. First, for any irreducible representation V' of A and for any
nonzero v € V, Av C V is a finite dimensional subrepresentation
of V. (It is finite dimensional as A is finite dimensional.) As V is
irreducible and Av # 0, V = Av and V is finite dimensional.

Next, suppose we have nonisomorphic irreducible representations
Vi, Va, ..., V.. By Theorem 3.2.2, the homomorphism

@pi:A—>®EndVi

is surjective. So r < >, dimEndV; < dimA. Thus, A has only
finitely many nonisomorphic irreducible representations (not more
than dim A).

Now, let V1, V5, ..., V, be all nonisomorphic irreducible finite di-
mensional representations of A. By Theorem 3.2.2, the homomor-

EBp,;:A—)@End%

is surjective. The kernel of this map, by definition, is exactly Rad(A).
O

phism

Corollary 3.5.5. >, (dim Vi)? < dim A, where the V;’s are the irre-
ducible representations of A.

Proof. AsdimEndV; = (dim Vi)2, Theorem 3.5.4 implies that dim A
—dimRad(A) = ¥, dimEnd V; = ¥, (dim V;)*. As dim Rad(A) > 0,
>, (dim V;)? < dim A. O

Example 3.5.6. 1. Let A = k[z]/(z™). This algebra has a unique
irreducible representation, which is a 1-dimensional space &, in which
x acts by zero. So the radical Rad(A) is the ideal ().

2. Let A be the algebra of upper triangular n x n matrices.
It is easy to check that the irreducible representations of A are V;,
t =1,...,n, which are 1-dimensional, and any matrix = acts by x;;.
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48 3. General results of representation theory

So the radical Rad(A) is the ideal of strictly upper triangular matrices
(as it is a nilpotent ideal and contains the radical). A similar result
holds for block-triangular matrices.

Definition 3.5.7. A finite dimensional algebra A is said to be semi-
simple if Rad(A) = 0.

Proposition 3.5.8. For a finite dimensional algebra A, the following
are equivalent:

(1) A is semisimple.
2) >, (dimV;)® = dim A, where the V;’s are the irreducible

representations of A.
(3) A=, Matg, (k) for some d;.

(4) Any finite dimensional representation of A is completely re-
ducible (that is, isomorphic to a direct sum of irreducible
representations).

(5) A is a completely reducible representation of A.

Proof. As dim A — dimRad(A) = ), (dim Vi)?, clearly dim A =
>, (dim V;)? if and only if Rad(A) = 0. Thus, (1) < (2).

By Theorem 3.5.4, if Rad(A4) = 0, then clearly A = @, Matg, (k)
for d; = dimV;. Thus, (1) = (3). Conversely, if A = @, Matg, (k),
then by Theorem 3.3.1, Rad(A) = 0, so A is semisimple. Thus (3) =
(1).

Next, (3) = (4) by Theorem 3.3.1. Clearly (4) = (5). To see
that (5) = (3), let A = &P, n;V;. Consider End4(A) (endomorphisms
of A as a representation of A). As the V;’s are pairwise nonisomor-
phic, by Schur’s lemma, no copy of V; in A can be mapped to a
distinct V;. Also, again by Schur’s lemma, End4 (V;) = k. Thus,
End4(A) = @, Mat,, (k). But Enda(A) = A°? by Problem 2.3.17,
so A°P = (B Mat,, (k). Thus, A = (@, Mat,, (k))** = @, Mat,, (k),
as desired. 0

3.6. Characters of representations

Let A be an algebra and V a finite dimensional representation of
A with action p. Then the character of V is the linear function
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3.6. Characters of representations 49

xv : A — k given by

xv(a) = Trlv(p(a)).

If [A, A] is the span of commutators [z, y] := xy—yx over all z,y € A,
then [A, A] C ker xy. Thus, we may view the character as a mapping
xv : AJ[A, Al — k.

Exercise 3.6.1. Show that if W C V are finite dimensional repre-
sentations of A, then xv = xw + xv,/w-

Theorem 3.6.2. (i) Characters of (distinct) irreducible finite dimen-
sional representations of A are linearly independent.

(i) If A is a finite dimensional semisimple algebra, then these
characters form a basis of (A/[A, A])*.

Proof. (i) IfV,...,V, are nonisomorphic irreducible finite dimension-
al representations of A, then the map

pv, B -Bpy.:A—-End Vi ¢---SEnd V,

is surjective by the density theorem, so xv,, ..., xv. are linearly inde-
pendent. (Indeed, if Y A\;xv;(a) = 0foralla € A, then Y N\, Tr(M;) =
0 for all M; € End;V;. But each Tr(M;) can range independently over
k, so it must be that \y =--- =X, =0.)

(ii) First we prove that [Maty(k), Matgy(k)] = sla(k), the set of all
matrices with trace 0. It is clear that [Matq(k), Matq (k)] C sly(k). If
we denote by F;; the matrix with 1 in the ith row of the jth column
and 0’s everywhere else, we have [E;j, Ejn,| = E;p for i # m and
[Eiit1, Fiv1:] = Eis — Eigi 1. Now {Ejp, } U{E;; — Eij1,i+1} forms
a basis in sl4(k), so indeed [Matq(k), Matg(k)] = sla(k), as claimed.

By semisimplicity, we can write A = Matg, (k) @ - - - @ Matg, (k).
Then [A, A] = slg, (k)®- - Dsly, (k), and A/[A, A] =2 k™. By Theorem
3.3.1, there are exactly r irreducible representations of A (isomor-

phic to k%, ..., k% respectively) and therefore r linearly indepen-
dent characters on the r-dimensional vector space A/[A, A]. Thus,
the characters form a basis. O
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50 3. General results of representation theory

3.7. The Jordan-Holder theorem

We will now state and prove two important theorems about represen-
tations of finite dimensional algebras — the Jordan-Holder theorem
and the Krull-Schmidt theorem.

Theorem 3.7.1 (Jordan-Holder theorem). Let V' be a finite dimen-
sional representation of A, and let 0 = Vo Cc Vy C --- C V, =V,
0=Vy C---CV. =1V be filtrations of V, such that the represen-
tations W; := V;/Vi_1 and W/} := V//V/ | are irreducible for all i.
Then n = m, and there exists a permutation o of 1,...,n such that
Wy () is isomorphic to W;.

Proof. First proof (for k of characteristic zero). The character of
V' obviously equals the sum of characters of W; and also the sum of
characters of W/. But by Theorem 3.6.2, the characters of irreducible
representations are linearly independent, so the multiplicity of every
irreducible representation W of A among W, and among W/ is the
same. This implies the theorem.?

Second proof (general). The proof is by induction on dimV.
The base of induction is clear, so let us prove the induction step.
If W7 = W] (as subspaces), we are done, since by the induction
assumption the theorem holds for V/W;. So assume Wiy # W/. In
this case Wy N W] = 0 (as Wy, W] are irreducible), so we have an
embedding f : Wy @ W] — V. Let U = V/(W; & W/), and let
0=UyCcU C - CU,=U be a filtration of U with simple
quotients Z; = U;/U;_; (it exists by Lemma 3.4.2). Then we see the

following:

1) V/W; has a filtration with successive quotients W7, Z1, ..., Z,
and another filtration with successive quotients W, ...., W,,.

2) V/W{ has a filtration with successive quotients W1y, Z1,. .., Z,
and another filtration with successive quotients W3, ....,W}.

2This proof does not work in characteristic p because it only implies that the

multiplicities of W; and Wz’ are the same modulo p, which is not sufficient. In fact,

the character of the representation pV, where V is any representation, is zero.
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By the induction assumption, this means that the collection of

irreducible representations with multiplicities W1, W7, Z1, ..., Z, co-
incides on one hand with Wy,...,W,, and on the other hand with
wi,..., W/ . We are done. O

The Jordan-Hélder theorem shows that the number n of terms in
a filtration of V' with irreducible successive quotients does not depend
on the choice of a filtration and depends only on V. This number is
called the length of V. It is easy to see that n is also the maximal
length of a filtration of V' in which all the inclusions are strict.

The sequence of the irreducible representations W1, ..., W,, enu-
merated in the order they appear from some filtration of V' as succes-
sive quotients is called a Jordan-Hdlder series of V.

3.8. The Krull-Schmidt theorem

Theorem 3.8.1 (Krull-Schmidt theorem). Any finite dimensional
representation of A can be uniquely (up to an isomorphism and the
order of summands) decomposed into a direct sum of indecomposable
representations.

Proof. It is clear that a decomposition of V' into a direct sum of in-
decomposable representations exists, so we just need to prove unique-
ness. We will prove it by induction on dim V. Let V =V &-- -V, =
Vie---aeV,. Letis: Vo =V, i : V! =V, ps: V =V
pl, : V. — V! be the natural maps associated with these decompo-
sitions. Let 0, = p1ilpliy : Vi — V1. We have > 65 = 1. Now we
need the following lemma.

Lemma 3.8.2. Let W be a finite dimensional indecomposable repre-
sentation of A. Then:

(i) Any homomorphism 0 : W — W is either an isomorphism or
nilpotent.

(i) If O, : W — W, s =1,...,n, are nilpotent homomorphisms,
then so is 0 :=01 +---+6,,.
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52 3. General results of representation theory

Proof. (i) Generalized eigenspaces of 6 are subrepresentations of W,
and W is their direct sum. Thus, 6 can have only one eigenvalue .
If A is zero, 6 is nilpotent; otherwise it is an isomorphism.

(ii) The proof is by induction in n. The base is clear. To make
the induction step (n — 1 to n), assume that 6 is not nilpotent. Then
by (i), 6 is an isomorphism, so > .~ #~'6; = 1. The morphisms
0~16; are not isomorphisms, so they are nilpotent. Thus 1 —6710,, =
0710, +---+ 6710, is an isomorphism, which is a contradiction to
the induction assumption. O

By the lemma, we find that for some s, #; must be an isomor-
phism; we may assume that s = 1. In this case, V{ = Im(pji1) ®
Ker(p1i}), so since V{ is indecomposable, we get that f := pji; :
Vi = V) and g := p13} : V{ — Vj are isomorphisms.

Let B =P;.,Vj, B' = D,-, V); then we have V. =V ® B =
Vi @ B’. Consider the map h : B — B’ defined as a composition of
the natural maps B — V — B’ attached to these decompositions.
We claim that h is an isomorphism. To show this, it suffices to show
that Ker h = 0 (as h is a map between spaces of the same dimension).
Assume that v € Kerh C B. Then v € V/. On the other hand, the
projection of v to Vj is zero, so gv = 0. Since ¢ is an isomorphism,
we get v = 0, as desired.

Now by the induction assumption, m = n, and V; = Vg’(j) for
some permutation o of 2,...,n. The theorem is proved.

Problem 3.8.3. The above proof of Lemma 3.8.2 uses the condition
that k is an algebraically closed field. Prove Lemma 3.8.2 (and hence
the Krull-Schmidt theorem) without this condition.

Problem 3.8.4. (i) Let V, W be finite dimensional representations
of an algebra A over a (not necessarily algebraically closed) field K.
Let L be a field extension of K. Suppose that V ®g L is isomorphic
to W ®k L as a module over the L-algebra A ® ¢ L. Show that V
and W are isomorphic as A-modules.

Hint: Reduce to the case of finitely generated, then finite ex-
tension, of some degree n. Then regard V ®x L and W ®x L as
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A-modules, and show that they are isomorphic to V™ and W™, re-
spectively. Deduce that V" is isomorphic to W™, and use the Krull-
Schmidt theorem (valid over any field by Problem 3.8.3) to deduce
that V' is isomorphic to W.

(ii) (The Noether-Deuring theorem) In the setting of (i), suppose
that V @k L is a direct summand in W ®x L (i.e., W @k L =
VoK L®Y, where Y is a module over A @ L). Show that V is a
direct summand in W.

Problem 3.8.5. Let A be the algebra of real-valued continuous func-
tions on R which are periodic with period 1. Let M be the A-module
of continuous functions f on R which are antiperiodic with period 1,
ie, fz+1) =—f(x).

(i) Show that A and M are indecomposable A-modules.

(ii) Show that A is not isomorphic to M but A & A is isomorphic
to M & M.

Remark 3.8.6. Thus, we see that, in general, the Krull-Schmidt
theorem fails for infinite dimensional modules. However, it still holds
for modules of finite length, i.e., modules M such that any filtration
of M has length bounded above by a certain constant | = [(M).

3.9. Problems

Problem 3.9.1. Extensions of representations. Let A be an
algebra, and let V, W be a pair of representations of A. We would like
to classify representations U of A such that V' is a subrepresentation of
U and U/V = W. Of course, there is an obvious example U = VW,
but are there any others?

Suppose we have a representation U as above. As a vector space,
it can be (nonuniquely) identified with V' @& W, so that for any a € A
the corresponding operator py(a) has block triangular form

q) = pv(a)  f(a) >
pU( ) - ( 0 pW(a/) s
where f: A — Homy (W, V) is a linear map.

(a) What is the necessary and sufficient condition on f(a) under
which py(a) is a representation? Maps f satisfying this condition are
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54 3. General results of representation theory

called 1-cocycles (of A with coefficients in Homy (W, V')). They form
a vector space denoted by Z1(W, V).

(b) Let X : W — V be a linear map. The coboundary of X, dX,
is defined to be the function A — Homy (W, V) given by dX(a) =
pv(a)X — Xpw(a). Show that dX is a cocycle which vanishes if
and only if X is a homomorphism of representations. Thus cobound-
aries form a subspace BY(W,V) c ZY(W,V), which is isomorphic
to Homy (W, V)/Homa (W, V). The quotient Z*(W,V)/BY(W,V) is
denoted by Ext! (W, V).

(c) Show that if f, f/ € ZL(W,V) and f — f' € BY(W,V), then
the corresponding extensions U, U’ are isomorphic representations of
A. Conversely, if ¢ : U — U’ is an isomorphism such that

o=y 1),

then f — f' € BY(V,W). Thus, the space Ext'(W,V) “classifies”
extensions of W by V.

(d) Assume that W,V are finite dimensional irreducible represen-
tations of A. For any f € Ext'(W,V), let U; be the corresponding
extension. Show that Uy is isomorphic to U/ as representations if
and only if f and f’ are proportional. Thus isomorphism classes
(as representations) of nontrivial extensions of W by V (i.e., those
not isomorphic to W @ V') are parametrized by the projective space
IP’Extl(VV, V). In particular, every extension is trivial if and only if
Ext'(W,V) = 0.

Problem 3.9.2. (a) Let A = C[z1,...,2,], and let V,,V, be 1-
dimensional representations in which the elements x; act by a; and b;,
respectively (a;, b; € C). Find Ext!(V,, V4) and classify 2-dimensional
representations of A.

(b) Let B be the algebra over C generated by 1, ..., x, with the
defining relations x;x; = 0 for all 4, j. Show that for n > 1 the algebra
B has infinitely many nonisomorphic indecomposable representations.

Problem 3.9.3. Let @ be a quiver without oriented cycles, and let
Pg be the path algebra of @). Find irreducible representations of Py
and compute Ext! between them. Classify 2-dimensional representa-
tions of Pg.
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Problem 3.9.4. Let A be an algebra, and let V' be a representation
of A. Let p: A — EndV. A formal deformation of V is a formal
series

p=pot+tpr+-+t"pp+...,

where p; : A — End(V) are linear maps, pg = p, and p(ab) = p(a)s(b).

Ifb(t) = 1+bit+bat?>+. .., where b; € End(V), and p is a formal
deformation of p, then bpb~! is also a deformation of p, which is said
to be isomorphic to p.

(a) Show that if Ext'(V,V) = 0, then any deformation of p is
trivial, i.e., isomorphic to p.

(b) Is the converse to (a) true? (Consider the algebra of dual
numbers A = k[x]/22.)

Problem 3.9.5. The Clifford algebra. Let V be a finite dimen-
sional complex vector space equipped with a symmetric bilinear form
(, ). The Clifford algebra Cl(V) is the quotient of the tensor alge-
bra TV by the ideal generated by the elements v @ v — (v, v)1, v € V.
More explicitly, if z;,1 < i < N, is a basis of V and (z;,2;) = a;;
then C1(V) is generated by x; with defining relations
TiT; + Tx; = Qaij, QSZQ = Qj;-

Thus, if (, ) =0, CI(V) = AV.

(i) Show that if (, ) is nondegenerate, then Cl(V) is semisimple
and has one irreducible representation of dimension 2" if dimV = 2n
(so in this case Cl(V) is a matrix algebra) and two such representa-

tions if dim(V) = 2n + 1 (i.e., in this case Cl(V) is a direct sum of
two matrix algebras).

Hint: In the even case, pick a basis ai,...,a,,b1,...,b, of V
in which (a;,a;) = (b;,b;) = 0, (a;,b;) = d;;/2, and construct a
representation of C1(V) on S := A(ay,...,a,) in which b; acts as

“differentiation” with respect to a;. Show that S is irreducible. In the
odd case the situation is similar, except there should be an additional
basis vector ¢ such that (¢,a;) = (¢,b;) =0, (¢,¢) =1 and the action
of ¢ on S may be defined either by (—1)d¢ee or by (—1)desreetl
giving two representations Sy, S_ (why are they nonisomorphic?).
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Show that there is no other irreducible representations by finding a
spanning set of C1(V') with 24™m V" elements.

(if) Show that Cl(V') is semisimple if and only if ( , ) is nonde-
generate. If (, ) is degenerate, what is C1(V')/Rad(C1(V))?

3.10. Representations of tensor products

Let A, B be algebras. Then A ® B is also an algebra, with multipli-
cation (al ® bl)(ag ® b2) = ajas ® bibs.

Exercise 3.10.1. Show that Mat,, (k) ® Mat, (k) = Mat,, (k).

The following theorem describes irreducible finite dimensional
representations of A ® B in terms of irreducible finite dimensional
representations of A and those of B.

Theorem 3.10.2. (i) Let V' be an irreducible finite dimensional rep-
resentation of A and let W be an irreducible finite dimensional rep-

resentation of B. Then V @ W is an irreducible representation of
A®B.

(i) Any irreducible finite dimensional representation M of A® B
has the form (i) for unique V and W.

Remark 3.10.3. Part (ii) of the theorem typically fails for infinite
dimensional representations; e.g. it fails when A is the Weyl algebra
in characteristic zero. Part (i) may also fail. E.g. let A=B =V =
W = C(z). Then (i) fails, as A ® B is not a field.

Proof. (i) By the density theorem, the maps A — EndV and B —
End W are surjective. Therefore, the map AR B — End VQEnd W =
End(V @ W) is surjective. Thus, V ® W is irreducible.

(ii) First we show the existence of V and W. Let A’, B’ be the
images of A, B'in End M. Then A’, B’ are finite dimensional algebras,
and M is a representation of A’ ® B’, so we may assume without loss
of generality that A and B are finite dimensional.

In this case, we claim that

Rad(A ® B) = Rad(4) ® B + A ® Rad(B).
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Indeed, denote the latter by J. Then J is a nilpotent ideal in A® B, as
Rad(A) and Rad(B) are nilpotent. On the other hand, (A® B)/J =
(A/Rad(A))® (B/Rad(B)), which is a product of two semisimple al-
gebras, hence semisimple. This implies J D Rad(A® B). Altogether,
by Proposition 3.5.3, we see that J = Rad(A ® B), proving the claim.

Thus, we see that
(A® B)/Rad(A® B) = A/Rad(A) ® B/ Rad(B).

Now, M is an irreducible representation of (A ® B)/Rad(4A ® B),
so it is clearly of the form M =V ® W, where V is an irreducible
representation of A/Rad(A) and W is an irreducible representation
of B/Rad(B). Also, V,W are uniquely determined by M (as all of
the algebras involved are direct sums of matrix algebras). O
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Chapter 4

Representations of finite
groups: Basic results

Recall that a representation of a group G over a field k is a k-vector
space V together with a group homomorphism p : G — GL(V). As
we have explained above, a representation of a group G over k is the
same thing as a representation of its group algebra k[G].

In this section, we begin a systematic development of representa-
tion theory of finite groups.

4.1. Maschke’s theorem

Theorem 4.1.1 (Maschke). Let G be a finite group and let k be a
field whose characteristic does not divide |G|. Then:

(i) The algebra k|G| is semisimple.

(it) There is an isomorphism of algebras v : k[G] — €, EndV;
defined by g — @@, glv,, where V; are the irreducible representations
of G. In particular, this is an isomorphism of representations of G
(where G acts on both sides by left multiplication). Hence, the regu-
lar representation k[G] decomposes into irreducibles as @@, dim(V;)V;
and one has the “sum of squares formula”

Gl = > dim(V7)*,
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60 4. Representations of finite groups: Basic results

Proof. By Proposition 3.5.8, (i) implies (ii), and to prove (i), it is
sufficient to show that if V' is a finite dimensional representation of
G and W C V is any subrepresentation, then there exists a subrep-
resentation W’ C V such that V =W & W’ as representations.

Choose any complement W of W in V. (Thus V. = W & W
as vector spaces, but not necessarily as representations.) Let P be
the projection along W onto W, i.e., the operator on V defined by
Plw =1d and Pl = 0. Let

— 1 B
Pi= o > pl9)Ppg™h),
geG
where p(g) is the action of g on V', and let
W' = ker P.

Now P|w = Id and P(V) C W, so P = P, and so P is a projection
along W'. Thus, V =W @& W' as vector spaces.
Moreover, for any h € G and any y € W,

Pp(h)y = |—(1;| > plg)Pplg h)y
geG
- %}' ™ p(h)Po(¢ ")y = p(h)Py = 0,
LeG

so p(h)y € ker P = W'. Thus, W’ is invariant under the action of G
and is therefore a subrepresentation of V. Thus, V =W & W’ is the
desired decomposition into subrepresentations. O

The converse to Theorem 4.1.1(i) also holds.

Proposition 4.1.2. If k[G] is semisimple, then the characteristic of
k does not divide |G)|.

Proof. Write k[G] = @,_, End V;, where the V; are irreducible rep-
resentations and V; = k is the trivial 1-dimensional representation.
Then

k[G) = k@éEnd Vi = k@é}di%
=2 =2
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where d; = dim V;. By Schur’s lemma,
Homy g (k, k[G]) = kA,
Homy ) (k[G], k) = ke,

for nonzero homomorphisms of representations € : k[G] — k and
A : k — K[G] unique up to scaling. We can take e such that e(g) =1
for all g € G, and we can take A such that A(1) =3 5 g. Then

eoA(1) = 6<Zg> = Z 1=1G|.
9€G g€G
If |G| = 0, then A has no left inverse, as (ae) o A(1) = 0 for any a € k.
This is a contradiction. O

Example 4.1.3. If G = Z/pZ and k has characteristic p, then every
irreducible representation of G over k is trivial (so k[Z/pZ] indeed is
not semisimple). Indeed, an irreducible representation of this group
is a 1-dimensional space on which the generator acts by a pth root of
unity. But every pth root of unity in k equals 1, as a? — 1 = (x — 1)?
over k.

Problem 4.1.4. Let G be a group of order p™. Show that every
irreducible representation of G over a field k of characteristic p is
trivial.

4.2. Characters

If V is a finite dimensional representation of a finite group G, then its
character xy : G — k is defined by the formula xv (g) = Tr|v(p(g)).
Obviously, xv (g) is simply the restriction of the character xy (a) of
V as a representation of the algebra A = k[G] to the basis G C A, so
it carries exactly the same information. The character is a central
function, or class function: yy(g) depends only on the conjugacy
class of g; i.e., xv(hgh™!) = xv(g).

Denote by F(G, k) the space of k-valued functions on G and by
F.(G,k) C F(G,k) the subspace of class functions.

Theorem 4.2.1. If the characteristic of k does not divide |G|, char-
acters of irreducible representations of G form a basis in the space
F.(G, k).
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Proof. By the Maschke theorem, k[G] is semisimple, so by Theo-
rem 3.6.2, the characters are linearly independent and are a basis of
(A/]A, A])*, where A = k[G]. It suffices to note that, as vector spaces
over k,

(A/[A, A])* = {¢ € Homy (k[G], k) | gh — hg € ker p Vg, h € G}
={f € F(G,k) | f(gh) = f(hg) Vg,h € G},
which is precisely F.(G, k). O

Corollary 4.2.2. The number of isomorphism classes of irreducible
representations of G equals the number of conjugacy classes of G (if

|G| # 0 in k).

Exercise 4.2.3. Show that if |G| = 0 in k, then the number of iso-
morphism classes of irreducible representations of G over k is strictly
less than the number of conjugacy classes in G.

Hint: Let P = 37 ;9 € k[G]. Then P? = 0. So P has zero
trace in every finite dimensional representation of G over k.

Corollary 4.2.4. Any finite dimensional representation of G is de-
termined by its character if k has characteristic 0; namely, xv = xw
implies V=W,

4.3. Examples

The following are examples of representations of finite groups over C.

(1) Finite abelian groups G = Zy, X -+ X Zy, . Let G¥ be the set
of irreducible representations of G. Every element of G forms a con-
jugacy class, so |G| = |G|. Recall that all irreducible representations
over C (and algebraically closed fields in general) of commutative al-
gebras and groups are 1-dimensional. Thus, GV is an abelian group:
if p1,p2 1 G — C* are irreducible representations, then so are the
representations p1(g)p2(g) and p1(g)~t. The group GV is called the
dual group or character group of G.

For given n > 1, define p : Z,, — C* by p(m) = €2™™/™. Then
Z) ={p*:k=0,...,n—1}, s0 Z) = Z,. In general,

GixGyx - xG)V =G xGY x - xGY,
1 2 n
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so G¥ = @G for any finite abelian group G. This isomorphism is,
however, noncanonical: the particular decomposition of G as
Ly, X+ -+ X Ly, is not unique as far as which elements of G correspond
t0 Zny, , etc., is concerned. On the other hand, G = (GV)V is a canon-
ical isomorphism, given by ¢ : G — (GY)V, where »(g)(x) = x(g)-

(2) The symmetric group S3. In the symmetric group S, con-
jugacy classes are determined by cycle decomposition sizes: two per-
mutations are conjugate if and only if they have the same number
of cycles of each length. For Sj3, there are three conjugacy classes,
so there are three different irreducible representations over C. If
their dimensions are dy,ds,ds, then d3 + d3 + d3 = 6, so S3 must
have two 1-dimensional and one 2-dimensional representations. The
1-dimensional representations are the trivial representation C, given
by p(c) =1 and the sign representation C_ given by p(c) = (—1)°.

The 2-dimensional representation can be visualized as represent-
ing the symmetries of the equilateral triangle with vertices 1, 2, 3 at
the points (cos 120°, sin 120°), (cos 240°,sin 240°), (1,0) of the coor-
dinate plane, respectively. Thus, for example,

1 0 cos 120° —sin 120°
12)) = 123)) = .
pl(12)) (0 —1) - P(23) (sm 120°  cos 120° )
To show that this representation is irreducible, consider any subrep-
resentation V. The space V must be the span of a subset of the
eigenvectors of p((12)), which are the nonzero multiples of (1,0) and
(0,1). Also, V must be the span of a subset of the eigenvectors of

p((123)), which are different vectors. Thus, V' must be either C? or
0.

(3) The quaternion group Qg = {=£1,+i,+j, +k}, with defining
relations

i=jk=—kj, j=ki=—ik, k=1ij=—ji, —1=i%>=j*=Fk%

The five conjugacy classes are {1}, {—1}, {£i}, {xj}, {£k}, so there
are five different irreducible representations, the sum of the squares
of whose dimensions is 8, so their dimensions must be 1, 1, 1, 1, and
2.
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The center Z(Qs) is {1}, and Qs/Z(Qg) = Zs X Zs. The four
1-dimensional irreducible representations of Zy X Zso can be “pulled
back” to Qs. That is, if ¢ : Qs — Qs/Z(Qs) is the quotient map and
p is any representation of Qg/Z(Qs), then poq gives a representation

of Qg.

The 2-dimensional representation is V = C2, given by p(—1) =

—Id and
. 0 1
=" o).

(4.3.1) o= (Yo' =)

o= (g )

These are the Pauli matrices, which arise in quantum mechanics.

Exercise 4.3.1. Show that the 2-dimensional irreducible representa-
tion of Qg can be realized in the space of functions f : Qg — C such
that f(gi) = vV/—1f(g) (the action of G is by right multiplication,

go f(x) = f(zg)).

(4) The symmetric group Sy. The order of Sy is 24, and there are
five conjugacy classes: e, (12),(123),(1234),(12)(34). Thus the sum
of the squares of the dimensions of five irreducible representations
is 24. As with S3, there are two of dimension 1: the trivial and
sign representations, C; and C_. The other three must then have
dimensions 2, 3, and 3. Because S3 & Sy/Zy X Zs, where Zs X Zo
is {e, (12)(34), (13)(24), (14)(23)}, the 2-dimensional representation
of S3 can be pulled back to the 2-dimensional representation of Sy,
which we will call C2.

We can consider Sy as the group of rotations of a cube acting by
permuting the interior diagonals (or, equivalently, on a regular octahe-
dron permuting pairs of opposite faces); this gives the 3-dimensional
representation (Ci.

The last 3-dimensional representation is C3 , the product of (Cz’L

with the sign representation. (Ci and C? are different, for if g is
a transposition, detg|©i = 1 while detg|ca = (~1)®> = —1. Note
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that another realization of C? is by action of Sy by symmetries (not
necessarily rotations) of the regular tetrahedron. Yet another real-
ization of this representation is the space of functions on the set of
four elements (on which Sy acts by permutations) with zero sum of
values.

4.4. Duals and tensor products of
representations

If V is a representation of a group G, then V* is also a representation,
via

*

pv-(9) = (pv(9)) ™ = (pv(9) ™)) = pvg™)"
The character is xv+(g9) = xv(g71).

We have xyv(g) = >\, where the \; are the eigenvalues of g

in V. These eigenvalues must be roots of unity because p(g)/¢l =

p(g!¢l) = p(e) = Id. Thus for complex representations

xv(9) =xv(g™h) = Z)\fl = Z)\i = ZM =xv(9)-

In particular, V' 2 V* as representations (not just as vector spaces)
if and only if xv(g) € R for all g € G.

If V, W are representations of G, then V ® W is also a represen-
tation, via

pvew(9) = pv(9) @ pw(g).

Therefore, xvew (9) = xv(9)xw (9)-

An interesting problem discussed below is decomposing V @ W

(for irreducible V, W) into the direct sum of irreducible representa-
tions.

4.5. Orthogonality of characters

We define a positive definite Hermitian inner product on F.(G,C)
(the space of central functions) by

(f1, f2) = ﬁ > hi(9)fa(9)-

geG
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The following theorem says that characters of irreducible represen-
tations of G form an orthonormal basis of F.(G,C) under this inner
product.

Theorem 4.5.1. For any representations V, W
(xv, xw) = dim Homg (W, V),

and
( - 1Litvew,
XVAXWI = 0, it v w

if V,W are irreducible.

Proof. By the definition

(v xw) = 15 E:XV xwl9) =15 E:XV
| | gEG | | QEG
«(g) =T «(P
|G| ZXV@W r|V®W ( )
geG

where P = ﬁ > _gec 9 € Z(C[G]). (Here Z(C[G]) denotes the center
of C[G].) If X is an irreducible representation of G, then

Ply = Idif X =C,
X710 X+#C.

Therefore, for any representation X the operator P|x is the G-invari-
ant projector onto the subspace X¢ of G-invariants in X. Thus,

Tr |V®W* (P) = dim HOmg((c, Ve W*)
= dim(V @ W*)¢ = dim Homg(W, V).
O

Theorem 4.5.1 gives a powerful method of checking if a given
complex representation V' of a finite group G is irreducible. Indeed,
it implies that V is irreducible if and only if (xv,xv) = 1.

Problem 4.5.2. Let G be a finite group. Let V; be the irreducible
complex representations of G.
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For every i, let

dim V;
(S
G|

> xvilg) gt eClq].
geG

(i) Prove that 1; acts on V; as the identity if j = 4, and as the
null map if j # i.

(ii) Prove that v; are idempotents; i.e., 1? = 1; for any i, and
Y;p; = 0 for any 7 # j.

Hint: In (i), notice that 1; commutes with any element of k [G]
and thus acts on V; as an intertwining operator. Corollary 2.3.10 thus
yields that 1); acts on Vj as a scalar. Compute this scalar by taking
its trace in V.

Remark 4.5.3. We see that characters of irreducible complex rep-
resentations of G can be defined without mentioning irreducible rep-
resentations. Namely, equip the space F(G,C) of complex-valued
functions on G with the convolution product

(fr9))= > f@)gy.
z,yeGxy==

This product turns F(G,C) into an associative algebra, with unit
0. (the characteristic function of the unit e € G), and the space
of class functions F,(G,C) is a commutative subalgebra. Then one
can define renormalized characters x; € F.(G,C) to be the primitive
idempotents in this algebra, i.e., solutions of the equation f x f = f
which cannot be decomposed into a sum of other nonzero solutions.
Then one can define the characters by the formula

_ Gl
xi(g9) = mxi(g)

(check it!). This is, essentially, how Frobenius defined characters (see
[Cu], equation (7)). Note that Frobenius defined representations at
approximately the same time, but for some time it was not clear
that there is a simple relation between irreducible representations
and characters (namely, that irreducible characters are simply traces
of group elements in irreducible representations). Even today, many
group theorists sometimes talk of irreducible characters of a finite
group rather than irreducible representations.
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Here is another “orthogonality formula” for characters, in which
summation is taken over irreducible representations rather than group
elements.

Theorem 4.5.4. Let g,h € G, and let Z, denote the centralizer of g
in G. Then

[ 144], if g is conjugate to h,
;Xv(g)Xv(h) = { 0, otherwise,

where the summation is taken over all irreducible representations of

G.

Proof. Asnoted above, xv (h) = xv+(h), so the left-hand side equals
(using Maschke’s theorem):

D oxvigxv-(h) = Trlg, vev-(9® (h*) ")
14

=Tr ‘@V Endv(z = grh™) = Tr lciey (z — grh™1).

If g and A are not conjugate, this trace is clearly zero, since the matrix
of the operator  — gxh~! in the basis of group elements has zero
diagonal entries. On the other hand, if ¢ and h are in the same
conjugacy class, the trace is equal to the number of elements x such
that © = gzh™!, ie., the order of the centralizer Z,; of g. We are
done. g

Remark 4.5.5. Another proof of this result is as follows. Consider
the matrix U whose rows are labeled by irreducible representations of
G and whose columns are labeled by conjugacy classes, with entries
Uv,y = xv(9)/\/1Z4]- Note that the conjugacy class of g is G/Z,; thus
|G|/|Z,4| is the number of elements conjugate to G. Thus, by Theorem
4.5.1, the rows of the matrix U are orthonormal. This means that U
is unitary and hence its columns are also orthonormal, which implies
the statement.
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4.6. Unitary representations. Another proof of
Maschke’s theorem for complex
representations

Definition 4.6.1. A unitary finite dimensional representation of
a group G is a representation of G on a complex finite dimensional
vector space V over C equipped with a G-invariant positive definite
Hermitian form® ( , ), i.e., such that py(g) are unitary operators:

(pv(9)v, pv (9)w) = (v, w).

Theorem 4.6.2. If G is finite, then any finite dimensional repre-
sentation of G has a unitary structure. If the representation is irre-
ducible, this structure is unique up to scaling by a positive real number.

Proof. Take any positive definite form B on V and define another
form B as follows:

B(v,w) = Z B(pv(g)v, pv(g)w).
geG

Then B is a positive definite Hermitian form on V, and py(g) are
unitary operators. If V' is an irreducible representation and B, Bs
are two positive definite Hermitian forms on V, then Bj(v,w) =
By (Av,w) for some homomorphism A : V — V (since any posi-
tive definite Hermitian form is nondegenerate). By Schur’s lemma,
A = Md, and clearly A > 0. g

Theorem 4.6.2 implies that if V' is a finite dimensional representa-
tion of a finite group G, then the complex conjugate representa-
tion V (i.e., the same space V with the same addition and the same
action of G, but complex conjugate action of scalars) is isomorphic to
the dual representation V*. Indeed, a homomorphism of representa-
tions V' — V* is obviously the same thing as an invariant sesquilinear
form on V' (i.e., a form additive on both arguments which is linear on
the first one and antilinear on the second one), and an isomorphism is
the same thing as a nondegenerate invariant sesquilinear form. So one
can use a unitary structure on V to define an isomorphism V — V*.

Iwe agree that Hermitian forms are linear in the first argument and antilinear in
the second one.
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Theorem 4.6.3. A finite dimensional unitary representation V of
any group G is completely reducible.

Proof. Let W be a subrepresentation of V. Let W+ be the orthogo-
nal complement of W in V' under the Hermitian inner product. Then
W is a subrepresentation of W, and V = W @ W+. This implies
that V is completely reducible. O

Theorems 4.6.2 and 4.6.3 imply Maschke’s theorem for complex
representations (Theorem 4.1.1). Thus, we have obtained a new proof
of this theorem over the field of complex numbers.

Remark 4.6.4. Theorem 4.6.3 shows that for infinite groups G, a
finite dimensional representation may fail to admit a unitary structure
(as there exist finite dimensional representations, e.g., for G = Z,
which are indecomposable but not irreducible).

4.7. Orthogonality of matrix elements

Let V be an irreducible representation of a finite group G, and let
V1,03, ...,V, be an orthonormal basis of V' under the invariant Her-
mitian form. The matrix elements of V" are () = (pv (z)vi, v;).

Proposition 4.7.1. (i) Matriz elements of nonisomorphic irreducible
representations are orthogonal in F(G,C) under the form (f,g) =

& e fa)gla).

(ii) One has (t%,tyj,) =6 0jj0 * T

Thus, matriz elements of irreducible representations of G form
an orthogonal basis of F(G,C).

Proof. Let V and W be two irreducible representations of G. Take
{vi} to be an orthonormal basis of V" and {w;} to be an orthonormal
basis of W under their positive definite invariant Hermitian forms.
Let w} € W* be the linear function on W defined by taking the
inner product with w;: w}(u) = (u,w;). Then for z € G we have
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(zw], w}) = (vw;, w;). Therefore, putting P = ﬁ Y e T, we have

(5, t05) = G171 (i, v)) (mwie, wyr)
zeG
= |G|t Z(xvi,vj)(xw;‘,,w;,) = (P(vi ® wy,),v; @ w}).
zeG
If V' # W, this is zero, since P projects to the trivial representation,
which does not occur in V@ W*. If V. = W, we need to consider
(P(vi ®v})),v; ® v} ). We have a G-invariant decomposition

VeV =ColL,
C = span(3_ v @ v}),

L= Spanazzk akaO(Z a1V @ Ul*)v
k.l
and P projects to the first summand along the second one. The
projection of v; ® v}, to C C C & L is thus

52'1" *
G v 2

This shows that

* * 511/ 5,' U
(P(vi ®@v}),v; @vj) = ﬁ7
which finishes the proof of (i) and (ii). The last statement follows
immediately from the sum of squares formula. O

4.8. Character tables, examples

The characters of all the irreducible representations of a finite group
can be arranged into a character table, with conjugacy classes of
elements as the columns and characters as the rows. More specifically,
the first row in a character table lists representatives of conjugacy
classes, the second one lists the numbers of elements in the conjugacy
classes, and the other rows list the values of the characters on the
conjugacy classes. Due to Theorems 4.5.1 and 4.5.4, the rows and
columns of a character table are orthonormal with respect to the
appropriate inner products.

Note that in any character table, the row corresponding to the
trivial representation consists of ones, and the column corresponding
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to the neutral element consists of the dimensions of the representa-
tions.

Here is, for example, the character table of S3 :

Sy [1d [ (12) [ (123)
# 1] 3 2
C, 1] 1 1
C_|1]-1] 1
c2l2] 0 | 1

It is obtained by explicitly computing traces in the irreducible repre-
sentations.

For another example consider Ay, the group of even permutations
of four items. There are three 1-dimensional representations (as A4
has a normal subgroup Zs ® Zo and Ay/(Zy ® Z2) = Zs). Since
there are four conjugacy classes in total, there is one more irreducible
representation of dimension 3. Finally, the character table is

Ay | Id | (123) | (132) | (12)(34)
# |1 4 4 3
C 1 1 1 1
C. | 1 € €2 1
Ce | 1 €2 € 1
C3 13 0 0 -1

where € = exp(%).

The last row can be computed using the orthogonality of rows.
Another way to compute the last row is to note that C? is the repre-
sentation of A4 by rotations of the regular tetrahedron: in this case
(123), (132) are the rotations by 120° and 240° around a perpendicu-
lar to a face of the tetrahedron, while (12)(34) is the rotation by 180°
around an axis perpendicular to two opposite edges.

Example 4.8.1. The following three character tables are of Qg, Sy,
and As, respectively:
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Qs (1] =14 [ j[#k
# (1|1 ]2 ][22
Cop |11 [T [ 11
Co_ |11 1 [=1]-1
C_, |11 [=1]1 =1
C__|1[1[=1]=1]1
c? [2]=—=2]o0 o0

Sy [1d | (12) [ (12)(34) | (123) | (1234)
#11] 6 3 8 6
Cyl 1] 1 1 1 1
C_|1] -1 1 1 ~1
czl2] o0 2 —1 0
Ci|3| -1 -1 0 1
c: 3] 1 —1 0 —1
Ay [1d | (123) | (12)(34) | (12345) | (13245)
# 1] 20 1 12 12
C |1 1 1 1
c3 | 3 -1 14/5 | 1-v5
c: |3 -1 1-y5 | 1+y5
ctl4] 1 0 -1 ~1
C* 5] -1 1 0 0

Indeed, the computation of the characters of the 1-dimensional
representations is straightforward.

The character of the 2-dimensional representation of (g is ob-
tained from the explicit formula (4.3.1) for this representation, or by
using orthogonality.

For S4, the 2-dimensional irreducible representation is obtained
from the 2-dimensional irreducible representation of S5 via the surjec-
tive homomorphism S5 — S3, which allows one to obtain its character
from the character table of Sj3.

The character of the 3-dimensional representation (Ci is com-
puted from its geometric realization by rotations of the cube. Namely,
by rotating the cube, Sy permutes the main diagonals. Thus (12) is
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the rotation by 180° around an axis that is perpendicular to two op-
posite edges, (12)(34) is the rotation by 180° around an axis that
is perpendicular to two opposite faces, (123) is the rotation around
a main diagonal by 120°, and (1234) is the rotation by 90° around
an axis that is perpendicular to two opposite faces; this allows us
to compute the traces easily, using the fact that the trace of a rota-
tion by the angle ¢ in R? is 1 + 2cos ¢. Now the character of C2 is
found by multiplying the character of (Ci by the character of the sign
representation.

Finally, we explain how to obtain the character table of A5 (even
permutations of five items). The group As is the group of rotations
of the regular icosahedron. Thus it has a 3-dimensional “rotation
representation” C%, in which (12)(34) is the rotation by 180° around
an axis perpendicular to two opposite edges, (123) is the rotation by
120° around an axis perpendicular to two opposite faces, and (12345),
(13254) are the rotations by 72°, respectively 144°, around axes going
through two opposite vertices. The character of this representation
is computed from this description in a straightforward way.

Another representation of As, which is also 3-dimensional, is C%.
twisted by the automorphism of A5 given by conjugation by (12) in-
side S5. This representation is denoted by C2 . It has the same char-
acter as (Ci, except that the conjugacy classes (12345) and (13245)
are interchanged.

There are two remaining irreducible representations, and by the
sum of squares formula their dimensions are 4 and 5. So we call them
C* and C°.

The representation C* is realized on the space of functions on
the set {1,2,3,4,5} with zero sum of values, where A5 acts by per-
mutations (check that it is irreducible!). The character of this repre-
sentation is equal to the character of the 5-dimensional permutation
representation minus the character of the 1-dimensional trivial repre-
sentation (constant functions). The former at an element g is equal
to the number of items among 1, 2, 3, 4, 5 which are fixed by g.

The representation C° is realized on the space of functions on
pairs of opposite vertices of the icosahedron which has zero sum of
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values (check that it is irreducible!). The character of this repre-
sentation is computed similarly to the character of C*, or from the
orthogonality formula.

4.9. Computing tensor product multiplicities
using character tables

Character tables allow us to compute the tensor product multiplicities
Nz’“7 using

VieV; = ZNZ-’?Vk, Ni’} = (XiXj» Xk)-

Example 4.9.1. The following tables represent computed tensor
product multiplicities of irreducible representations of Sz, Sy, and As,

respectively:
S3 | C, | Co C?
C,|C,|C_ C?
C_ Cy C?
C? CyoC_qC?
S, |cy|co c? c3 c?
Cy|Cy|C_ c? c3 c?
C_ Cy c? c3 c3
C? Ciy@C_aC? CiecC? CigcC®
c3 C,oC*’0C3aC® |C_oCaCioC
c? CiaC?*apClapC
45 | C c3 c3 ct (o
c|cC (org c3 ct cs
ci CeC’aCl| C'oC° |CioC'aC’| CloCloC'eCs
c? CoCiaCl | CiloC'aC | ClaCiacC!acCs
ct CioClaC |ClaC®a20®pCt
®C* ¢ C°
c CoC3acC
@2C* @ 2C°
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4.10. Frobenius determinant

Enumerate the elements of a finite group G as follows: g1, g2,...,gn.
Introduce n variables indexed with the elements of G :

LTgyyLgys-v+yLg,-

Definition 4.10.1. Consider the matrix X with entries a;; = 4,g,-
The determinant of X is some polynomial of degree n of z4,, g, ...,
x4, that is called the Frobenius determinant, or group deter-
minant.

The following theorem, discovered by Dedekind and proved by
Frobenius, became the starting point for creation of representation
theory (see [Cu] and Section 4.11).

Theorem 4.10.2.

T
det Xg = [ [ Py(x)& "
j=1
for some pairwise nonproportional irreducible polynomials Pj(x),
where r is the number of conjugacy classes of G.

We will need the following simple lemma.

Lemma 4.10.3. Let Y be an n x n matriz with entries y;;. Then
detY is an irreducible polynomial of {y;;}.

Proof. Let X = ¢ - Id—i—zzl:l 2iF; i41, where ¢ + 1 is computed
modulo n, and E; ; are the elementary matrices. Then det(X) =
t" — (=1)"x1 ...z, which is obviously irreducible. Hence det(Y') is
irreducible (since it is so when Y is specialized to X, and since ir-
reducible factors of a homogeneous polynomial are homogeneous, so
cannot specialize to nonzero constants). O

Now we are ready to proceed to the proof of Theorem 4.10.2.

Proof. Let V = C[G] be the regular representation of G. Consider
the operator-valued polynomial

L(x) = ) z4n(9),

geG
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where p(g) € EndV is induced by g. The action of L(x) on an element

heGis
L(x)h = Z zgp(g)h = Z zggh = Z Top-12.
geG geG zeG
So the matrix of the linear operator L(x) in the basis g1, g2, . - ., gn 1s

X with permuted columns and hence has the same determinant up
to sign.
Further, by Maschke’s theorem, we have
dety L(x) = [ J(dety, L(x))™ ",
i=1

where V; are the irreducible representations of G. We set P, =
dety, L(x). Let {e;m} be bases of V; and let E; j;, € EndV; be the
matrix units in these bases. Then {E; ;i } is a basis of C[G] and

L)y, = > ik Fijhs
7,k

where y; ;i are new coordinates on C[G] related to x4, by a linear
transformation. Then

P;(x) = det |y, L(x) = det(yi jx)-

Hence, P; are irreducible (by Lemma 4.10.3) and not proportional to
each other (as they depend on different collections of variables y; j ).
The theorem is proved. O

4.11. Historical interlude: Georg Frobenius’s
“Principle of Horse Trade”

Ferdinand Georg Frobenius (1849-1917) studied at the famous Berlin
University under both Karl Weierstrass and Leopold Kronecker, two
great mathematicians who later became bitter opponents. Weier-
strass considered Frobenius one of his brightest doctoral students and
greased the wheels of his career by securing him a full professorship at
the Zirich Polytechnikum. In Ziirich Frobenius quickly got married,
but the joys of happy matrimony did not prevent him from continu-
ing productive research. Frobenius earned a high reputation for his
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78 4. Representations of finite groups: Basic results

studies of elliptic and theta functions, determinant and matrix the-
ory, and bilinear forms. Some fifteen years later, Kronecker’s passing
opened a vacant slot in Berlin, and Weierstrass got posthumous re-
venge on his old opponent by hiring his own student, Frobenius, for
Kronecker’s chair. In 1892 Frobenius left for Berlin, just four years
before Einstein enrolled as a student in the Ziirich Polytechnikum.

Praised by his colleagues as “a first-rate stylist”, who “writes
clearly and understandably without ever attempting to delude the
reader with empty phrases”, Frobenius was soon elected to the presti-
gious Prussian Academy of Sciences [11, p. 38]. At this point, Frobe-
nius began reevaluating his research interests. As he explained in
his inaugural speech, the “labyrinth of formulas” in the theory of
theta functions was having “a withering effect upon the mathemat-
ical imagination”. He intended “to overcome this paralysis of the
mathematical creative powers by time and again seeking renewal at
the fountain of youth of arithmetic”, i.e., number theory (quoted in
[24, p. 220]). In his 40s, Frobenius indeed found this “fountain of
youth” in “arithmetic”, that is, in the theory of finite groups linked
to the theory of numbers by Galois theory.

In 1896 Frobenius’s comfortable life in Berlin was unceremoni-
ously disrupted by several letters from Richard Dedekind, his old ac-
quaintance and a predecessor at the Ziirich Polytechnikum, now the
dean of abstract algebra in Germany. After dealing with epistolary
niceties and thanking Frobenius for brightening “the African dark-
ness of the theory of groups”, Dedekind shared some of his recent
results on group theory, including his concept of the group deter-
minant and the statement of his theorem about its factorization for
abelian groups. Since Dedekind had not bothered to publish his work
on the topic, Frobenius had never even heard of the group determi-
nant, but he quickly grasped this concept and never let it go again.
In his reply, Frobenius mildly chastised Dedekind for keeping back
these “extremely beautiful results from your friends and admirers”,
and asked for more details. Dedekind then stumped his colleague
with a “conjectured theorem” that the number of linear factors in
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4.11. Historical interlude: Georg Frobenius 79

the group determinant is equal to the index of the commutator sub-
group and admitted, “I distinctly feel that I will not achieve anything
here” (quoted in [24, pp. 223, 224]).

Dedekind’s challenge was perfectly timed for the spring break,
and Frobenius, having some free time on his hands, immediately took
the bait. Employing military metaphors to describe his own work,
he waged a war against the group determinant. He invented gen-
eralized group characters and assaulted Dedekind’s conjecture with
their help. Frobenius’s initial results seemed unsatisfactory, and he
reported them to Dedekind with a disclaimer that “my conclusions
are so complicated that I myself do not rightly know where the main
point of the proof is, and in fact I am still slightly mistrustful of it”
(quoted in [24, pp. 225, 230]).

A few days later a jubilant Frobenius wrote to Dedekind that he
finally saw the way to a solution. Citing his former colleague Friedrich
Schottky, Frobenius now looked at his own earlier frustration as the
harbinger of a forthcoming breakthrough: “If in an investigation,
after difficult mental exertion, the feeling arises that nothing will be
achieved on the matter in question, then one can rejoice for he is
standing before the solution” (quoted in [24, p. 230]). Within ten
days, Frobenius proved all the main theorems of the theory of group
determinants, except for one most important result.

The missing theorem stated, in modern language, that an irre-
ducible representation occurs in the regular representation as often as
its degree and was called by Frobenius “the Fundamental Theorem of
the theory of group determinants”. “It would be wonderful” if it were
true, he wrote, “for then my theory would supply everything need-
ful” for the determination of prime factors (quoted in [24, p. 235]).
The proof took five months, during which Frobenius repeatedly used
a new, effective technique, which he kept secret and shared privately
only with Dedekind. The new method drew on the well-known bar-
gaining strategy: “At the market, the desired horse is ignored as much
as possible and at last is allowed to be formally recognized” (quoted
in [24, p. 236]). In Frobenius’s interpretation, in order to solve a
mathematical problem, one had to preoccupy oneself with activities
totally unrelated to mathematics. He applied this “Principle of the
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Horse Trade” widely, taking his wife to trade exhibits and art shows,
reading fiction, and clearing his garden of caterpillars. Frobenius im-
plored Dedekind to keep this ingenious method a secret, promising to
disclose it in a posthumous volume, On the Methods of Mathematical
Research, with an appendix on caterpillar catching [24, p. 237]. Un-
fortunately, this volume never came out, which was a huge setback
for the science of caterpillar-catching.

Miraculously, taking a break from research, combined with a
healthy dose of working desk disorder, did help Frobenius refresh his
thoughts and find a new approach. After returning home from vaca-
tion, Frobenius failed to find his earlier proof of one particular case
of the missing theorem among his “highly scattered and disorganized
papers”. After “much torment”, however, he discovered a new proof
and recognized the crucial possibility of generalization [24, p. 237].

The same year Frobenius announced his results to the world in
a series of papers. This was a wise move, since most of his corre-
spondence with Dedekind eventually ended up in the hands of an
American lawyer, who kept it in his drawer for thirty odd years and
parted with it only after his retirement by giving it to a mathematics
professor in exchange for $25 [27].

Wielding the group determinant as his main weapon, within a
few years Frobenius demolished a whole range of targets in repre-
sentation theory. Although his proofs have now been supplanted by
easier modern versions, his skills as a group determinant virtuoso
remain unsurpassed, as the tool itself went out of use.

Frobenius labored mightily to keep things at the University of
Berlin just the way they were in the glorious days of his student youth,
and he accused the advocates of applied mathematics of trying to re-
duce this venerable institution to the rank of a technical school. His
personality, which has been described as “occasionally choleric, quar-
relsome, and given to invectives” [21], alienated him from many of his
colleagues. Despite (or maybe partly due to?) Frobenius’s uncom-
promising stance, the numbers of doctorates and teaching staff at the
University gradually declined. Frobenius advised nineteen doctoral
students, and only one of them wrote a dissertation on representation
theory. Training that one student, however, proved fortuitous, for
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that student was the brilliant mathematician Issai Schur, who kept
the Frobenius tradition alive for decades to come.

In the meantime, Berlin was losing its reputation as the leading
center of German mathematics to Gottingen. This did not endear
Gottingen-style mathematics to Frobenius’s heart, and he disaffec-
tionately called it “a school, in which one amuses oneself more with
rosy images than hard ideas” (quoted in [11, p. 47]). His aversion to
the Gottingen patriarch Felix Klein and to Sophus Lie, according to
one commentator, “knew no limits” (Biermann in [11, p. 47]).

Despite Frobenius’s best efforts to keep the subject pure, repre-
sentation theory has since been irretrievably polluted by applications
in quantum physics and chemistry, crystallography, spectroscopy, and
even virology. Worse still, thanks to the efforts of Hermann Weyl
and Claude Chevalley, his beloved representation theory eventually
merged with the theory of Lie groups. Frobenius thus was eventually
reconciled with Lie, if only in the Platonic world of eternal mathe-
matical objects.

4.12. Problems

Problem 4.12.1. Let G be the group of symmetries of a regular
N-gon (it has 2N elements).

(a) Describe all irreducible complex representations of this group
(consider the cases of odd and even N).

(b) Let V be the 2-dimensional complex representation of G' ob-
tained by complexification of the standard representation on the real
plane (the plane of the polygon). Find the decomposition of V & V
in a direct sum of irreducible representations.

Problem 4.12.2. Let p be a prime. Let G be the group of 3 x 3 matri-
ces over [F, which are upper triangular and have 1’s on the diagonal,
under multiplication (its order is p?). It is called the Heisenberg
group. For any complex number z such that 2P = 1, we define a
representation of G on the space V' of complex functions on F, by

110
(p {0 1 0 f)z)=flz-1),
00 1
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100
(P10 1 1| f)z)==2"f(x)
00 1

(note that z* makes sense since zP = 1).

(a) Show that such a representation exists and is unique, and
compute p(g) for all g € G.

(b) Denote this representation by R,. Show that R, is irreducible
if and only if z # 1.

(c) Classify all 1-dimensional representations of G. Show that R;
decomposes into a direct sum of 1-dimensional representations, where
each of them occurs exactly once.

(d) Use (a)—(c) and the “sum of squares” formula to classify all
irreducible representations of G.

Problem 4.12.3. Let V be a finite dimensional complex vector
space, and let GL(V') be the group of invertible linear transforma-
tions of V. Then S™V and A™V (m < dim(V')) are representations
of GL(V) in a natural way. Show that they are irreducible represen-
tations.

Hint: Choose a basis {¢;} in V. Find a diagonal element H of
GL(V) such that p(H) has distinct eigenvalues (where p is one of the
above representations). This shows that if W is a subrepresentation,
then it is spanned by a subset S of a basis of eigenvectors of p(H).
Use the invariance of W under the operators p(1+ E;;) (where E;; is
defined by E;jer = d;,e;) for all i # j to show that if the subset S is
nonempty, it is necessarily the entire basis.

Problem 4.12.4. Recall that the adjacency matrix of a graph T’
(without multiple edges) is the matrix in which the ijth entry is 1 if
the vertices ¢ and j are connected with an edge, and zero otherwise.
Let T' be a finite graph whose automorphism group is nonabelian.
Show that the adjacency matrix of I' must have repeated eigenvalues.

Problem 4.12.5. Let I be the set of vertices of a regular icosahedron
(II| = 12). Let F(I) be the space of complex functions on I. Recall
that the group G = Aj of even permutations of five items acts on
the icosahedron, so we have a 12-dimensional representation of G on
F(I).
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(a) Decompose this representation in a direct sum of irreducible
representations (i.e., find the multiplicities of occurrence of all irre-
ducible representations).

(b) Do the same for the representation of G on the space of func-
tions on the set of faces and the set of edges of the icosahedron.

Problem 4.12.6. Let F, be a finite field with ¢ elements, and let G
be the group of nonconstant inhomogeneous linear transformations,
x — ar+b, over Fy (i.e., a € Fy,b € F,). Find all irreducible complex
representations of G, and compute their characters. Compute the
tensor products of irreducible representations.

Hint: Let V be the representation of G on the space of func-
tions on [F;, with sum of all values equal to zero. Show that V is an
irreducible representation of G.

Problem 4.12.7. Let G = SU(2) (the group of unitary 2x 2 matrices
with determinant 1), and let V' = C? be the standard 2-dimensional
representation of SU(2). We regard V' as a real representation, so it
is 4-dimensional.

(a) Show that V is irreducible (as a real representation).

(b) Let H be the subspace of Endr(V') consisting of endomor-
phisms of V' as a real representation. Show that H is 4-dimensional
and closed under multiplication. Show that every nonzero element in
H is invertible, i.e., H is an algebra with division.

(c) Find a basis 1,4, j, k of H such that 1 is the unit and
2= =kt=1,ij=—ji=k, jk=—kj=1i, ki= —ik=j.

Thus we have that Qg is a subgroup of the group H* of invertible
elements of H under multiplication.
The algebra H is called the quaternion algebra, and its el-

ements are called quaternions. Quaternions were discovered by
W. R. Hamilton in 1843 (see Section 4.13).

(d) For g =a+bi+cj+dk,abc,d e R, let §=a—bi—cj—dk
and ||q||* = q7 = a® + b* + ¢ + d*. Show that g1z = Gq1 and
llargz|l = [laxl| - [lg2[l-
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(e) Let G be the group of quaternions of norm 1. Show that
this group is isomorphic to SU(2). (Thus geometrically SU(2) is the
3-dimensional sphere.)

(f) Consider the action of G on the space V' C H spanned by 4, j, k,
by 2 = qzq~', ¢ € G, x € V. Since this action preserves the norm
on V, we have a homomorphism h : SU(2) — SO(3), where SO(3)
is the group of rotations of the 3-dimensional Euclidean space. Show
that this homomorphism is surjective and that its kernel is {1, —1}.

Problem 4.12.8. It is known that the classification of finite sub-
groups of SO(3) is as follows:

1) the cyclic group Z/nZ, n > 1, generated by a rotation by 27 /n
around an axis;

2) the dihedral group D,, of order 2n, n > 2 (the group of rota-
tional symmetries in 3-space of a plane containing a regular n-gon?;

3) the group of rotations of a regular tetrahedron (As4);

4) the group of rotations of a cube or regular octahedron (Sy);

5) the group of rotations of a regular dodecahedron or icosahedron
(45).

(a) Derive this classification.

Hint: Let G be a finite subgroup of SO(3). Consider the action
of G on the unit sphere. A point of the sphere preserved by some
nontrivial element of G is called a pole. Show that every nontriv-
ial element of GG fixes a unique pair of opposite poles and that the
subgroup of G fixing a particular pole P is cyclic, of some order m
(called the order of P). Thus the orbit of P has n/m elements, where
n = |G|. Now let Py, ..., Py be a collection of poles representing all
the orbits of G on the set of poles (one representative per orbit), and
let mq, ..., my be their orders. By counting nontrivial elements of G,

show that
1 1
211 ——) = 1-—.
(=)= ()

Then find all possible m; and n that can satisfy this equation and
classify the corresponding groups.

2A regular 2-gon is just a line segment.
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(b) Using this classification, classify finite subgroups of SU(2)
(use the homomorphism SU(2) — SO(3)).

Problem 4.12.9. Find the characters and tensor products of irre-
ducible complex representations of the Heisenberg group from Prob-
lem 4.12.2.

Problem 4.12.10. Let G be a finite group and let V' be a complex
representation of G which is faithful, i.e., the corresponding map G —
GL(V) is injective. Show that any irreducible representation of G
occurs inside S™V (and hence inside V&™) for some n.

Hint: Show that there exists a vector u € V* whose stabilizer in
G is 1. Now define the map SV — F(G,C) sending a polynomial f
on V* to the function f, on G given by f,(9) = f(gu). Show that
this map is surjective and use this to deduce the desired result.

Problem 4.12.11. This problem is about an application of repre-
sentation theory to physics (elasticity theory). We first describe the
physical motivation and then state the mathematical problem.

Imagine a material which occupies a certain region U in the phys-
ical space V = R? (a space with a positive definite inner product).
Suppose the material is deformed. This means, we have applied a dif-
feomorphism (= change of coordinates) g : U — U’. The question in
elasticity theory is how much stress in the material this deformation
will cause.

For every point P € U, let Ap : V — V be defined by Ap =
dg(P). Here Ap is nondegenerate, so it has a polar decomposition
Ap = DpOp, where Op is orthogonal and Dp is symmetric. The
matrix Op characterizes the rotation part of Ap (which clearly pro-
duces no stress), and Dp is the distortion part, which actually causes
stress. If the deformation is small, Dp is close to 1, so Dp =1+ dp,
where dp is a small symmetric matrix, i.e., an element of S?V. This
matrix is called the deformation tensor at P.

Now we define the stress tensor, which characterizes stress. Let v
be a small nonzero vector in V', and let o be a small disk perpendicular
to v centered at P of area ||v||. Let F, be the force with which the
part of the material on the v-side of o acts on the part on the opposite
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86 4. Representations of finite groups: Basic results

side. It is easy to deduce from Newton’s laws that F), is linear in v,
so there exists a linear operator Sp : V — V such that F,, = Spv. It
is called the stress tensor.

An elasticity law is an equation Sp = f(dp), where f is a func-
tion. The simplest such law is a linear law (Hooke’s law): f : S?V —
End(V) is a linear function. In general, such a function is defined by
9 -6 = 54 parameters, but we will show there are actually only two
essential ones — the compression modulus K and the shearing
modulus p. For this purpose we will use representation theory.

Recall that the group SO(3) of rotations acts on V, so S?V,
End(V) are representations of this group. The laws of physics must
be invariant under this group (Galileo transformations), so f must be
a homomorphism of representations.

(a) Show that End(V') admits a decomposition R®&V @& W, where
R is the trivial representation, V is the standard 3-dimensional rep-
resentation, and W is a 5-dimensional representation of SO(3). Show
that S?V =Re W.

(b) Show that V' and W are irreducible, even after complexifica-
tion. Deduce using Schur’s lemma that Sp is always symmetric, and
for x € R,y € W one has f(x + y) = Kx + py for some real numbers
K, p.

In fact, it is clear from physics that K, u are positive. Physically,
the compression modulus K characterizes resistance of the material to
compression or dilation, while the shearing modulus p characterizes
its resistance to changing the shape of the object without changing
its volume. For instance, clay (used for sculpting) has a large com-
pression modulus but a small shearing modulus.

4.13. Historical interlude: William Rowan
Hamilton’s quaternion of geometry,
algebra, metaphysics, and poetry

At age 17, William Rowan Hamilton’s interest in mathematics was
sparked by his discovery of an error in Laplace’s Celestial Mechan-
ics. The Royal Astronomer of Ireland was so impressed that in a few
years he secured for Hamilton the appointment as Royal Astronomer
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4.13. Historical interlude: William Rowan Hamilton 87

at Dunsinsk Observatory, where Hamilton was stuck for the rest of his
life. Hamilton ploughed through university studies by winning every
conceivable honor and took his job at the Observatory even before
graduation, but as a practical astronomer he proved to be a failure.
Tedious observations did not appeal to him; he found theoretical sub-
jects much more exciting.

Hamilton’s social circle included major Romantic poets and philo-
sophers. Hamilton himself harbored poetic aspirations, but William
Wordsworth gently channeled his creative energies back to mathe-
matics. Hamilton immersed himself in the reading of Kant, absorbed
the Kantian notions of space and time as pure intuitions, and be-
came intrigued by Kant’s casual remark that just as geometry was
the “science of space”, algebra could be thought of as the “science
of pure time” [61]. Later Hamilton insisted that Kant merely con-
firmed his own ideas and reading him was more “recognizing” than
“discovering” [17, 2:96, 2:98].

Hamilton made his reputation as a mathematician by his studies
in optics and mechanics, based on his notion of the characteristic
function. He saw his greatest achievement in reducing the solution of
3nordinary differential equations of the second order to the solution of
two partial differential equations of the first order and second degree.
It was not obvious that this represented any progress toward actually
solving the problem, but Hamilton was convinced that even if “no
practical facility is gained” from his method, the reduction of all
complex calculations to the study of one characteristic function should
give one “an intellectual pleasure” (quoted in [18, p. 89]).

Hamilton divided all algebraists into three schools of thought:
the practical, the philological, and the theoretical. The practical
school viewed algebra as an art and was interested in computation;
the philological school viewed it as a language, a set of symbols to be
manipulated according to some rules; and only the theoretical school,
to which Hamilton modestly assigned himself, treated algebra as a
science, “strict, pure, and independent, deduced by valid reasonings
from its own intuitive principles” [17, 2:48].

“I am never satisfied unless I think that I can look beyond or
through the signs to the things signified”, wrote Hamilton. He was
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frustrated by the inability to find “things signified” behind the notions
of negative and imaginary numbers, which therefore looked absurd to
him. By 1828 he became “greatly dissatisfied with the phrases, if
not the reasonings, of even very eminent analysts”. He believed that
in order to “clear away the metaphysical stumbling-blocks that beset
the entrance of analysis”, one needed either to discard negative and
imaginary numbers or to explain their “true sense” [17, 2:143, 1:304].
Hamilton soon learned of the so-called Argand diagram representing
the complex number as a point on a plane, with its real and imaginary
parts plotted on two rectangular axes. Inspired by this geometrical
representation, he began looking for an algebraic representation of
complex numbers for which all valid operations could be defined and
soon developed the concept of algebraic couples. Echoing the Kan-
tian vision of algebra as a science of time, Hamilton viewed these
number couples as “steps” in time, rather than magnitudes, and he
interpreted negative signs as reversals of temporality [43, p. 281]. He
sought a new foundation of algebra in the intuitive notion of pure or
mathematical time: the moment was to algebra what the point was
to geometry, time intervals were finite straight lines, and an indefinite
straight line represented Time itself. Being awfully busy prevented
Hamilton from pursuing this promising line of reasoning further. As
he remarked, “Time is needed, with all its gross reality of hours and
days, even to write upon Pure Time” [17, 2:144].

The 2-dimensional representation of complex numbers also in-
spired Hamilton to seek hypercomplex numbers related to the “real”
3-dimensional space, or “triplets”, as he called them. “Triplets” fit
nicely with his philosophical interest in the idealistic triad “thesis-
antithesis-synthesis” [20]. Adding triplets was easy, but they stub-
bornly refused to multiply. They did it for a good reason, for, as
Frobenius would prove only after Hamilton’s death, no such algebra
was possible. In desperation, Hamilton tried ordered sets of four num-
bers, or “quaternions”. They agreed to multiply only if the commu-
tative law was lifted. This realization came to Hamilton on October
16th, 1843, as he was walking with his wife along the Royal Canal in
Dublin. “I then and there felt the galvanic circuit of thought close;
and the sparks which fell from it were the fundamental equations’
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of quaternions, he later recalled. In a less poetic metaphor, he com-
pared his satisfaction upon solving the problem to “an intellectual
want relieved” [17, 2:435-436]. Hamilton immediately pulled out
his notebook and jotted down the fundamental quaternion formula.
Anxious to check the consistency of his new algebra, he continued
scribbling in a carriage on the way to a meeting of the Council of the
Royal Irish Academy and later while presiding over that meeting as
Academy President. Neither chatting with his wife nor chairing an
academic meeting apparently interfered with the train of his mathe-
matical thought.

Hamilton felt that he might explore the ramifications of the quater-
nion theory for 10-15 years — as long as he had spent trying to work
it out. He speculated that the scalar part of the quaternion might
express quantity (say, of electricity), while the imaginary parts might
determine direction and intensity, for example, electrical polarity. He
even gave the calculus of quaternions a “semi-metaphysical” inter-
pretation as a “calculus of polarities”, echoing his earlier interest in
idealist philosophy [17, 2:436, 2:440]. In an even stronger metaphys-
ical vein, he came to view quaternions as a natural algebra of space
and time, in which the three dimensions of space were joined by the
fourth dimension of time. “The quaternion (was) born, as a curious
offspring of a quaternion of parents, say of geometry, algebra, meta-
physics, and poetry”, he wrote and quoted his own sonnet addressed
to Sir John Herschel as the clearest expression of the quaternion idea:

“And how the one of Time, of Space the Three,
Might in the Chain of Symbols girdled be”

(quoted in [20, p. 176]).

Hamilton did everything he could to make his theory unpalat-
able to the reader, choosing from the outset a “metaphysical style
of expression”. Herschel implored him to make his ideas “clear and
familiar down to the level of ordinary unmetaphysical apprehension”
and to “introduce the new phrases as strong meat gradually given to
babes” [17, 2:633], but to no avail. Hamilton loaded his 800-page-long
Lectures on Quaternions (1853) with new impenetrable terminology,
such as wector, vehend, vection, vectum, revector, revehend, revec-
tion, revectum, provector, transvector, factor, profactor, versor, and
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90 4. Representations of finite groups: Basic results

quandrantal versor [10, p. 36]. His attempt at a more basic introduc-
tion, Elements of Quaternions, ended up being even longer than the
Lectures.

Quaternions were popularized by Hamilton’s disciple Peter Tait,
who fought a protracted battle with Josiah Willard Gibbs and Oliver
Heaviside, promoters of the rival vector analysis. If quaternion multi-
plication lacked commutativity, the dot product and the cross product
of vectors seemed to have even greater problems, and Tait branded
vector analysis a “hermaphrodite monster” [10, p. 185].

Telling his great discovery story to his son 23 years after the
fact, Hamilton added that at his eureka moment he could not “resist
the impulse — unphilosophical as it may have been — to cut (the
quaternion formula) with a knife on a stone” of a nearby bridge [17,
2:435]. Whether this was true or Hamilton simply could not resist
the impulse to embellish his story, we will never know, as Time has
long erased the etching off the bridge stone — but not off the annals
of mathematics. Today the site of Hamilton’s vandalism is marked by
a plaque which reads, “Here as he walked by on the 16th of October
1843 Sir William Rowan Hamilton in a flash of genius discovered the
fundamental formula for quaternion multiplication i? = j2 = k? =
ijk = —1 & cut it on a stone of this bridge”. The bridge is now a
pilgrimage site for mathematicians seeking to ignite their imagination
off the sparks of the original flash.
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Chapter 5

Representations of finite
groups: Further results

5.1. Frobenius-Schur indicator

Suppose that G is a finite group and V' is an irreducible representation
of G over C.

Definition 5.1.1. We say that V is

- of complex type if V2 V*,

- of real type if V has a nondegenerate symmetric form in-
variant under G,

- of quaternionic type if V' has a nondegenerate skew form
invariant under G.

Problem 5.1.2. (a) Show that Endgjg) V' is C for V of complex type,
Mats(R) for V' of real type, and H for V' of quaternionic type, which
motivates the names above.

Hint: Show that the complexification Vg of V' decomposes as
V @ V*. Use this to compute the dimension of Endg(g) V' in all three
cases. Using the fact that C C Endg|g V, prove the result in the
complex case. In the remaining two cases, let B be the invariant
bilinear form on V and let (, ) be the invariant positive Hermitian
form (they are defined up to a nonzero complex scalar and a positive
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92 5. Representations of finite groups: Further results

real scalar, respectively). Define the operator j : V' — V such that
B(v w) = (v, jw). Show that j is complex antilinear (ji = —ij), and
j2 = X -Id, where X is a real number, positive in the real case and
negative in the quaternionic case (if B is renormalized, j multiplies by
a nonzero complex number z and j2 by 2%, as j is antilinear). Thus
j can be normalized so that j2 = 1 in the real case and j2 = —1 in
the quaternionic case. Deduce the claim from this.

(b) Show that V is of real type if and only if V is the complexi-
fication of a representation Vg over the field of real numbers.

Example 5.1.3. For Z/nZ all irreducible representations are of com-
plex type except the trivial one and, if n is even, the “sign” representa-
tion, m — (—1)™, which are of real type. For S3 all three irreducible
representations C,C_, C? are of real type. For S, there are five ir-
reducible representations C,, C_, C2, (Cf’r, C3 , which are all of real
type. Similarly, all five irreducible representations of A5 — C, (Ci,
C3, C*, C> — are of real type. As for Qs, its 1-dimensional represen-
tations are of real type, and the 2-dimensional one is of quaternionic
type.

Definition 5.1.4. The Frobenius-Schur indicator F'S(V) of an
irreducible representation V is 0 if it is of complex type, 1 if it is of
real type, and —1 if it is of quaternionic type.

Theorem 5.1.5 (Frobenius-Schur). The number of involutions (=
elements of order < 2) in G is equal to ), dim(V)FS(V), i.e., the
sum of dimensions of all representations of G of real type minus the
sum of dimensions of its representations of quaternionic type.

Proof. Let A:V — V have eigenvalues A1, Ag, ..., A,. We have
Trlsev(A®A) =D Aikj,

i<j
Trpov (A® A) = > Ai)j.
1<J
Thus,
Trlsov (A@A) = Tr ey (A@ A) = Y A7 =Tr(4%).
1<i<n
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5.2. Algebraic numbers and algebraic integers 93

Thus for g € G we have

xv(9%) = xs2v(9) = xazv (9)-
Therefore, setting P = |G| ™! > gec 95 we get
G v (D 9%) = xs2v (P) = xa2v (P) = dim(S?V)9 — dim(A*V)
geG
1 if V' is of real type,
= ¢ —1 if V is of quaternionic type,

0 if V is of complex type.

Finally, the number of involutions in G equals

éZdimVxV(Zg%: S dimV - Y dimV
1%

geG real V' quat. V'
0

Corollary 5.1.6. Assume that all representations of a finite group G
are defined over real numbers (i.e., all complex representations of G
are obtained by complexifying real representations). Then the sum of
the dimensions of all the irreducible representations of G equals the
number of involutions in G.

Exercise 5.1.7. Show that any nontrivial finite group of odd order
has an irreducible representation which is not defined over R (i.e., not
realizable by real matrices).

5.2. Algebraic numbers and algebraic integers

We are now passing to deeper results in the representation theory of
finite groups. These results require the theory of algebraic numbers,
which we will now briefly review.

Definition 5.2.1. z € C is an algebraic number (respectively, an
algebraic integer ) if z is a root of a monic polynomial with rational
(respectively, integer) coefficients.

Definition 5.2.2. z € C is an algebraic number, (respectively, an
algebraic integer), if z is an eigenvalue of a matrix with rational
(respectively, integer) entries.
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94 5. Representations of finite groups: Further results

Proposition 5.2.3. Definitions (5.2.1) and (5.2.2) are equivalent.

Proof. To show that the condition of Definition 5.2.2 implies the
condition of Definition 5.2.1, notice that z is a root of the charac-
teristic polynomial of the matrix (a monic polynomial with rational,
respectively integer, coefficients). To establish the converse, suppose
z is a root of

p(z) =2a" + a " V. a1z + an.

Then the characteristic polynomial of the following matrix (called the
companion matrix) is p(z):

0 0 O 0 —an
1 0 0 0 —ap—1
0 1 0 0 —ap_9
0 0 O 1 —aq

Since z is a root of the characteristic polynomial of this matrix, it is
an eigenvalue of this matrix. O

The set of algebraic numbers is denoted by Q, and the set of
algebraic integers is denoted by A.

Proposition 5.2.4. (i) A is a ring.

(ii) Q is a field. Namely, it is an algebraic closure of the field of
rational numbers.

Proof. We will be using Definition 5.2.2. Let a be an eigenvalue of
A € Mat,,(C)

with eigenvector v, and let 8 be an eigenvalue of
B € Mat,,,(C)

with eigenvector w. Then « & § is an eigenvalue of

A®Id,, £1d, ®B,

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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and «af is an eigenvalue of
A®B.

The corresponding eigenvector is in both cases v®w. This shows that
both A and Q are rings. To show that the latter is a field, it suffices
to note that if & # 0 is a root of a polynomial p(x) of degree d, then
a~lis aroot of z%p(1/z). The last statement is easy, since a number

« is algebraic if and only if it defines a finite extension of Q. O

Proposition 5.2.5. ANQ =7Z.

Proof. We will be using Definition 5.2.1. Let z be a root of
p(e) = 2"+ are™ + ...+ apor@ + an,
and suppose
s=1EQ ged(pa)=1

Notice that the leading term of p(z) will have ¢™ in the denominator,
whereas all the other terms will have a lower power of g there. Thus,
if ¢ # 1, then p(z) ¢ Z, a contradiction. Thus, z € ANQ = z € Z.
The reverse inclusion follows because n € Z is a root of z — n. O

Every algebraic number o has a minimal polynomial p(x)
which is the monic polynomial with rational coefficients of the small-
est degree such that p(a) = 0. Any other polynomial ¢(x) with ra-
tional coefficients such that ¢(«) = 0 is divisible by p(x). Roots of
p(z) are called the algebraic conjugates of «; they are roots of any
polynomial ¢ with rational coefficients such that ¢(«) = 0.

Note that any algebraic conjugate of an algebraic integer is obvi-
ously also an algebraic integer. Therefore, by the Vieta theorem, the
minimal polynomial of an algebraic integer has integer coefficients.

Below we will need the following lemma:

Lemma 5.2.6. If ay,...,q,, are algebraic numbers, then all alge-
braic conjugates to aq + - - -+ apy, are of the form o) +-- -+

ms Where
of are some algebraic conjugates of a.

Proof. It suffices to prove this for two summands. If a; are eigenval-
ues of rational matrices A; of smallest size (i.e., their characteristic
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96 5. Representations of finite groups: Further results

polynomials are the minimal polynomials of «;), then a; + a9 is an
eigenvalue of A := A} ® Id+1d ® Ay. Therefore, so is any algebraic
conjugate to a; +ag. But all eigenvalues of A are of the form o + s,
so we are done. g

Problem 5.2.7. (a) Show that for any finite group G there exists a
finite Galois extension K C C of Q such that any finite dimensional
complex representation of G has a basis in which the matrices of the
group elements have entries in K.

Hint: Consider the representations of G over the field Q of alge-
braic numbers.

(b) Show that if V' is an irreducible complex representation of a
finite group G of dimension > 1, then there exists g € G such that
xv(g) =0.

Hint: Assume the contrary. Use orthonormality of characters to
show that the arithmetic mean of the numbers |yv(g)|? for g # 1 is
< 1. Deduce that their product g satisfies 0 < 5 < 1. Show that all
conjugates of 3 satisfy the same inequalities (consider the Galois con-
jugates of the representation V', i.e., representations obtained from V'
by the action of the Galois group of K over Q on the matrices of group
elements in the basis from part (a)). Then derive a contradiction.

Remark 5.2.8. Here is a modification of this argument, which does
not use (a). Let N = |G|. For any 0 < j < N coprime to N,
show that the map ¢ +— ¢’ is a bijection G — G. Deduce that

[1,21 Ixv(¢?)> = B. Then show that 5 € K := Q(¢), ¢ = e*™/~,
and that it does not change under the automorphism of K given by
¢ — (7. Deduce that § is an integer, and derive a contradiction.

5.3. Frobenius divisibility

Theorem 5.3.1. Let G be a finite group, and let V' be an irreducible
representation of G over C. Then

dim V' divides |G].
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Proof. Let C1,Cy,...,C), be the conjugacy classes of G. Let g¢, be
representatives of C;. Set

G|
dim V"’

Proposition 5.3.2. The numbers \; are algebraic integers for all i.

Xi = xv(gc;)

Proof. Let C be a conjugacy class in G, and let P =}, _~h. Then
P is a central element of Z[G], so it acts on V' by some scalar A, which
is an algebraic integer (indeed, since Z[G] is a finitely generated Z-
module, any element of Z[G] is integral over Z, i.e., satisfies a monic
polynomial equation with integer coefficients). On the other hand,

taking the trace of P in V, we get |C|xv(g9) = AdimV, g € C, so

[Clxv(9)
> = i) 0

Now, consider

This is an algebraic integer, since:
(i) A; are algebraic integers by Proposition 5.3.2,
(ii) xv(g¢,) is a sum of roots of unity (it is the sum of eigenvalues

of the matrix of p(g¢,), and since g = e in G, the eigenvalues of

p(gc;) are roots of unity), and
(iii) A is a ring (Proposition 5.2.4).
On the other hand, from the definition of \;,

C;
Z/\ZXV gc Z | |de1m é(v(gc ).

Recalling that xy is a class function, this is equal to

Z xv(9)xv(g) _ G v xv)
dlmV dimV

Since V' is an irreducible representation, (xv, xv) = 1, so

. @
Z ixvige) = 35
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Since dilr(jV € Q and ), Aixv(ge;) € A, by Proposition 5.2.5,
iot, <7, :

5.4. Burnside’s theorem

Definition 5.4.1. A group G is called solvable if there exists a series
of nested normal subgroups

{e}=G1 <« Gy« ... < G, =G
where G;41/G; is abelian for all 1 <i <mn — 1.

Remark 5.4.2. Such groups are called solvable because they first
arose as Galois groups of polynomial equations which are solvable in
radicals.

Theorem 5.4.3 (Burnside). Any group G of order p®q®, where p and
q are primes and a,b > 0, is solvable.

This famous result in group theory was proved by the British
mathematician William Burnside in the early 20th century, using
representation theory (see Section 5.5 and [Cu]). Here is this proof,
presented in modern language.

Before proving Burnside’s theorem, we will prove several other
results which are of independent interest.

Theorem 5.4.4. Let V' be an irreducible representation of a finite
group G and let C be a conjugacy class of G with ged(|C|, dim(V)) =
1. Then for any g € C, either xv(g) =0 or g acts as a scalar on V.

The proof will be based on the following lemma.

Lemma 5.4.5. If ey,e9,...,6, are roots of wunity such that
1

—(e1+e2+---+ey,) is an algebraic integer, then either ey = --- = ¢,
n

ore;+--+e,=0.

Proof. Let a = %(61 +--++¢,). If not all g; are equal, then |a| < 1.
Moreover, since any algebraic conjugate of a root of unity is also a
root of unity, |a’| < 1 for any algebraic conjugate a’ of a. But the
product of all algebraic conjugates of a is an integer. Since it has
absolute value < 1, it must equal zero. Therefore, a = 0. O
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5.4. Burnside’s theorem 99

Proof of Theorem 5.4.4. Let dimV =n. Let €1,¢9,...,&, be the
eigenvalues of py (g). They are roots of unity, so xv (g) is an algebraic
integer. Also, by Proposition 5.3.2, %\C|XV (g) is an algebraic integer.
Since ged(n, |C]) = 1, there exist integers a, b such that a|C|+bn = 1.
This implies that

alcliv(g) (g) = xv(9)

1
+ bxv :ﬁ(ﬁl+"'+5n)

is an algebraic integer. Thus, by Lemma 5.4.5, we get that either
€ =+ =¢€p0rer+--+e, = xv(g) = 0. In the first case,
since py (g) is diagonalizable, it must be scalar. In the second case,
xv(g) = 0. The theorem is proved. O

Theorem 5.4.6. Let G be a finite group, and let C be a conjugacy
class in G of order p* where p is a prime and k > 0. Then G has a
proper nontrivial normal subgroup (i.e., G is not simple).

Proof. Choose an element g € C'. Since g # e, by orthogonality of
columns of the character table,

(5.4.1) > dimVyv(g) =0.
Vehrr G

We can divide Irr G into three parts:

(1) the trivial representation,
(2) D, the set of irreducible representations whose dimension is
divisible by p, and

(3) N, the set of nontrivial irreducible representations whose
dimension is not divisible by p.

Lemma 5.4.7. There exists V € N such that xv(g) # 0.

Proof. If V € D, the number % dim(V)xv (g) is an algebraic integer,
0
1.
a= Y =dim(V)xv(g)
vep P

is an algebraic integer.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



100 5. Representations of finite groups: Further results

Now, by (5.4.1), we have

0=xclg) + Z dim Vixv (g) + Z dim Vixv (g)

veD VEN
=1+pa+ Z dim Vixy (g).
VEN
This means that the last summand is nonzero. O

Now pick V' € N such that xv (g) # 0; it exists by Lemma 5.4.7.
Theorem 5.4.4 implies that g (and hence any element of C') acts by a
scalar in V. Now let H be the subgroup of G generated by elements
ab™!, a,b € C. Tt is normal and acts trivially in V, so H # G, as V
is nontrivial. Also H # 1, since |C| > 1. O

Proof of Burnside’s theorem. Assume Burnside’s theorem is false.
Then there exists a nonsolvable group G of order p®q®. Let G be the
smallest such group. Then G is simple, and by Theorem 5.4.6, it
cannot have a conjugacy class of order p* or ¢*, £ > 1. So the or-
der of any conjugacy class in G either equals 1 or is divisible by pq.
Adding the orders of conjugacy classes and equating the sum to p®q®,
we see that there has to be more than one conjugacy class consist-
ing just of one element. So G has a nontrivial center, which gives a
contradiction. O

5.5. Historical interlude: William Burnside and
intellectual harmony in mathematics

While at Cambridge, William Burnside (1852-1927) distinguished
himself in rowing; his other achievements include emerging from the
1875 Mathematical Tripos as Second Wrangler and then beating First
Wrangler in an even more grueling mathematical competition for the
Smith Prize. Afterwards, he taught at Cambridge as a mathematics
lecturer and a coach for both the Math Tripos and for the rowing
crews. In 1885, true to his aquatic interests, Burnside accepted the
position of professor of mathematics in the Royal Naval College at
Greenwich, where he taught until retirement. When his enthusiasm
for rowing subsided, fishing became Burnside’s favorite hobby. Even
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5.5. Historical interlude: William Burnside 101

in mathematical research he stayed close to water, making major con-
tributions to hydrodynamics.

On the strength of his contributions to mathematical physics and
complex function theory, Burnside was elected to the Royal Society
in 1893. Once this worthy goal was achieved, however, he abandoned
such trifle subjects and dipped into the theory of groups. Four years
later Burnside published the first English textbook on the subject,
Theory of Groups of Finite Order. He was apparently delighted to
take a break from applied studies and to immerse himself in an ab-
stract theory, for he wrote in the preface: “The present treatise is
intended to introduce to the reader the main outlines of the the-
ory of groups of finite order apart from any applications”. Burnside
noted that group theory was not yet particularly popular in England.
“It will afford me much satisfaction”, he remarked, “if, by means of
this book, I shall succeed in arousing interest among English mathe-
maticians in a branch of pure mathematics which becomes the more
fascinating the more it is studied” (quoted in [11, pp. 88-89]).

The interest of English mathematicians, however, proved not to
be easily aroused, and ten years later Burnside bitterly remarked in
his retiring Presidential address to the London Mathematical Soci-
ety: “It is undoubtedly the fact that the theory of groups of finite
order has failed, so far, to arouse the interest of any but a very small
number of English mathematicians”. Burnside cited the proliferation
of courses on group theory in France, the United States, and espe-
cially Germany (attended by thirty students in Gottingen!), and he
lamented the total indifference of British students toward the sub-
ject. His explanation was that group theory was treated in a highly
abstract manner, “one which the young mind grasps with difficulty,
if at all”’. As an example, Burnside cited a formal statement about
the properties of the icosahedral group and claimed that “a proposal
to verify the statement appears equivalent to proposing a series of
conundrums. There would be nothing here to attract the student or
to suggest anything but the driest formalism utterly divorced from
any of his previous mathematical studies” [8, pp. 1, 3, 5].

Burnside himself, however, had done much to establish the cul-
ture of purely abstract reasoning in group theory. In the preface to
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102 5. Representations of finite groups: Further results

his 1897 book he wrote that his university teacher Arthur Cayley’s
“dictum that ‘a group is defined by means of the laws of combina-
tion of its symbols’ would imply that, in dealing with the theory of
groups, no more concrete mode of representation should be used than
is absolutely necessary” (quoted in [11, p. 90]). No wonder Burnside
omitted any applications from his book, while his 1899 article on the
simple group of order 504 mentioned a concrete example only in the
last paragraph [1, p. 13]. He cultivated conciseness as a highest virtue.
When a friend once asked for a more expanded treatment of certain
topics from Theory of Groups, Burnside responded by “a declaration
of regret that he had been unable to effect further condensation” [15,
p. 70]. Burnside’s ideal lived on in the tradition of Bourbaki, causing
the wrath of the champions of “mathematics with a human face”,
led by Vladimir Arnold: “Algebraists usually define groups as sets
with operations that satisfy a long list of hard-to-remember axioms.
I think one cannot understand such a definition. I believe the alge-
braists set up such obstacles in the path of students to make it harder
for the uninitiated to penetrate their field. Perhaps their goal, if only
subconscious, is to boost the reputation of their field” [2, p. 118].

While pursuing the condensation ideal, Burnside decided to omit
any discussion of linear substitution groups from the 1897 edition of
Theory of Groups. “It would be difficult to find a result that could be
most directly obtained by the consideration of groups of linear trans-
formations”, he wrote, justifying the exclusion of this useless subject
(quoted in [11, p. 90]). Within a few months, however, Burnside had
to reevaluate the wisdom of his decision, as he came across Frobenius’s
articles on group characters. Frobenius’s results proved highly rele-
vant to Burnside’s own research on finite groups, and Burnside set out
to reformulate them in his own language. Unlike Frobenius, Burnside
felt at ease with Sophus Lie’s apparatus of continuous groups of trans-
formations, and he was able to derive all of Frobenius’s main results
on characters and on the group determinant by using the methods
of Lie groups and Lie algebras. Burnside published his research with
a modest disclaimer that his paper was “not original, as the results
arrived at are, with one or two slight exceptions, due to Herr Frobe-
nius. The modes of proof, however, are in general quite distinct from
those used by Herr Frobenius” (quoted in [11, p. 106]).
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5.5. Historical interlude: William Burnside 103

Herr Frobenius was hardly impressed by what he saw as a lame
excuse for stepping on his toes. Richard Dedekind was similarly out-
raged, when he recognized in one of Burnside’s papers his own the-
orem on the factorization of the group determinant of an abelian
group. Frobenius consoled his friend by recounting his own losses:
“This is the same Herr Burnside who annoyed me several years ago
by quickly rediscovering all the theorems I had published on the the-
ory of groups, in the same order and without exception: first my proof
of Sylow’s Theorems, then the theorem on groups with square-free or-
ders, on groups of order p®q, on groups whose order is a product of
four or five prime numbers, etc., etc. In any case, a very remark-
able and amazing example of intellectual harmony, probably as is
possible only in England and perhaps America” (quoted in [24, p.
242]). Burnside, for his part, began stressing that he had “obtained
independently the chief results of Prof. Frobenius’ earlier memoirs”
(quoted in [23, p. 278]). Herren Burnside and Frobenius never cor-
responded to straighten things out, leaving the matter to historians,
who somewhat qualified Burnside’s claim of independence. Burnside
was clearly inspired by Frobenius’s work, although he did not know
all of the relevant Frobenius papers, which left him enough space to
explore on his own [23, p. 278].

Burnside and Frobenius worked neck and neck on the solvability
of p®¢® groups. While Sylow (1872), Frobenius (1895), and Jordan
(1898) proved some special cases, Burnside succeeded in proving the
general case in 1904. Burnside’s character theoretic proof has been
described as “so easy and pleasant” that later group-theoretic proofs
would not even come close to its “compelling simplicity” and “strik-
ing beauty” [30, p. 469]. As Walter Feit suggested, “[T]he elegance
of both the statement and the proof have attracted more people to
the study of characters than any other result in the subject” [14, p.
4]. In particular, they attracted Feit, who in 1962 proved (with J.
G. Thompson) Burnside’s conjecture that every group of odd order
is solvable. Another seminal conjecture, Burnside’s Problem, related
to the structure of torsion groups, has preoccupied group theory and
representation theory specialists for over a century, yielding the 1994
Fields Medal to Efim Zelmanov for the solution of its restricted ver-
sion.
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104 5. Representations of finite groups: Further results

The appreciation of the beauty of Burnside’s work took quite a
while. His employment at the Royal Naval College separated him
geographically from his university colleagues. He apparently had no
“extensive direct contacts with other mathematicians interested in
the subject (of group theory). It appears that he worked in isolation,
possibly even more so than was normal for his times, with little op-
portunity (or, perhaps, inclination) to discuss his ideas with others”,
according to his biographer [41, p. 32]. Burnside taught several gen-
erations of navy officers but created no mathematical school of his
own.

In December 1925 Burnside suffered a stroke, and his doctor for-
bade him, among other unhealthy activities, from doing mathematics.
Burnside naturally disobeyed and did not live very long. His obitu-
ary in the London Fvening News barely mentioned his mathematical
studies but reported that “rowing men will regret to hear of the death
of W. Burnside, one of the best known Cambridge athletes of his day”
(quoted in [11, p. 96]).

Shortly before his death Burnside answered a query from a young
mathematician named Philip Hall, who asked for advice on topics of
group theory. Burnside sent him a postcard listing a few problems
worth investigating. This message in a bottle, thrown into the sea,
miraculously found a perfect addressee. The same volume of the Jour-
nal of the London Mathematical Society that contained Burnside’s
obituary featured Hall’s “Note on Soluble Groups”, which marked
the beginning of his lifetime career in this field. Hall eventually suc-
ceeded Burnside as the chief promoter of group theory in England.
“The aim of my researches”, he later wrote, “has been to a very con-
siderable extent that of extending and completing in certain directions
the work of Burnside” (quoted in [11, p. 96]).

5.6. Representations of products

Theorem 5.6.1. Let G, H be finite groups, let {V;} be the irreducible
representations of G over a field k (of any characteristic), and let
{W;} be the irreducible representations of H over k. Then the irre-
ducible representations of G x H over k are {V; @ W;}.
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5.8. Induced representations 105

Proof. This follows from Theorem 3.10.2. O

5.7. Virtual representations

Definition 5.7.1. A virtual representation of a finite group G
is an integer linear combination of irreducible representations of G,
V =3 n;Vi, n; € Z (i.e., n; are not assumed to be nonnegative).
The character of V' is xy := > nixv;.

The following lemma is often very useful (and will be used several
times below).

Lemma 5.7.2. Let V be a virtual representation with character xy .
If (xv,xv) =1 and xv(1) > 0, then xv is a character of an irre-
ducible representation of G.

Proof. Let Vi, Vs, ..., V,, be the irreducible representations of G,
and let V' = >"n;V;. Then by orthonormality of characters, (xv, xv) =
>;n?. So >, n? = 1, meaning that n; = +1 for exactly one i and
n; =0 for j # 4. But xv (1) > 0, so n; = +1 and we are done. O

5.8. Induced representations

Given a representation V of a group G and a subgroup H C G, there
is a natural way to construct a representation of H. The restriction
of V to H, ResgV is the representation given by the vector space V,
and the action presey = pv .

There is also a natural, but less trivial, way to construct a rep-
resentation of a group G given a representation V' of its subgroup
H.

Definition 5.8.1. If G is a group, H C G, and V is a representation
of H, then the induced representation IndgV, is the representa-
tion of G with

md$V = {f: G = V|f(ha) = py(h)f(z) Yz € G,h € H}
and the action g(f)(x) = f(zg) Vg € G.

Remark 5.8.2. In fact, IndgV is naturally isomorphic to the repre-
sentation Hompy (k[G], V).
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106 5. Representations of finite groups: Further results

Let us check that Indfl V is well defined as a representation. In-
deed, we have

g(f)(hx) = f(hxg) = pv(h)f(zg) = pv(R)g(f)(x),
and
9(g' ()(x) = g'(f)(zg) = f(xgg) = (99")(f)(x)
for any g,¢’,x € G and h € H.

Remark 5.8.3. Notice that if we choose a representative x, from ev-
ery right H-coset o of G, then any f € IndgV is uniquely determined

by {f(zo)}
Because of this,
G
dim(Ind% V) = dim V - ||H|

Problem 5.8.4. Check that if K C H C G are groups and if V is a
representation of K, then Ind$ Ind% V is isomorphic to Ind%. V.

Exercise 5.8.5. Let K C G be finite groups, and let y : K — C*
be a homomorphism. Let C, be the corresponding 1-dimensional
representation of K. Let

ex = ‘qu > x(9)'g € ClK]
geK

be the idempotent corresponding to . Show that the G-representa-
tion Ind%C,, is naturally isomorphic to C[Gle, (with G acting by left
multiplication).

5.9. The Frobenius formula for the character of
an induced representation

Let us now compute the character y of IndgV. In each right coset
o € H\G, choose a representative z,.

Theorem 5.9.1. One has

x(g9) = > xv(zogz, ).

aEH\G:x,,gac;leH

This formula is called the Frobenius formula.
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5.10. Frobenius reciprocity 107

Remark 5.9.2. If the characteristic of the ground field k is relatively
prime to |H]|, then this formula can be written as

1 1
x(9) = 17 > xv(zgz™.

reG:xgr—1eH
Proof. For a right H-coset o of G, let us define
Vo = {f €d{jV|f(9) =0y & o}.

Then one has

md§V =PV,

and so

X(9) = xo(9),

where x,(g) is the trace of the diagonal block of p(g) corresponding
to V.

Since g(o) = og is a right H-coset for any right H-coset o,
Xo(9) = 0if o # og.

Now assume that ¢ = og. Then 2,9 = hz, where h = r,g9z;1 €
H. Consider the map « : V,, — V defined by a(f) = f(z,). Since
f € V, is uniquely determined by f(x,), o is an isomorphism. We
have

a(gf) = 9(f) (o) = f(xog) = f(hxs) = pv(h) f(zs) = ha(f),
and gf = a~tha(f). This means that x,(g) = xv (k). Therefore

@)= > xvizegx;").

c€H\G,o09=0

5.10. Frobenius reciprocity

A very important result about induced representations is the Frobe-
nius reciprocity theorem which connects the operations Ind and Res.

Theorem 5.10.1 (Frobenius reciprocity). Let H C G be groups, V
a representation of G and W a representation of H. Then the space
Home(V, IndG W) is naturally isomorphic to Homp (Res$V, W).
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108 5. Representations of finite groups: Further results

Proof. Let E = Homg(V,Ind§W) and E' = Homy (ResGV, W).
Define F : E — E' and F' : E' — F as follows: F(a)v = (av)(e) for
any o € E and (F'(8)v)(x) = B(zv) for any S € E'.

In order to check that F' and F’ are well defined and inverse to
each other, we need to check the following five statements.

Lletae E,BeE,veV,andz,g €.

(a) F(«) is an H-homomorphism; i.e., F(a)hv = hF(a)v.
Indeed, F(a)hv = (ahv)(e) = (hav)(e) = (av)(he) = (aw)(eh) =
h - (av)(e) = hF(a)v.

(b) F'(B)v € mdGW; ie., (F'(8)v)(hz) = h(F'(B)v)(z).
Indeed, (F'(B)v)(hz) = B(hav) = hf(zv) = h(F'(B)v)(x).

(c) F'(B) is a G-homomorphism; i.e. F'(8)gv = g(F'(8)v).
Indeed, (F'(B)gv)(z) = B(zgv) = (F'(B)v)(xg) = (9(F'(B)v))(x).
(d) FoF' =Idp.
This holds since F(F'(58))v = (F'(B)v)(e) = B(v).

Yo)(e
(e) F' o F =1Idg; ie., (F/'(F(a))v)(z) = (av)(x).
Indeed, (F'(F(a))v)(z) = F(azv) = (azv)(e) = (zav)(e) = (av)(z),
and we are done. 0

Problem 5.10.2. The purpose of this problem is to understand the
notions of restricted and induced representations as part of a more
advanced framework. This framework is the notion of tensor products
over k-algebras. In particular, this understanding will lead us to a
new proof of the Frobenius reciprocity and to some analogies between
induction and restriction.

Throughout this exercise, we will use the notation and results of
Problem 2.11.6.

Let G be a finite group and H C G a subgroup. We consider
k|G] as a (k[H],k [G])-bimodule (both module structures are given
by multiplication inside k[G]). We denote this bimodule by % [G];.
On the other hand, we can also consider k[G] as a (k[G], k [H])-
bimodule (again, both module structures are given by multiplication).
We denote this bimodule by & [G],.
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5.10. Frobenius reciprocity 109

(a) Let V be a representation of G. Then, V is a left k[G]-
module. Thus, the tensor product & [G], ®yg)V is a left k [H]-module.
Prove that this tensor product is isomorphic to ResgV as aleft k [H]-
module. The isomorphism

RestV — k [Gh EJare] Vv

is given by v — 1 @y gy v for every v € ResgV.

(b) Let W be a representation of H. Then W is a left k[H]-
module. According to Remark 5.8.2, IndGW = Homy (k [G], W). In
other words, we have Ind$W = Homyz (K [G], , W). Now use part
(b) of Problem 2.11.6 to conclude Theorem 5.10.1.

(c) Let V be arepresentation of G. Then, V is a left k [G]-module.
Prove that not only k[G]; @k V but also Homyg (k[G],,V) is
isomorphic to Res%V as a left k [H]-module. The isomorphism

Homyg (k [G],,V) — Res§V

is given by f — f (1) for every f € Homyq) (k[G],,V).

(d) Let W be a representation of H. Then, W is a left k[H]-
module. Show that Ind%W is isomorphic to k[G], ®@pray W. The
isomorphism Homy g (k [G], , W) — k[G], @ W is given by f
dgep 97" @upmy £ (g) for every f € Homyy) (k[G]; , W), where P is
a set of distinct representatives for the right H-cosets in G. (This
isomorphism is independent of the choice of representatives.)

(e) Let V be a representation of G and let W be a representation
of H. Use (b) to prove that Homg (Indfﬂ/V, V) is naturally isomorphic
to Hompg (VV, ResgV).

(f) Let V be a representation of H. Prove that Ind% (V*) =
(IndgV) as representations of G. [Hint: Write Ind§V as k (G, @k
V and write Ind% (V*) as Homyz) (K [G],, V™). Prove that the map
Homyp (k[G],, V*) x (Indfg} (V*)) — k given by (f, (z @y v))
(f (Sz)) (v) is a nondegenerate G-invariant bilinear form, where S :
k [G] — k[G] is the linear map defined by Sg = g~! for every g € G.]

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



110 5. Representations of finite groups: Further results

5.11. Examples

Here are some examples of induced representations (we use the nota-
tion for representations from the character tables).

(1) Let G = S3, H = Z,. Using the Frobenius reciprocity, we
obtain Ind$C, = C?2@ C, and Ind%C_ =C2a C_.

(2) Let G = Ss, H = Z3. Then we obtain Ind§C, = C_ & C_,
md$C, = nd$C.. = C2.

(3) Let G =Sy, H=S3. Then Ind§C,; = C, ®C?, md%C_ =
C_@®C%, mdfC?>=C?a C2 @ C3.

Problem 5.11.1. Compute the decomposition into irreducibles of all
the representations of A5 induced from the irreducible representations
of

5.12. Representations of S,

In this subsection we give a description of the representations of the
symmetric group .S, for any n.

Definition 5.12.1. A partition A of n is a representation of n in
the form n = A + Ay + -+ 4+ Ap, where \; are positive integers and
Ai 2 A1

To such A we will attach a Young diagram Y), which is the
union of rectangles —i < y < —i 4+ 1, 0 < & < \; in the coordinate
plane, for i = 1,...,p. Clearly, Y) is a collection of n unit squares. A
Young tableau corresponding to Y), is the result of filling the num-
bers 1,...,n into the squares of Y in some way (without repetitions).
For example, we will consider the Young tableau T’ obtained by filling
in the numbers in increasing order, left to right, top to bottom.

We can define two subgroups of S,, corresponding to T):
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1. The row subgroup Py: the subgroup which maps every element

of {1,...,n} into an element standing in the same row in T}.

2. The column subgroup @y: the subgroup which maps every
element of {1,...,n} into an element standing in the same column in
1.

Clearly, PA\NQ» = {1}
Define the Young projectors

1
ak::ﬁzga

gEP
1
bx = m Z( 1)%g,
A gEQ N

where (—1)9 denotes the sign of the permutation g. Set ¢y = axbx.
Since Py N @y = {1}, this element is nonzero.
The irreducible representations of \S;, are described by the follow-

ing theorem.

Theorem 5.12.2. The subspace Vy = C[Sp]ea of C[S,] is an ir-
reducible representation of Sy, under left multiplication. FEvery irre-
ducible representation of S, is isomorphic to Vy for a unique \.

The modules V) are called the Specht modules.

The proof of this theorem is given in the next subsection.
Example 5.12.3. For the partition A = (n), P\ = S, @x = {1}, so
¢ is the symmetrizer, and hence V) is the trivial representation.

For the partition A = (1,...,1), Qx = Sy, Py = {1}, so ¢, is the
antisymmetrizer, and hence V), is the sign representation.

n=3. For A\=(2,1), V), = C%

n=4. For A\ = (2,2), Vo, = C% for A = (3,1), V), = C3; for
A=(2,1,1), V, =C3.

Corollary 5.12.4. All irreducible representations of S, can be given
by matrices with rational entries.

Problem 5.12.5. Find the sum of dimensions of all irreducible rep-
resentations of the symmetric group S, .
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Hint: Show that all irreducible representations of S,, are real,
i.e., admit a nondegenerate invariant symmetric form. Then use the
Frobenius-Schur theorem.

5.13. Proof of the classification theorem for
representations of S5,

Lemma 5.13.1. Let x € C[S,]. Then axxby = €x(x)cy, where £y is
a linear function.

Proof. If ¢ € P\@), then g has a unique representation as pgq,
p € Py,q € Q», so axgby = (—1)%cy. Thus, to prove the required
statement, we need to show that if ¢ is a permutation which is not in
.P)\Q,\7 then a)\gb)\ =0.

To show this, it is sufficient to find a transposition ¢ such that
t € Py and g~'tg € Qy; then

axgbx = axtgby = axg(g~"tg)bx = —axgby,

so axgby = 0. In other words, we have to find two elements i, j
standing in the same row in the tableau 7' = T) and in the same
column in the tableau T’ = ¢gT (where ¢gT is the tableau of the same
shape as T obtained by permuting the entries of T' by the permutation
g). Thus, it suffices to show that if such a pair does not exist, then
g € PyQ,, ie., there exists p € Py, ¢ € Q) := gQxg~" such that
pT = ¢'T' (so that g =pg~'.q =g~ 'q'g € Q).

Any two elements in the first row of 7" must be in different
columns of T”, so there exists ¢; € Q% which moves all these ele-
ments to the first row. So there is p; € Py such that p;T and ¢{ 7"
have the same first row. Now do the same procedure with the second
row, finding elements ps, ¢4 such that pop1 T and ¢4¢i T’ have the same
first two rows. Continuing so, we will construct the desired elements
p,q’ . The lemma is proved. O

Let us introduce the lexicographic ordering on partitions:
A > p if the first nonvanishing \; — p; is positive.

Lemma 5.13.2. If A > pu, then a\C[S,]b, = 0.
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5.13. Proof of the classification theorem for S, 113

Proof. Similarly to the previous lemma, it suffices to show that for
any g € S,, there exists a transposition ¢ € Py such that g~ tg € Q,.
Let T = T\ and 7" = ¢gT,,. We claim that there are two integers
which are in the same row of T" and the same column of T”. Indeed, if
A1 > 1, this is clear by the pigeonhole principle (already for the first
row). Otherwise, if Ay = u1, as in the proof of the previous lemma, we
can find elements p; € Py, ¢} € 9Q,g~ " such that p;T and ¢{T" have
the same first row and repeat the argument for the second row, and so
on. Eventually, having done ¢ —1 such steps, we’ll have A\; > u;, which
means that some two elements of the ith row of the first tableau are
in the same column of the second tableau, completing the proof. [

Lemma 5.13.3. c, is proportional to an idempotent. Namely, c3 =

n! c
[PATIQa dim Vy A

Proof. Lemma 5.13.1 implies that ci is proportional to cy. Also,
it is easy to see that the trace of ¢y in the regular representation
is n!|Px|71|Qx|7! (as the coefficient of the identity element in cy is
|Px|71|@x|71). This implies the statement. O

Lemma 5.13.4. Let A be an algebra and let e be an idempotent in
A. Then for any left A-module M, one has Homa(Ae, M) = eM
(namely, x € eM corresponds to f, : Ae = M given by f.(a) = az,
a € Ae).

Proof. Note that 1 — e is also an idempotent in A. Thus the state-
ment immediately follows from the fact that Hom (A4, M) = M and
the decomposition A = Ae @ A(1 —e). O

Now we are ready to prove Theorem 5.12.2. Let A > u. Then by
Lemmas 5.13.3 and 5.13.4

Homg, (V\,V,,) = Homg, (C[S,]cx, C[Sh]cu) = exClSh]c.

The latter space is zero for A > p by Lemma 5.13.2 and 1-dimensional
if A = p by Lemmas 5.13.1 and 5.13.3. Therefore, V) are irreducible,
and V) is not isomorphic to V,, if A # p. Since the number of par-
titions equals the number of conjugacy classes in S,,, the represen-
tations V) exhaust all the irreducible representations of S,. The
theorem is proved.
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5.14. Induced representations for S,

Denote by U, the representation Ind}z’;(C. It is easy to see that Uy
can be alternatively defined as Uy = C[S,]ax.

Proposition 5.14.1. We have Hom(Uy,V,,) = 0 for p < X and
dimHom(Uy,Vy) = 1. Thus, Uy = GB/AZA K,\V,,, where K, are
nonnegative integers and Ky = 1.

Definition 5.14.2. The integers K, are called the Kostka num-
bers.

Proof. By Lemmas 5.13.3 and 5.13.4,
Hom(Uy, V,) = Hom(C[S,]ax, C[S,]a,b,) = axC[S,]a,b,,
and the result follows from Lemmas 5.13.1 and 5.13.2. O

Now let us compute the character of Uy. Let Cj be the conjugacy
class in S,, having i; cycles of length [ for all { > 1 (here i is a shorthand
notation for (i1,...,4,...)). Also let x1,...,zn be variables, and let

Hp(z) =) i
i
be the power sum polynomials.

Theorem 5.14.3. Let N > p (where p is the number of parts of A).
Then xur, (C3) is the coefficient’ of 2> := H:cj‘” in the polynomial

[T Hm (@)

m>1

Proof. The proof is obtained easily from the Frobenius formula.
Namely, xr, (C;) is the number of elements = € S,, such that zgz~! €
Py (for a representative g € Cj), divided by |Py|. The order of Py is
[L; Ai!, and the number of elements x such that xgr~! € Py is the
number of elements in Py conjugate to g (i.e., |Ci N Py|) times the
order of the centralizer Z, of g (which is n!/|Cj|). Thus,

12|
IT; 7!

XUX(Ci) = ‘Oiﬂpﬂ.

r¢ j > p, we define \; to be zero.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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Now, it is easy to see that the centralizer Z; of g is isomorphic to
I15:. x @/mz),
m

SO
‘Zg‘ = Hmimimh
m

and we get

1, mimim!
XUy (Ci) = = =———|Ci N Py|.
» 1T, %!

Now, since P, = Hj Sy, , we have

\CimPA|:ZH#,,

T .
iz Lz momrm!

where r = (7j,,) runs over all collections of nonnegative integers such

that
Zmrjm:)\j, Zij:im.
m J

Indeed, an element of Cj that is in Py would define an ordered parti-
tion of each \; into parts (namely, cycle lengths), with m occurring
Tjm times, such that the total (over all j) number of times each part
m occurs is ¢,,. Thus we get

!
m(ci):ZHm.

But this is exactly the coefficient of 2* in

[T+t et
m>1

(7jm is the number of times we take z7"). O

5.15. The Frobenius character formula

Let A(z) = [1)<jejen (@i —25). Let p= (N —=1,N—2,...,0) € CV.
The following theorem, due to Frobenius, gives a character formula
for the Specht modules V.
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Theorem 5.15.1. Let N > p. Then xv,(Ci) is the coefficient of

AP = Ha:?ﬁN*j in the polynomial

z) [T Hul2)™.

m>1

X

Remark 5.15.2. Here is an equivalent formulation of Theorem 5.15.1:
Xv; (C) is the coefficient of 2* in the (Laurent) polynomial

(-] e

1<j m>1

Proof. For brevity denote xv, by xx. Let us denote the class func-
tion defined in the theorem by ). We claim that this function has
the property 0, = ZHZ)\ LyxXxyu, where L, ) are integers and Ly, = 1.
Indeed, from Theorem 5.14.3 we have

O = Z (=D)7XUs 10>
ocESN

where if the vector A4+ p—o(p) has a negative entry, the corresponding
term is dropped, and if it has nonnegative entries which fail to be
nonincreasing, then the entries should be reordered in nonincreasing
order, making a partition that we’ll denote by (A+ p—o(p)) (i.e., we
agree that Uy, ,_o(p) := Urtp—o(p)))- Now note that p = AN+p-—
o(p)) is obtained from A by adding vectors of the form e; —e;, i < j,
which implies that g > X\ or p = A, and the case yu = \ arises only if
o =1, as desired.

Therefore, to show that 5 = x, by Lemma 5.7.2, it suffices to
show that (0y,0,) = 1.

We have
(0x.05) = — Z G310 (C:
Using that
n!
Ci e Y
| | Ilnznﬁmi"J

we conclude that (6, 6)) is the coefficient of z**Py**# in the series
R(z,y) = A(ac)A(y)S(x y), where

"H (Zk Zn)z Jk j k/m)
ZH e —ZH K
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Summing over i and m, we get

S(@,y) = [[exp>_ 2] yi/m)
m 7,k
=exp(— Y _log(1 —ajye)) = [ (1 — zm) "
ik

7,k
Thus,
[Lic;(@i —zj)(yi — y;)
Hi,j(l — x3Y5)

Now we need the following lemma.

R($7y) =

Lemma 5.15.3.

e ()

Proof. Multiply both sides by []; ;(zi —y;). Then the right-hand
side must vanish on the hyperplanes z; = z; and y; = y; (i.e., must
be divisible by A(2)A(y)) and is a homogeneous polynomial of degree
N(N —1). This implies that the right-hand side and the left-hand
side are proportional. The proportionality coefficient (which is equal
to 1) is found by induction by multiplying both sides by zy —yn and
then setting zy = yn- O

Now setting z; = 1/z; in the lemma, we get
Corollary 5.15.4 (Cauchy identity).

R(z,y) = det (11%%> - - (—1)7 |

oESN j:l(l = T3Yo(j))

Corollary 5.15.4 easily implies that the coefficient of APy 7 is
1. Indeed, if o # 1 is a permutation in Sy, the coefficient of this

monomial in is obviously zero. 0

1
IL;(A—=z;590¢5))
Remark 5.15.5. For partitions A and p of n, let us say that A < p
or p = Xif g1 — X is a sum of vectors of the form e; —e;, i < j (called
positive roots). This is a partial order, and pu > A implies p > A. Tt
follows from Theorem 5.15.1 and its proof that

X = Z Kuxxu,
HZA
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where (I? ap) is the matrix inverse to the matrix of Kostka numbers
(Kap). This implies that the Kostka numbers K, vanish unless
= A

5.16. Problems

In the following problems, we do not make a distinction between
Young diagrams and partitions.

Problem 5.16.1. For a Young diagram u, let A(u) be the set of
Young diagrams obtained by adding a square to u, and let R(u) be
the set of Young diagrams obtained by removing a square from pu.

(a) Show that Resgz_lvu = @/\ER(M) V.

(b) Show that Indg"_ Vi, = @yc () Va-

Problem 5.16.2. The content c(\) of a Young diagram A is the
sum 22\271(2 —j). Let C = 2, ;(ij) € C[Syn] be the sum of
all transpositions. Show that C acts on the Specht module V) by
multiplication by ¢(A).

Problem 5.16.3. (a) Let V be any finite dimensional representation
of S,,. Show that the element E := (12) + - - - + (1n) is diagonalizable
and has integer eigenvalues on V' which are between 1 —n and n — 1.
Hint: Represent E as C,, — C,,_1, where C,, = C is the element
from Problem 5.16.2.
(b) Show that the element (12)+---4 (1n) acts on V) by a scalar

if and only if A is a rectangular Young diagram, and compute this
scalar.

5.17. The hook length formula

Let us use the Frobenius character formula to compute the dimension
of V. According to the character formula, dim V), is the coefficient
of 227 in A(z)(x1 + - +an)". Let I; = A\; + N — j. Then, using
the determinant formula for A(x) and expanding the determinant as
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5.18. Schur-Weyl duality for gl(V) 119

a sum over permutations, we get

n!
P — !
seSN-l->N s(5) [1;(l = N+ ()

T 2 Hll—l (L= N +s(j) + 1)

SESN

det(l;(1; — 1)...(1; — N +i+1)).

1...

H l !
Using column reduction and the Vandermonde determinant formula,
we see from this expression that

det@ = L T -1

(5.17.1) dimV, =
HJ Ij! 1<i<j<N

n!
[I; 4!
(where N > p).

In this formula, there are many cancellations. After making some
of these cancellations, we obtain the hook length formula. Namely,
for a square (¢,7) in a Young diagram A (i,7 > 1,7 < \;), define the
hook of (i, j) to be the set of all squares (¢, ') in A with i >4, j' = j
ori =1, j > j. Let h(i,j) be the length of the hook of 4, j, i.e., the
number of squares in it.

Theorem 5.17.1 (The hook length formula). One has

n!

* 7 Tlicy, h(i5)

Proof. The formula follows from formula (5.17.1). Namely, note that
Iy! H
= = k.
H1<j§N(l1 ) 1<k<ly kAl —1;

It is easy to see that the factors in this product are exactly the
hook lengths h(i,1). Now delete the first row of the diagram and
proceed by induction. O

5.18. Schur-Weyl duality for gl(V)

We start with a simple result which is called the Double Centralizer
Theorem.
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120 5. Representations of finite groups: Further results

Theorem 5.18.1. Let A, B be two subalgebras of the algebra End E
of endomorphisms of a finite dimensional vector space E, such that
A is semisimple and B = Endys E. Then:

(i) A = Endg E (i.c., the centralizer of the centralizer of A is
A).

(i) B is semisimple.

(iii) As a representation of A® B, E decomposes as

E=Pview,
iel
where V; are all the irreducible representations of A and W; are all
the irreducible representations of B. In particular, we have a natural
bijection between irreducible representations of A and B.

Proof. Since A is semisimple, we have a natural decomposition E =
@D, VioW;, where W; := Hom (V;, E) and A = @, End V;. There-
fore, by Schur’s lemma, B = End4(F) is naturally identified with
D, End(W;). This implies all the statements of the theorem. O

We will now apply Theorem 5.18.1 to the following situation:
E =V®" where V is a finite dimensional vector space over a field
of characteristic zero and A is the image of C[S,] in End E. Let us
now characterize the algebra B. Let gl(V) be End V regarded as a
Lie algebra with operation ab — ba.

Theorem 5.18.2. The algebra B = Ends E is the image of the
universal enveloping algebra U(gl(V')) under its natural action on E.
In other words, B is generated by elements of the form

A,D)=b21®-@1+10b®-- @1+ +1R®1®---®b,
begl(V).
Proof. Clearly, the image of U(gl(V')) is contained in B, so we just
need to show that any element of B is contained in the image of

U(gl(V)). By definition, B = S"EndV, so the result follows from
part (ii) of the following lemma.

Lemma 5.18.3. Let k be a field of characteristic zero.
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5.18. Schur-Weyl duality for gl(V) 121

(i) For any finite dimensional vector space U over k, the space
S™U is spanned by elements of the form u® --- @ u, u € U.

(i) For any algebra A over k, the algebra S™A is generated by
elements Ay (a), a € A.

Proof. (i) The space S™U is an irreducible representation of GL(U)
(Problem 4.12.3). The subspace spanned by u ® -+ - ® u is a nonzero
subrepresentation, so it must be everything.

(ii) By the fundamental theorem on symmetric functions, there
exists a polynomial P with rational coeflicients such that
P(Hy(x),...,Hy(z)) =21 ...2
(where x = (x1,...,2,)). Then
P(A,(a),An(d®),....,An(a") =a®---®a.

The rest follows from (i). O
This completes the proof of the theorem. O

Now, the algebra A is semisimple by Maschke’s theorem, so the
double centralizer theorem applies, and we get the following result,
which goes under the name “Schur-Weyl duality” (as it was discovered
by Schur and popularized by Weyl in his books The theory of groups
and quantum mechanics and Classical groups; see Section 5.20).

Theorem 5.18.4. (i) The image A of C[S,] and the image B of
U(gl(V)) in End(V®™) are centralizers of each other.

(ii) Both A and B are semisimple. In particular, VO™ is a
semisimple gl(V')-module.

(iii) We have a decomposition of (A ® B)-modules
Ve = BV L,
A
where the summation is taken over partitions of n, V) are Specht

modules for Sy, and Ly are some distinct irreducible representations
of gl(V') or zero.
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122 5. Representations of finite groups: Further results

5.19. Schur-Weyl duality for GL(V)

The Schur-Weyl duality for the Lie algebra gl(V) implies a similar
statement for the group GL(V).

Proposition 5.19.1. The image of GL(V) in End(V®™") spans B.

Proof. Denote the span of ¢®", g € GL(V), by B'. Let b € EndV
be any element.

We claim that B’ contains b® ™. Indeed, for all values of ¢ but
finitely many, ¢ - Id +b is invertible, so (¢ - Id +b)®" belongs to B'.
This implies that this is true for all ¢, in particular for ¢ = 0, since
(t-1d4+b)®™ is a polynomial in ¢.

The rest follows from Lemma 5.18.3. 0

Corollary 5.19.2. As a representation of S, x GL(V), V& de-
composes as @, Va ® Ly, where Ly = Homg, (V, V&™) are distinct
irreducible representations of GL(V') or zero.

Example 5.19.3. If A = (n), then Ly = S"V, and if A = (1) (n
copies of 1), then Ly = A"V. It was shown in Problem 4.12.3 that
these representations are indeed irreducible (except that A"V is zero
if n > dimV).

5.20. Historical interlude: Hermann Weyl at the
intersection of limitation and freedom

Hermann Weyl (1885-1955) received his doctorate at the University
of Gottingen under the guidance of David Hilbert, whom he later
paid a rather dubious compliment by calling him “the Pied Piper
...seducing so many rats to follow him into the deep river of mathe-
matics”. Hilbert called mathematical physics “a vital nerve” of math-
ematics, and Weyl inherited the interest in cross-fertilization of math-
ematics and physics from his teacher (quoted in [53, pp. 357, 358]).
The willingness of Gottingen mathematicians to get their formulas
dirty by engaging physical problems set them apart from the obses-
sive purism of the Berlin mathematical school.
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5.20. Historical interlude: Hermann Weyl 123

In 1913 Weyl was offered a professorship at the ETH in Ziirich,
despite a somewhat lukewarm endorsement from Frobenius, who re-
garded the work of all candidates who came from the Gottingen school
as “very general, very deep, so abysmally deep that a shortsighted per-
son like me finds it difficult to recognize new ideas” (quoted in [22,
p. 421]). Weyl accepted and found himself in the company of Albert
Einstein, who was teaching at the ETH at the time. Yet it took a
world war to make Weyl pay attention to what Einstein was doing.
The German government initially judged Weyl unfit to fight in World
War I, but as losses were mounting, it reevaluated the concept of phys-
ical fitness and dragged him onto the battlefield. Weyl’s encounter
with the German army brought little satisfaction to either side. In
1916, at the request of the Swiss government, Weyl was discharged
and allowed to resume his work at the ETH. “My mathematical mind
was as blank as any veteran’s, and I did not know what to do”, he
later recalled. “I began to study algebraic surfaces; but before I had
gotten far, Einstein’s memoir came into my hands and set me afire”
(quoted in [52, p. 62]). The inflaming memoir was Einstein’s account
of general relativity.

In 1917 Weyl gave a lecture course on general relativity at the
ETH and soon turned it into the widely read book Space-Time-
Matter, which went through four different editions within five years
and was admired by Einstein himself as a “symphonic masterpiece”
(quoted in [46, p. 65]). Weyl, however, could hardly resist the im-
pulse to improve on Einstein’s belabored mathematics. He was con-
vinced that Riemannian geometry, on which Einstein based his theory,
was not a consistently infinitesimal geometry and set out to create a
“purely infinitesimal geometry”. When he explained to a student that
in Riemannian geometry the direction of the transported vector de-
pended on the path, the student innocently asked whether the vector
length changed as well. “Of course I gave him the orthodox answer
at that moment, but in my bosom gnawed the doubt”, Weyl recalled
(quoted in [52, p. 154]). The orthodox answer was no, but he was
tempted to see what would happen if the length indeed depended on
the path. Weyl questioned the assumption of a fixed distance scale,
or “gauge”, implicit in Riemannian geometry, and arrived at a more
general geometry, in which the gauge factor varied from point to point
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124 5. Representations of finite groups: Further results

in space-time, just as railway gauge varied from country to country
in the early 20th century [42, p. 3].

Weyl aspired at a unified field theory, bringing together the grav-
itational and the electromagnetic fields. Einstein was delighted to
count Weyl among the supporters of general relativity but was less
than enthusiastic to see him compete in the construction of physical
theories. Einstein praised Weyl’s theory as a “stroke of genius of the
highest order” and concluded that “except for the agreement with
reality it is in any case a grandiose achievement of thought” (quoted
in [52, pp. 163-164]). As a true mathematician, Weyl could hardly
share Einstein’s obsession with “reality”. As he later argued, “[IJt
becomes evident that now the words ‘in reality’ must be put between
quotation marks; we have a symbolic construction, but nothing which
we could seriously pretend to be the true real world” (quoted in [42,
p. 15]). In his reply to Einstein, Weyl pointedly wrote: “It must be
emphasized that the geometry that has been developed here is, from
the mathematical viewpoint, the true local geometry. It would be
strange if, instead of this true (geometry), a partial and inconsistent
local geometry with the electromagnetic field glued to it were real-
ized in Nature”. Weyl easily matched Einstein in the degree of his
sarcasm: “If you are right with regard to the real world, then I regret
having to point out a mathematical inconsistency to the dear Lord”
(quoted in [22, p. 434]).

Recasting the tensor language of Einstein’s general relativity in
the mold of the Gottingen school, Weyl focused on the development of
tensor algebra, particularly on tensors with specific symmetry prop-
erties relevant to physical applications. He aspired to obtain a math-
ematical overview of possible symmetry types and found an appro-
priate vantage point in Frobenius’s theory of finite group represen-
tations. Gradually Weyl turned further away from relativity and
towards purely mathematical questions of group theory, trying to de-
velop a group-theoretical foundation of the tensor calculus. Drawing
on the work of Elie Cartan and Issai Schur, Weyl delved into the rep-
resentation theory of finite groups, which he called “one of the most
wonderful theories to be found in mathematics”. Weyl exchanged
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letters with Schur, who wrote that “it would be of considerable in-
terest to me to see how my latest results on the number of variables
and characters could be derived on the basis of Cartan’s methods”
(quoted in [22, pp. 456, 473]). Weyl obliged and quickly arranged
the marriage of Elie Cartan’s infinitesimal methods with Issai Schur’s
integral procedure. He did not limit himself, however, to rederiving
Schur’s results but went somewhat further and developed an entire
theory of the representations of semisimple Lie groups, including ex-
plicit formulas for the irreducible characters and for the degrees of
the corresponding representations.

The rise of quantum mechanics provided an occasion for Weyl to
mount an attack on the hegemonic status of the mathematical con-
tinuum. He believed that different branches of mathematics might
have different concepts of the number and supported the view that
“each object which is offered to mathematical analysis carries its own
kind of numbers to be defined in terms of that object and its intrinsic
constituents, instead of approaching every object by the same uni-
versal number system developed a priori and independently of the
applications” (quoted in [52, p. 240]). In his 1928 book, The Theory
of Groups and Quantum Mechanics, Weyl argued that the essence of
symmetries central to quantum mechanics was to be found not in the
continuum of real numbers but in the concepts of group theory, partic-
ularly in the “reciprocity” between the representations of symmetric
permutation groups and complete linear groups [60, p. vii].

The physics community welcomed the help of a mathematician
with cries of outrage and disgust. The American theoretical physicist
John Slater christened the approach of Weyl and his followers “Grup-
penpest”, or “the pest of group theory”. “The authors of the ‘Grup-
penpest’ wrote papers which were incomprehensible to those like me
who had not studied group theory”, he later confessed. Their results
appeared “negligible” to him, and he widely shared his “frustrating
experience, worthy of the name of a pest”, with other physicists, who
were, as he claimed, “as disgusted as I had been with the group-
theoretical approach to the problem” (quoted in [55, p. x]). As late
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as 1975, he still believed that he had “slain the ‘Gruppenfest’”, bliss-
fully unaware of the essential and now routine applications of group
theory in elementary particle physics.

More sympathetic physicists also had difficulty grappling with
Weyl’s mathematics, but this only heightened their admiration for
him. Julian Schwinger had to admit that he had not “ever — not
even to this day — fully mastered” Weyl's Theory of Groups and
Quantum Mechanics. Yet he called Weyl “one of my gods”, explain-
ing that “the ways of gods are mysterious, inscrutable, and beyond
the comprehension of ordinary mortals”. When asked if he ever met
a scholar he could not understand, Paul Dirac unhesitatingly replied,
“Weyl”. Yet he found Weyl’s — purely mathematical — argument
that electrons and antielectrons must have the same mass so disarm-
ingly convincing that he reportedly derived from this encounter his
famous maxim, “[IJt is more important to have beauty in one’s equa-
tions than to have them fit experiment” (quoted in [42, p. 11, 19,
12]). Weyl expressed a similar sentiment with respect to mathemat-
ics: “My work has always tried to unite the true with the beautiful,
and when I had to choose one or the other, I usually chose the beau-
tiful” (quoted in [45, p. 161]).

Weyl’s return to Gottingen in 1930 to take up Hilbert’s chair was
badly timed to coincide with the Nazis’ rise to power. One contem-
porary privately remarked, “Prof. Weyl is a peculiar race mixture, at
least seven parts Holstein and one part Jewish blood with the par-
ticular vasomotor irritability that one encounters relatively often in
people from Holstein and Friesland” (quoted in [49, p. 52]). Whatever
vasomotor dysfunction may have resulted from the German compo-
nents of his blood, it clearly paled in comparison with the trouble
that his Jewish ancestry could cause him in Nazi Germany. Although
Weyl’s low Jewish blood count exempted him from the Nazis’ direct
attacks, his wife and children would have become targets of anti-
Semitic measures. Having barely returned to his homeland, Weyl
had to face the prospect of immigration again. The decision was dif-
ficult. At first he rejected an invitation to join the Princeton Institute
for Advanced Study, unable to overcome “the love that binds me with
every string of my heart to the German language” (quoted in [52, p.
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271]). But when Hitler came to power, Weyl’s head prevailed over his
heart, and his family left for America.

Upon his arrival at Princeton, Weyl plunged into a mathematical
culture quite inhospitable to the speculative philosophy so dear to
him. Weyl perceived the “danger of a too thorough specialization and
technicalization” of American mathematical research that produced
“a mode of writing which must give the reader the impression of
being shut up in a brightly illuminated cell where every detail sticks
out with the same dazzling clarity, but without relief”. Personally
Weyl preferred “the open landscape under a clear sky with its depth
of perspective, where the wealth of sharply defined nearby details
gradually fades away toward the horizon” [57, p. viii].

In 1939, struggling with the “yoke of foreign language”, imposed
upon his writing, Weyl summed up his results on group invariants and
representations in the book The Classical Groups [57, p. viii]. As Sir
Michael Atiyah has noted, this volume “is not a linear book with a
beginning, middle, and end. It is more like an elaborate painting that
has to be studied from different angles and in different lights. It is the
despair of the student and the delight of the professor” [3, p. 328].

Weyl viewed his mathematical writings as works of art, as much as
science. “My own mathematical works are always quite unsystematic,
without mode or connection”, he admitted. “Expression and shape
are almost more to me than knowledge itself. But I believe that,
leaving aside my own peculiar nature, there is in mathematics itself,
in contrast to the experimental disciplines, a character which is nearer
to that of free creative art” (quoted in [3, p. 323]). Weyl believed
that “‘mathematizing’” may well be a creative activity of man, like
language or music, of primary originality, whose historical decisions
defy complete objective rationalization” [58, p. 550].

In the artistry of mathematical creativity, in the beauty of formu-
las, in the eternal truths of mathematics sought Weyl a refuge from
the horrors of the world wars and from the destruction of European
culture [53, p. 365]. Yet after Hiroshima he realized that even pretty
formulas may have deadly uses. “To what extent shall and can the
theorist take responsibility for the practical consequences of his dis-
coveries?” he asked. “What a beautiful theoretical edifice is quantum
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128 5. Representations of finite groups: Further results

physics — and what a terrible thing is the atomic bomb!”. Weyl dis-
agreed with G. H. Hardy’s defense of pure mathematics as a useless
and harmless pursuit of beauty. Weyl insisted that the very meaning
and value of mathematics were questioned “by the deadly menace
of its misuse” (quoted in [49, p. 67-68]). He saw in mathematics
the same moral choices that one faced in real life. His earlier reflec-
tions on the “metaphysical implications” of knowledge now acquired
a broader meaning. “Mathematics is not the rigid and uninspiring
schematism which the layman is so apt to see in it”, he had written.
“On the contrary, we stand in mathematics precisely at that point
of intersection of limitation and freedom which is the essence of man
himself” [59, p. 68].

5.21. Schur polynomials

Let A = (A1,...,Ap) be a partition of n, and let N > p. Let

N
Dy) = 3 (=1 [T = deta ™).
seESN J=1
Define the polynomials
D(x)
Si(z) =

(clearly Dg(z) is just A(x)). It is easy to see that these are indeed
polynomials, as D) is antisymmetric and therefore must be divisible
by A. The polynomials Sy are called the Schur polynomials.

Proposition 5.21.1.

[T+ +2)™ = > xalC)Sa(x).

m A:p<N

Proof. The identity follows from the Frobenius character formula
and the antisymmetry of

Al) [Jr + -+ af).

m

O

Certain special values of Schur polynomials are of importance.
Namely, we have
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Proposition 5.21.2.

S)\(lazazza"'azNil): H %

1<i<j<N

Therefore,

A=A
sat,.... )= ] i Bt k)

11 J—i
1<i<j<N

Proof. The first identity is obtained from the definition using the
Vandermonde determinant. The second identity follows from the first
one by setting z = 1. d

5.22. The characters of L,

Proposition 5.21.1 allows us to calculate the characters of the repre-
sentations L.

Namely, let dimV = N, let ¢ € GL(V), and let x1,...,2x be
the eigenvalues of g on V. To compute the character xr,(g), let us
calculate Tryg.(g®™"s), where s € S,. If s € Cj, we easily get that
this trace equals

[T 1x(omy = [[ Honla).
m m
On the other hand, by the Schur-Weyl duality

Trye.(9®"s ZXA D)Trr, (9)-

Comparing this to Proposition 5.21.1 and using linear independence
of columns of the character table of .S,,, we obtain

Theorem 5.22.1 (Weyl character formula). The representation Ly
is zero if and only if N < p, where p is the number of parts of \. If
N > p, the character of Ly is the Schur polynomial Sy(x). Therefore,
the dimension of Ly is given by the formula

A=A +j—i
dimLy= ] Az AT
1<i<j<N J =t
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130 5. Representations of finite groups: Further results

This shows that irreducible representations of GL(V') which occur
in V& for some n are labeled by Young diagrams with any number
of squares but at most N = dim V' rows.

Proposition 5.22.2. The representation Ly~ (where 1V = (1,1,
..., 1) € ZN) is isomorphic to Ly @ ANV

Proof. Indeed, Ly @ ANV Cc V" @ ANV ¢ VO "N and the only
component of V&N that has the same character as Ly @ ANV is
Ly, ~. This implies the statement. U

5.23. Algebraic representations of GL(V)

Definition 5.23.1. We say that a finite dimensional representation
Y of GL(V) is algebraic (or rational, or polynomial) if its matrix
elements are polynomial functions of the entries of g, g™, g € GL(V)
(i.e., belong to k[g;;][1/ det(g)]).

For example, V®" and hence all L, are algebraic. Also define
Ly_yan = Ly ® (ANV*)®T" (this definition makes sense by Propo-
sition 5.22.2). This is also an algebraic representation. Thus we
have attached a unique irreducible algebraic representation L of
GL(V) = GLN to any sequence (A1,...,Ay) of integers (not nec-
essarily positive) such that A; > --- > Ay. This sequence is called
the highest weight of L,.

Theorem 5.23.2. (i) Every finite dimensional algebraic representa-
tion of GL(V') is completely reducible, and decomposes into summands
of the form Ly (which are pairwise nonisomorphic).

(ii) (The Peter-Weyl theorem for GL(V)) Let R be the alge-
bra of polynomial functions on GL(V). Then as a representation
of GL(V) x GL(V) (with action (p(g,h)¢)(x) = ¢(g~'zh), g,h,z €
GL(V), ¢ € R), R decomposes as

R=EPLi® L,
A
where the summation runs over all \.

Proof. (i) Let Y be an algebraic representation of GL(V'). We have
an embedding £ : Y — Y ® R given by (u,&(v))(g) := u(gv), u € Y*.
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It is easy to see that £ is a homomorphism of representations (where
the action of GL(V') on the first component of Y ® R is trivial). Thus,
it suffices to prove the theorem for a subrepresentation Y C R™. Now,
every element of R is a polynomial of g;; times a nonpositive power
of det(g). Thus, R is a quotient of a direct sum of representations
of the form S™(V ® V*) @ (ANV*)® 5 where the group action on
V* in the product V ® V* is trivial. So we may assume that Y is
contained in a quotient of a (finite) direct sum of such representations.
Thus, Y is contained in a direct sum of representations of the form
VO @ (ANV*)®5 and we are done.

(ii) Let Y be an algebraic representation of GL(V'), and let us
regard R as a representation of GL(V') via (p(h)¢)(x) = ¢(xh). Then
Homgr,vy (Y, R) is the space of polynomial functions f on GL(V)
with values in Y* which are right GL(V)-equivariant (i.e., such that
f(xg) = g~ f(x)). This space is naturally identified with Y*. Taking
into account the proof of (i), we deduce that R has the required
decomposition, which is compatible with the second action of GL(V)
(by left multiplications). This implies the statement. O

Remark 5.23.3. Since the Lie algebra s[(V') of traceless operators
on V is a quotient of gl(V) by scalars, the above results extend in a
straightforward manner to representations of the Lie algebra sl(V).
Similarly, the results for GL(V) extend to the case of the group
SL(V) of operators with determinant 1. The only difference is that
in this case the representations L) and Ly;im are isomorphic, so
the irreducible representations are parametrized by integer sequences
A1 > -+ > Ay up to a simultaneous shift by a constant.

In particular, one can show that any finite dimensional represen-
tation of sl(V') is completely reducible and any irreducible represen-
tation is of the form Ly (we will not do this here). For dim V' = 2 one
then recovers the representation theory of s[(2) studied in Problem
2.15.1.

5.24. Problems

Problem 5.24.1. (a) Show that the S, -representation
V/\, = (C[Sn}b)\a)\
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132 5. Representations of finite groups: Further results

is isomorphic to V).

Hint: Define S,-homomorphisms f : VA — V] and g : V| — V)
by the formulas f(z) = za) and g(y) = ybx, and show that they are
inverse to each other up to a nonzero scalar.

(b) Let ¢ : C[S,] — C[S,] be the automorphism sending s to
(—1)%s for any permutation s. Show that ¢ maps any representation
V of S, to V@ C_. Show also that ¢(C[S,]a) = C[S,]¢(a), for
a € C[S,]. Use (a) to deduce that V) ® C_ = V), where \* is the
conjugate partition to A, obtained by reflecting the Young diagram
of \.

Problem 5.24.2. Let R ny be the algebra of polynomials on the
space of k-tuples of complex N x N matrices Xy,..., X, invariant
under simultaneous conjugation. An example of an element of Ry v
is the function Ty, := Tr(w(X1, ..., Xk)), where w is any finite word
on a k-letter alphabet. Show that Ry n is generated by the elements
Ty.

Hint: Consider invariant functions that are of degree d; in each
X, and realize this space as a tensor product ), 5% (V ® V*). Then
embed this tensor product into (V @ V*)®N = End(V)®", and use
the Schur-Weyl duality to get the result.

5.25. Representations of GL,(F,)

5.25.1. Conjugacy classes in GLy(F,). Let F, be a finite field of
size ¢ of characteristic other than 2 and G = GLy(F,). Then

G| = (¢ — 1)(¢* - q),

since the first column of an invertible 2 x 2 matrix must be nonzero and
the second column may not be a multiple of the first one. Factoring,

|GLy(Fy)| = q(q +1)(q — 1)*.

The goal of this section is to describe the irreducible representations
of G.
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133

To begin, let us find the conjugacy classes in GLo(F,).

Representatives

Number of ele-
ments in a conju-
gacy class

Number of classes

Scalar (’5 v )

Parabolic (% 1)

1 (this is a central
element)

¢> — 1 (elements

that commute with
this one are of the

form (§¥), t #0)

q—1 (one for ev-
ery nonzero )

q—1 (one for ev-
ery nonzero x)

¢® + q (elements
: 1
Hyperbolic tlﬁét commute leltlh 2l — (g — 221
(962),y7éx this one are of the | (z,y # 0 an

Elliptic (;j Eﬁ), x €
Fy, y € Ff, € €
F,\F?2 (characteris-
tic polynomial over

form (§9), t,u #
0)

¢*> — q (the reason
will be described
below)

3q(g—1) (matri-
ces with y and
—y are conju-

gate)

F, is irreducible)

Let us explain the structure of the conjugacy class of elliptic
matrices in more detail. These are the matrices whose character-
istic polynomial is irreducible over F, and which therefore don’t have
eigenvalues in F;. Let A be such a matrix, and consider a quadratic
extension of F,, namely, F,(1/€), where ¢ € Fy \ F2. Over this field,

A will have eigenvalues

o=+ Vear
and

a = —eay,
with corresponding eigenvectors

v, 7 (Av=av, AT =aw).
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134 5. Representations of finite groups: Further results

Choose a basis
{e1=v+70, e = Ve(v—1)}.

In this basis, the matrix A will have the form

Q1 EQ9

(65) (65} ’
justifying the description of representative elements of this conjugacy
class.

In the basis {v,7}, matrices that commute with A will have the

A0
0 )’
/\G]F(jz,

so the number of such matrices is g% — 1.

form

for all

5.25.2. 1-dimensional representations. First, we describe the 1-
dimensional representations of G.

Proposition 5.25.1. [G,G] = SLs(F,).

Proof. Clearly,
det(zyzty™') =1,
SO
[G,G] C SLy(F,).

To show the converse, it suffices to show that the matrices

o) (o) G

are commutators (as such matrices generate SLy(FF,)). Clearly, by
using transposition, it suffices to show that only the first two matrices
are commutators. But it is easy to see that the matrix

6 2)

is the commutator of the matrices

S ]
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5.25. Representations of GL,(F,) 135

G )

is the commutator of the matrices

) el

This completes the proof. O

while the matrix

Therefore,
G/|G,G] =Ty via g — det(g).
The 1-dimensional representations of G thus have the form
p(g) = &(det(g)),
where £ is a homomorphism
§:F; — C%;

so there are ¢ — 1 such representations, denoted C.
5.25.3. Principal series representations. Let
x %
B B=

(the set of upper triangular matrices); then

|B| = (q - 1)2(]7

1 =
B8 =0 =5 1)
and
B/[B,B] = F; xFy
(the isomorphism maps an element of B to its two diagonal entries).
Let

A:B—=C*

be a homomorphism defined by

A (g z;) — M(a)ha(c)
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136 5. Representations of finite groups: Further results

for some pair of homomorphisms A;, Ay : Fi* — C*. Define
Vv,\l,)\2 = Indg (C)\,

where C) is the 1-dimensional representation of B in which B acts

by A. We have
. G
dim(Vy, x,) = :;' =q+1.
Theorem 5.25.2. (1) A1 # A2 = Vi, .z, @8 irreducible.

(2) M =X =p = Vi, = C,® Wy, where W, is a g-
dimensional irreducible representation of G.

(3) W, =W, if and only if p = v; Vy, n, = Vi, if and only if
(A X} = {1, ALY (in the second case, Ay # Ao, A] # Ay).

Proof. From the Frobenius formula, we have

1 _
Try,, ., (9) = 1B] Z Aaga™).
a€G,aga—1€B

_(z 0
g - O T )
the expression on the right evaluates to

Ao 1 = l)da(a)a+ 1).

_f(r 1
g_Ox’

the expression evaluates to

If

If

since here aga™! € B = a € B.

If
_(z 0
g - 0 y ’
the expression evaluates to
(M (@)A2(y) + Mi(y)Aa(2)) - 1,
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5.25. Representations of GL,(F,) 137

since here aga™' € B implies that a € B or a is an element of B
multiplied by the transposition matrix.

If
(T ey
g—(y m) T F#y,

the expression on the right evaluates to 0 because matrices of this
type do not have eigenvalues over Fy (and thus cannot be conjugated
into B). From the definition, \;(z) for ¢ = 1,2 is a root of unity, so

GI{XVs, 00 XVay ) = (@ + 1)@= 1)+ (¢° = 1)(g — 1)
qg—1)(g—2 —_—
o+ ) U2 g ) S @A) ().
TFY
The last two summands come from the expansion
la +b* = |a|* + |b]* + ab + ab.
It
AL = A2 = p,
the last term is equal to
(@® +a)(a—2)(g—1),

and the total in this case is

(g+1)(g=Dl(g+1D)+(g=1)+2q(¢—2)] = (¢+1)(¢—1)2¢(¢—1) = 2|,
S0
(XVa, rg 0 XVay rg) = 2-
Clearly,
C, CInd§C, .,
since
Homg(Cu,Indg C,,u) = Homp(C,,C,) = C (Theorem 5.10.1).

Therefore, Ind% C,, , = C,,&W,; W, is irreducible; and the character
of W, is different for distinct values of 11, proving that W, are distinct.

If Ay # Mo, let z = 2y~ . Then the last term of the summation is

(40) M0 = () Y 3HE) = @ Ha)a-) Y ).

rH£yY ryz#£1 2 z#1 >\2
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Since
A1
z€F§

because the sum of all roots of unity of a given order m > 1 is zero,
the last term becomes

(@ + )@~ D0 =~ + g D).

The difference between this case and the case of Ay = \g is equal to
—(@+9lle-2(@-D+(¢-1] =G|,

so this is an irreducible representation by Lemma 5.7.2.

To prove the third assertion of the theorem, we look at the char-
acters on hyperbolic elements and note that the function

A1(®)A2(y) + A1 (y)Aa(z)

determines A1, A2 up to permutation. O

The representations Wy, Vi, x,, A1 # A2 are called principal series
representations.

5.25.4. Complementary series representations. Let - D IF,
be a quadratic extension Fy(y/2),e € F, \ F2. We regard this as a
2-dimensional vector space over IFy; then G is the group of linear
transformations of F,2 over F,. Let K C G be the cyclic group of
multiplications by elements of IFqu,

k=((2 h m=een

Yy T
For v : K — C* a homomorphism, let

Y, =Ind% C,.
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This representation, of course, is reducible. Let us compute its char-
acter, using the Frobenius formula. We get

z 0
—qlg—1
X (0 x) q(q — Nv(z),
x(A4) =0 for A parabolic or hyperbolic,

q
X(m 5y> :V<:r ey) +V(x &:y) .
y x y x y x
The last assertion holds because if we regard the matrix as an element

of Fg2, conjugation is an automorphism of Fg2 over Fy, but the only
nontrivial automorphism of Fg . over F, is the gth power map.

We thus have

md% C,. = md% C,
because they have the same character. Therefore, for v? # v we get

%q(q — 1) representations.

Next, we look at the tensor product
W1 ®Van,

where 1 is the trivial character and Wy is defined as in the previous
section. The character of this representation is

(5 1) =atat vato)

X(A) =0 for A parabolic or elliptic,

(5 ) =at+at)

Thus the “virtual representation”

W1 ® Va1 — Vi —Ind% C,,
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where « is the restriction of v to scalars, has the character

(5 ) =ta-nat),

xT

\ (x f—:y) _ (x sy) L (m Ey) .
y x y x y x
In all that follows, we will have v? # v.

The following two lemmas will establish that the inner product
of this character with itself is equal to 1 and that its value at 1 is
positive. As we know from Lemma 5.7.2, these two properties imply
that it is the character of an irreducible representation of G.

Lemma 5.25.3. Let x be the character of the virtual representation
defined above. Then

(. x) =1
and
x(1) > 0.

Proof.
x(1) =qlg+1) = (g+1)—q(g—1)=g—1>0.

We now compute the inner product (x, x). Since « is a root of unity,
this will be equal to

m[(q—1)'(q—1)2~1+(q—1)-1~(q2—1)
alg — 1)

e Y W)+ v ()W) +vi(0)]-
¢ elliptic

Because v is also a root of unity, the last term of the expression
evaluates to
P (SR 2 (9)
¢ elliptic
Let’s evaluate the last summand.
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. % .
Since qu is cyclic and v9 # v,

Yoo =Y v =0

Ce]FqXQ CEFZQ
Therefore,
SO+ = = X O +VTU) = —2(g - 1)
¢ elliptic CE]FQX

since F is cyclic of order ¢ — 1. Therefore,

1 2 2
<X,X>=m((q—1)'(q—1) I+ (g—1)-1-(¢"=1)
+M~(2(q27@72(qf1))) =1

2
O

We have now shown that for any v with 4 # v the representation
Y, with the same character as

Wi ® Vi — Vaa —Ind$ C,

exists and is irreducible. These characters are distinct for distinct
pairs (a, v) (up to switching v — v9), so there are % such
representations, each of dimension ¢ — 1. These representations are
called complementary series representations.
We have thus found ¢ — 1 1-dimensional representations of G,
2@=1) 1rincipal series re tati q 2a=1) 1 t -
> D p presentations, an 5— complementary se
ries representations, for a total of ¢2 — 1 representations, i.e., the
number of conjugacy classes in G. This implies that we have in fact

found all irreducible representations of GLy(F,).

5.26. Artin’s theorem

Theorem 5.26.1. Let X be a conjugation-invariant system of sub-
groups of a finite group G. Then two conditions are equivalent:

(i) Any element of G belongs to a subgroup H € X.

(i) The character of any irreducible representation of G belongs
to the Q-span of characters of induced representations Indg V', where
H e X and V is an irreducible representation of H.
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142 5. Representations of finite groups: Further results

Remark 5.26.2. Statement (ii) of Theorem 5.26.1 is equivalent to
the same statement with Q-span replaced by C-span. Indeed, consider
the matrix whose columns consist of the coefficients of the decompo-
sition of Indg V' (for various H, V') with respect to the irreducible
representations of G. Then both statements are equivalent to the
condition that the rows of this matrix are linearly independent.

Proof. Proof that (ii) implies (i). Assume that g € G does not
belong to any of the subgroups H € X. Then, since X is conjugation
invariant, it cannot be conjugated into such a subgroup. Hence by
the Frobenius formula, xpnqcv)(9) = 0 for all H € X and V. So
by (ii), for any irreducible representation W of G, xw(g) = 0. But
irreducible characters span the space of class functions, so any class
function vanishes on g, which is a contradiction.

Proof that (i) implies (ii). Let U be a virtual representation of G
over C (i.e., a linear combination of irreducible representations with
nonzero integer coefficients) such that (xv, Xmag v) = 0 for all H, V.
So by Frobenius reciprocity, (xu|,,xv) = 0. This means that xy
vanishes on H for any H € X. Hence by (i), xu is identically zero.
This implies (ii) (because of Remark 5.26.2). O

Corollary 5.26.3. Any irreducible character of a finite group is a
rational linear combination of induced characters from its cyclic sub-
groups.

5.27. Representations of semidirect products

Let G, A be groups and let ¢ : G — Aut(A) be a homomorphism.
For a € A, denote ¢(g)a by g(a). The semidirect product G x A
is defined to be the product A x G with multiplication law

(a1,91)(az, g2) = (a191(az), 9192).-
Clearly, G and A are subgroups of G X A in a natural way.

We would like to study irreducible complex representations of
G x A. For simplicity, let us do it when A is abelian.

In this case, irreducible representations of A are 1-dimensional
and form the character group A, which carries an action of G. Let
O be an orbit of this action, z € O a chosen element, and G, the
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5.27. Representations of semidirect products 143

stabilizer of  in G. Let U be an irreducible representation of G,.
Then we define a representation V(o ) of G'x A as follows.

As a representation of G, we set
Viowv) =Indg, U ={f : G = Ulf(hg) = hf(g),h € G},

Next, we introduce an additional action of A on this space by (af)(g) =
x(g(a))f(g). Then it is easy to check that these two actions combine
into an action of G x A. Also, it is clear that this representation
does not really depend on the choice of x, in the following sense. Let
z,y € O and g € G be such that gr = y, and let g(U) be the rep-
resentation of G obtained from the representation U of G, by the
action of g. Then V(o . ) is (naturally) isomorphic to V(o 4 41))-
Thus we will denote V(o ..ty by Vio,v) (remembering, however, that
x has been fixed).

Theorem 5.27.1. (i) The representations V(o yy are irreducible.
(i) They are pairwise nonisomorphic.

(iii) They form a complete set of irreducible representations of

G x A.
iw) The character of V.= Vo yy is given by the Frobenius-type
(o,0)
formula
1 _
wlag) = 5 > a(h(a)xu(hgh™).

heG:hgh—1eG,

Proof. (i) Let us decompose V' = V(o ) as an A-module. Then we

get
V=,
yeO

where V, = {v € Vo,1)lav = y(a)v,a € A}. (Equivalently, V,, = {v €
Vio,ylv(g) = 0 unless gy = x}.) So if W C V is a subrepresentation,
then W = €D, .o Wy, where W, C V,,. Now, V,, is a representation of
G, which goes to U under any isomorphism G, — G, determined by
g € G mapping z to y. Hence, V,, is irreducible over G, so W, =0
or W, =V, for each y. Also, if hy = z, then hW, = W, so either
W, =0 for all y or W,, =V, for all y, as desired.
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144 5. Representations of finite groups: Further results

(ii) The orbit O is determined by the A-module structure of V,
and the representation U is determined by the structure of V, as a
G z-module.

(iii) We have

> dim Vi o) = [0 (dimU)? =
U,O U,O

Y 10P1G| = Y 10IIG/GLlIG| = |G Y |0] = |GIIAY] = |G x Al.
O o o

(iv) The proof is essentially the same as that of the Frobenius
formula. O

Exercise 5.27.2. Redo Problems 4.12.1(a), 4.12.2, and 4.12.6 using
Theorem 5.27.1.

Exercise 5.27.3. Deduce parts (i)—(iii) of Theorem 5.27.1 from part

(iv).
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Chapter 6

Quiver representations

6.1. Problems

Problem 6.1.1. Field embeddings. Recall that k(y1,...,ym) de-
notes the field of rational functions of yq, ...,y over a field k. Let
fiklxy,...,zn] = k(y1,. .., Ym) be an injective k-algebra homomor-
phism. Show that m > n. (Look at the growth of dimensions of the
spaces W of polynomials of degree N in z; and their images under
f as N — o00.) Deduce that if f: k(x1,...,2n) = k(y1,...,ym) is a
k-linear field embedding, then m > n.

Problem 6.1.2. Some algebraic geometry. Let k£ be an alge-
braically closed field, and let G = GL, (k). Let V be an algebraic
representation of G. Show that if G has finitely many orbits on V,
then dim(V) < n?. Namely:

(a) Let z1,...,zxn be linear coordinates on V. Let us say that
a subset X of V is Zariski dense if any polynomial f(z1,...,zy)
which vanishes on X is zero (coefficientwise). Show that if G has

finitely many orbits on V, then G has at least one Zariski dense orbit
on V.

(b) Use (a) to construct a field embedding k(z1,...,zn5) = k(gpq)-
Then use Problem 6.1.1.

(¢) Generalize the result of this problem to the case when G =
GL,, (k) x --+ x GL,,, (k).

145
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146 6. Quiver representations

Problem 6.1.3. Dynkin diagrams. Let I" be a graph, i.e., a finite
set of points (vertices) connected with a certain number of edges (we
allow multiple edges). We assume that I' is connected (any vertex can
be connected to any other by a path of edges) and has no self-loops
(edges from a vertex to itself). Suppose the vertices of T" are labeled
by integers 1,...,N. Then one can assign to I' an N x N matrix
Rr = (r;5), where 7;; is the number of edges connecting vertices ¢ and
7. This matrix is obviously symmetric and is called the adjacency
matrix. Define the matrix Ar = 21 — Ry, where I is the identity
matrix.

Definition 6.1.4. T is said to be a Dynkin diagram if the quadratic
form on RY with matrix Ar is positive definite.

Dynkin diagrams appear in many areas of mathematics (singu-
larity theory, Lie algebras, representation theory, algebraic geometry,
mathematical physics, etc.). In this problem you will get a complete
classification of Dynkin diagrams. Namely, you will prove

Theorem. I' is a Dynkin diagram if and only if it is one of the
following graphs:

[ ] AN:

O——O0——0-+-0——O0——0
° DNI

O—O0—0-+-0——0

(e]

o I

O——O0—O0—0—0

o
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6.1. Problems 147

[ ] E7
oO—O—O0—0—0—0
o
[ ] Eg
oO— 00— O0—O0—O0—0—0
o

(a) Compute the determinant of Ar whereI"' = Ay, Dy. (Use the
row decomposition rule, and write down a recursive equation for it.)
Deduce by Sylvester criterion that Ay, Dy are Dynkin diagrams.®

(b) Compute the determinants of Ar for Eg, E7, Es (use row de-
composition and reduce to (a)). Show they are Dynkin diagrams.

(c) Show that if I is a Dynkin diagram, it cannot have cycles.
For this, show that det(Ar) = 0 for a graph I' below?:

1

1 1 1 1
(Show that the sum of rows is 0.) Thus I has to be a tree.

(d) Show that if I is a Dynkin diagram, it cannot have vertices
with four or more incoming edges and that I' can have no more than
one vertex with three incoming edges. For this, show that det(Ar) =0
for a graph I" below:

(e) Show that det(Ar) = 0 for all graphs I' below:

1The Sylvester criterion says that a symmetric bilinear form (, ) on RY is positive
definite if and only if for any k < N, det1<; j<k(ei,ej) > 0.
2Please ignore the numerical labels; they will be relevant for Problem 6.1.6 below.
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148 6. Quiver representations

1
2
1 2 3 2 1
2
o . . ° ° °
1 2 3 4 3 2 1
3
1 2 3 4 5 6 4 2
(f) Deduce from (a)—(e) the classification theorem for Dynkin
diagrams.

(g) A (simply laced) affine Dynkin diagram is a connected
graph without self-loops such that the quadratic form defined by Ar
is positive semidefinite. Classify affine Dynkin diagrams. (Show that
they are exactly the forbidden diagrams from (c)—(e).)

Problem 6.1.5. Let @Q be a quiver with a set of v