Topology of $\overline{M}_{0,n}(\mathbb{R})$

Pavel Etingof (MIT)

The talk is based on the paper math.AT/0507514, joint with A. Henriques, J. Kamnitzer, and E. Rains.
1. The moduli space of stable curves

Let k be a field, and $n \geq 3$ an integer.

Definition 1.1. A stable curve of genus 0 with n labeled points over k is a finite union C of projective lines C_1, \ldots, C_p over k, together with labeled distinct points $z_1, \ldots, z_n \in C$ such that the following conditions are satisfied:

1) each z_i belongs to a unique C_j;
2) $C_i \cap C_j$ is either empty or consists of one point;
3) The graph of components (whose vertices are the lines C_i and whose edges correspond to pairs of intersecting lines) is a tree;
4) The total number of special points (i.e. marked points or intersection points) that belong to a given component C_i is at least 3.

Here is an example of such a curve over \mathbb{R}:

A stable curve with 8 marked points.

Denote the set of equivalence classes of stable curves of genus 0 with n labeled points over k by $\overline{M}_{0,n}(k)$. It is a classical fact, due to Deligne-Mumford-Knudsen, that there exists a smooth irreducible projective variety $\overline{M}_{0,n}$ of dimension $n - 3$ defined over \mathbb{Z}, whose set of k-points is $\overline{M}_{0,n}(k)$. This variety is called the moduli space of stable curves of
genus 0 with n labeled points. It is a natural compactification of the moduli space $M_{0,n}$ of n-tuples of distinct points on \mathbb{P}^1.

Examples. 1. $\overline{M}_{0,3}$ is a point, since a stable curve with 3 labeled points must be a single \mathbb{P}^1, and any two triples of points are equivalent by a unique fractional linear transformation.

2. $\overline{M}_{0,4} = \mathbb{P}^1$. Indeed, $\overline{M}_{0,4}$ consists of $M_{0,4}$ and three special points corresponding to singular curves, with labeled points arranged as follows: (12)(34), (13)(24), and (14)(23). A point of $M_{0,4}$ is completely determined by the cross ratio of the four points, which can take any value except for 0, 1, ∞. Thus
\[M_{0,4} = \mathbb{P}^1 \setminus \{0, 1, \infty\} \]. The three special points fill the holes at 0, 1, \(\infty \), so we get a complete \(\mathbb{P}^1 \).

3. It can be shown that \(\overline{M}_{0,5} \) is the blowup of \(\mathbb{P}^1 \times \mathbb{P}^1 \) at three points.

2. **The topology of the complex moduli space**

 The result of Deligne-Mumford-Knudsen implies that the space \(\overline{M}_{0,n}(\mathbb{C}) \) is a compact connected complex manifold. Similarly, \(\overline{M}_{0,n}(\mathbb{R}) \) is a connected compact real manifold. It is interesting to study the topology of these manifolds.

 The topology of \(\overline{M}_{0,n}(\mathbb{C}) \) is very well understood by now, thanks to the work of Keel, Kontsevich-Manin, Getzler, and others. In particular, in
1992 S. Keel computed the cohomology ring and the Betti numbers of $M_{0,n}(\mathbb{C})$.

Theorem 2.1. (Keel) The commutative ring $H^*(M_{n+1}^\mathbb{C}, \mathbb{Z})$ is generated by elements (of degree 2) D_S, one for each subset $S \subset \{0,1,2,\ldots,n\}$ with $2 \leq |S| \leq n-1$, subject to the following relations.

1. $D_S = D_{\{0,1,\ldots,n\}\setminus S}$.
2. For distinct elements $i, j, k, l \in \{0,1,\ldots,n\}$,
 \[
 \sum_{i,j \in S} D_S = \sum_{i,k \in S} D_S.
 \]
3. If $S \cap T \not\in \{\emptyset, S, T\}$ and $S \cup T \not\in \{0,1,\ldots,n\}$, then $D_SD_T = 0$.

The exponential generating function

\[A(u, t) := \sum_{n \geq 2} \sum_{k=0}^{n-2} \text{rk}(H^{2k}(M_{n+1}^{\mathbb{C}}, \mathbb{Z})) t^k u^n n! \]

satisfies the differential equation

\[\frac{\partial A}{\partial u} = \frac{u + (1 + t) A}{1 - tA}. \]

This differential equation allows one to compute the Betti numbers recursively.

Remark 2.2. The class \(D_S \) has a geometrical interpretation as the class of the divisor of \(M_{n+1}^{\mathbb{C}} \) consisting of singular genus 0 curves in which the removal of a singular point separates the points in \(S \) from the points not in \(S \).
3. The topology of the real moduli space

In this talk I will deal with topological questions about $\overline{M}_{0,n}(\mathbb{R})$, which I will denote by M_n for brevity. First of all, we have the following result.

Proposition 3.1. (i) M_n is not orientable for $n \geq 5$.

(ii) (Davis-Januskiewicz-Scott) M_n is aspherical.

Example. M_5 is the blowup of $S^1 \times S^1$ at three points, so it is a closed nonorientable surface of Euler characteristic -3.

The main result I want to discuss is the determination of the Betti numbers and the cohomology ring of M_n (or, equivalently, of its fundamental
group Γ_n). Before giving the answer, we should do a bit of algebra.

4. The algebra Λ_n

Definition 4.1. Λ_n is the skew-commutative algebra generated over \mathbb{Z} by elements ω_{ijkl}, $1 \leq i, j, k, l \leq n$, which are antisymmetric in $ijkl$, with defining relations

\begin{align*}
(2) \quad \omega_{ijkl} + \omega_{jklm} + \omega_{klmi} + \omega_{lmij} + \omega_{mijk} &= 0, \\
(3) \quad \omega_{ijkl} \omega_{ijkm} &= 0, \\
(4) \quad \omega_{ijkl} \omega_{lmpi} + \omega_{klmp} \omega_{pijk} + \omega_{mpi} \omega_{jklm} &= 0
\end{align*}

for any distinct i, j, k, l, m, p.

In particular, Λ_n is a quadratic algebra.

We will also consider the algebras $\Lambda_n \otimes R$ for commutative rings R.
They are defined over R by the same generators and relations.

Remark 4.2. One can show that 2 times (4) is in the ideal generated by (2) and (3). So this relation becomes redundant if $1/2 \in R$.

The algebra Λ_n has a natural action of S_n.

Proposition 4.3. One has $\Lambda_n[1] = \wedge^3 \mathfrak{h}_n$, as S_n-modules, where \mathfrak{h}_n is the $n - 1$-dimensional submodule of the permutation representation, consisting of vectors with zero sum of coordinates (in particular, $\Lambda_n[1]$ is free over \mathbb{Z} of rank $(n - 1)(n - 2)(n - 3)/6$).

It is convenient to use another presentation of Λ_n, in which only the
S_{n-1}-symmetry, rather than the full S_n-symmetry, is apparent, but which contains only quadratic relations. This presentation is given by the following proposition.

Proposition 4.4. The algebra Λ_n is isomorphic to the skew-commutative algebra generated by ν_{ijk}, $1 \leq i, j, k \leq n - 1$ (antisymmetric in ijk) with defining relations

$$\nu_{ijk}\nu_{ijl} = 0,$$

and

$$\nu_{ijk}\nu_{klm} + \nu_{jkl}\nu_{lmi} + \nu_{klm}\nu_{mij} + \nu_{lmi}\nu_{ijk} + \nu_{mij}\nu_{jkl} = 0.$$

The identification of the two presentations is defined by the formula $\nu_{ijk} \rightarrow \omega_{ijkn}$.
Theorem 4.5. For each n, Λ_n is a free \mathbb{Z}-module with Poincaré polynomial

$$P_n(t) = \prod_{0 \leq k < (n-3)/2} (1+(n-3-2k)^2 t).$$

This theorem is proved by constructing a homogeneous basis of Λ_n and counting the number of elements in this basis. Namely, define a triangle graph on vertices $1, \ldots, n-1$ to be a collection of triangles on these vertices. To every triangle graph with m triangles we can attach an element of Λ_n of degree m defined up to sign, by taking the product of ν_{ijk} over all triangles ijk in the graph.

We will say that a triangle graph is a triangle forest if there is no cycle whose all edges are contained in
different triangles (in particular, no two triangles have a common edge). If in addition it is connected, it is called a **triangle tree**.

Definition 4.6. We define **basic** triangle trees and forests as follows, by induction on the number of triangles.

1. A single point is a basic triangle tree.
2. A nontrivial triangle tree is basic iff the two smallest vertices are on a common triangle, and each of the three components after removing that triangle is basic.
3. A triangle forest is basic iff each component is basic.
Theorem 4.7. The algebra Λ_n is freely spanned by the monomials associated to basic triangle forests.

Conjecture 4.8. The algebra $\Lambda_n \otimes \mathbb{Q}$ is a Koszul quadratic algebra.

5. The cohomology of the real moduli space

For any ordered m-element subset $S = \{s_1, \ldots, s_m\}$ of $\{1, \ldots, n\}$ we have a natural map $\phi_S : M_n \to M_m$, forgetting the points with labels outside S. More precisely, given a stable curve C with labeled points z_1, \ldots, z_n, $\phi_S(C)$ is C with labeled points z_{s_1}, \ldots, z_{s_m}, in which the components that have fewer than 3 special points have been collapsed in an obvious way.
Thus for any commutative ring \(R \) we have a homomorphism of algebras \(\phi_s^*: H^*(M_m, R) \to H^*(M_n, R) \).

For \(m = 4 \), \(M_m = \mathbb{RP}^1 \) is a circle, and we denote by \(\omega_s \) the image of the standard generator of \(H^1(M_4, R) \) under \(\phi_s^* \).

Proposition 5.1. Over any ring \(R \) in which 2 is invertible, the elements \(\omega_s \) satisfy the relations (2), (3).

Proof. Let us give a proof when \(R = \mathbb{Q} \). The skew-symmetry of \(\omega_s \) is obvious. Next, we check the quadratic relations (3). By considering the maps \(\phi_s \) for \(|S| = 5 \), it suffices to check this relation on \(M_5 \). But \(H^2(M_5, \mathbb{Q}) = 0 \) because \(M_5 \) is non-orientable.
The 5-term linear relation (2) may also be checked on M_5. It is easy to see that as an S_5-module, $H^1(M_5, \mathbb{Q})$ is the tensor product of the permutation and sign representations. In particular, the 5-cycle has no invariants in this representation, and hence the 5-term relation holds. \hfill \Box

Corollary 5.2. For any ring R in which 2 is invertible, we have a homomorphism of algebras

$$f_n^R : \Lambda_n \otimes R \to H^*(M_n, R),$$

which maps ω_S to ω_S.

Our main result is the following theorem.

Theorem 5.3. $f_n^\mathbb{Q}$ is an isomorphism.
It then follows from Theorem 4.5 that the Poincaré polynomial of M_n is $P_n(t)$.

We also have the following result.

Theorem 5.4. $H^*(M_n, \mathbb{Z})$ does not have 4-torsion.

Theorem 5.5. (E. Rains) $H^*(M_n, \mathbb{Z})$ does not have odd torsion.

The cohomology of M_n does, however, have 2-torsion. It is determined by the following theorem.

Theorem 5.6. There is a natural isomorphism of algebras $H^{2*}(\overline{M}_{0,n}(\mathbb{C}), \mathbb{F}_2) \cong H^*(\overline{M}_{0,n}(\mathbb{R}), \mathbb{F}_2)$.

Thus, the integral cohomology groups of M_n are

$$H^m(M_n, \mathbb{Z}) = \mathbb{Z}^{b_m^\mathbb{R}} \oplus \mathbb{F}_2^{b_m^\mathbb{C} - b_m^\mathbb{R}}.$$
where \(b^\mathbb{R}_m, b^\mathbb{C}_m \) are the Betti numbers of the manifolds \(\overline{M}_{0,n}(\mathbb{R}), \overline{M}_{0,n}(\mathbb{C}) \), whose generating functions are given above.

6. **The homology operad of \(M_n \)**

The spaces \(M_n \) form a topological operad (the mosaic operad, introduced by Devadoss). To define this operad, it is convenient to agree that each of the undefined moduli spaces \(M_1 \) and \(M_2 \) consists of one point. Then we will define a topological operad with set of \(n \)-ary operations \(M(n) := M_{n+1} \) (we think of a point of \(M_{n+1} \) as an \(n \)-ary operation where the inputs sit at points \(1, \ldots, n \) and the output is \(n + 1 \)). Namely, given \(p, q \geq 0 \) and \(1 \leq j \leq p \), we have a “substitution”
map $\gamma_{ipq} : M_{p+1} \times M_{q+1} \to M_{p+q}$
given by attaching a curve C_1 with $p + 1$ marked points to a curve C_2
with $q + 1$ marked points by identifying the point i on the first curve with
the point $q + 1$ on the second curve, and then adding $q - 1$ to the labels
$i + 1, \ldots, p + 1$ on C_1 and adding $i - 1$ to the labels of the points $1, \ldots, q$
on C_2. The operad structure is obtained by iterating such maps.

Since $M(\bullet)$ is a topological operad,
the spaces $O(n) := H_*(M_{n+1}, \mathbb{Q}) = (\Lambda_{n+1} \otimes \mathbb{Q})^*$ form an operad in the
category of \mathbb{Z}-graded supervector spaces.
The following result determines the structure of this operad.

Theorem 6.1. The operad $O(n)$
is the operad of unital 2-Gerstenhaber
algebras. More specifically, it is generated by $1 \in O(0)$, $\mu \in O(2)$, and $\tau \in O(3)$, such that

1) μ is a commutative associative product of degree 0 with unit 1;

2) τ is an skew-symmetric ternary operation of degree -1, which is a derivation in each variable with respect to the product μ.

3) τ satisfies the Jacobi identity: $\Alt(\tau \circ (\tau \otimes \Id \otimes \Id)) = 0$, where the alternator is over S_5 (As usual, the alternator is understood in the supersense).

Corollary 6.2. Consider the sub-operad $O' \subset O$, with $O'(2k) = 0$, $O'(2k + 1) = H_k(M_{2k+2}, \mathbb{Q})$. Then O' is the Hanlon-Wachs operad of
Lie 2-algebras, generated by a skew-symmetric ternary operation \(\tau \), satisfying the Jacobi identity
\[\text{Alt}(\tau \circ (\tau \otimes \text{Id} \otimes \text{Id})) = 0. \]

For comparison let us say that the homology operad of the complex moduli spaces \(\overline{M}_{0,n}(\mathbb{C}) \) is the operad of hypercommutative algebras, studied by Kontsevich and Manin. It is generated by infinitely many “multiproduct” operations.

7. The fundamental group of \(M_n \).

Let \(\Gamma_n \) be the fundamental group of \(M_n \). To understand this group, one should consider another group \(J_n \) which is the orbifold fundamental group of the orbifold \(M_{n+1}/S_n \).
(the group S_n leaves the point $n + 1$ fixed). One has a short exact sequence

$$1 \to \Gamma_{n+1} \to J_n \to S_n \to 1.$$

Theorem 7.1. (Devadoss, Davis-Januskiewicz-Scott, Henriques-Kamnitzer) The group J_n has the following presentation: it is generated by elements $s_{p,q}$, $1 \leq p < q \leq n$, with defining relations

1) $s_{p,q}^2 = 1$;
2) $s_{p,q}s_{m,r} = s_{m,r}s_{p,q}$ if $[p, q] \cap [m, r] = \emptyset$;
3) $s_{p,q}s_{m,r} = s_{p+q-r-p+q-m}s_{p,q}$ if $[m, r] \subset [p, q]$.

The above map $J_n \to S_n$ is then defined by sending $s_{p,q}$ to the involution that reverses the interval $[p, q]$.