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Introduction
These are notes of a mini-course of group theory for high school students that I gave in the

Summer of 2009. This mini-course covers the most basic parts of group theory with many
examples and applications, such as the “Fifteen” puzzle, the game “SET”, the Rubik cube,
wallpaper patterns in the plane. The notes contain many exercises, which are necessary for
understanding the main text. A more detailed treatment of group theory in a similar style
can be found in M. Artin’s wonderful book “Algebra”.

Acknowledgments. I am very grateful to my students Valentina Barboy, Esther Bo-
gorov, Konstantin Tchourine, Ivan Kirillov, Elias Kleinbock, and Michael Perlin for curiosity
and motivation, which made it exciting for me to teach this course.

Lecture 1

1. Groups of transformations

1.1. The definition of a group of transformations. The notion of a group is one of
the most important and ubiquitous notions in the entire field of mathematics. One of its
primary functions is to describe symmetry. For this reason, one of the most common ways
in which groups arise in nature is as groups of transformations, or symmetries, of various
mathematical objects.

Definition 1.1. Let X be a set, and let G be a subset of the set of all invertible transfor-
mations (i.e., bijections) f : X → X. One says that G is a group if

1) G is closed under composition, i.e., f ◦ g ∈ G if f, g ∈ G;
2) Id ∈ G; and
3) If g ∈ G then g−1 ∈ G.

Definition 1.2. If G is a finite group, then the order |G| of G is the the number of elements
in G.

1.2. The symmetric and alternating groups. The most obvious example of a group of
transformations is the group Perm(X) of all transformations (or permutations) of X. This
group is especially interesting if X is a finite set: X = {1, ..., n}. In this case the group
Perm(X) is called the symmetric group, and is denoted by Sn. The order of this group
is n!.

The simplest example of a permutation which is not the identity is a transposition (ij),
1 ≤ i < j ≤ n. This permutation switches i and j and keeps all other elements fixed. In
particular, if j = i + 1, then (ij) is called a transposition of neighbors. It is clear that
any permutation is a composition of transpositions of neighbors.

For every permutation s ∈ Sn, we have a notion of the sign of s. Namely, let inv(s) be
the number of inversions of s, i.e., the number of pairs i < j such that s(i) > s(j). Then
s is said to be even (respectively, odd) if inv(s) is even (respectively, odd), and one defines
sign(s) to be (−1)inv(s).

Proposition 1.3. For any representation of s as a composition of N transpositions of neigh-
bors, sign(s) = (−1)N .
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Proof. Right multiplication of a permutation by a transposition of neighbors either creates
a new inversion or kills an existing one. So N equals the number of inversions modulo 2. �

Corollary 1.4. One has sign(s ◦ t) = sign(s)sign(t). In particular, even permutations form
a group, which for n ≥ 2 has order n!/2.

The group of even permutations is called the alternating group and denoted by An.

Exercise 1.5. (i) Let a1, ..., am ∈ {1, ..., n} be distinct elements. Denote by (a1...am) the
cyclic permutation of a1, ..., am, i.e. a1 7→ a2 7→ ... 7→ am 7→ a1. Show that any permutation
can be uniquely represented as a composition of such cycles on disjoint collections of elements
(up to order of composition). This representation is called the cycle decomposition, and
is a convenient way of recording permutations.

(ii) Show that any cycle of even length (in particular, any transposition) is an odd permuta-
tion, while any cycle of odd length is an even permutation. Thus, the sign of any permutation
s is (−1)r, where r is the number of even length cycles in the cycle decomposition of s.

Exercise 1.6. The “Fifteen puzzle” is a collection of 15 movable square tiles numbered by
1 through 15, which are put in a box of size 4 by 4, so that there is one vacant spot. The
solved position is when all the squares are positioned in the increasing order, and the vacant
spot is in the lower right corner.

Suppose the puzzle is in some initial position, in which the vacant spot is in the lower
right corner. Show that if the puzzle can be solved (by sliding tiles without removing them)
then the initial position is an even permutation in S15 (in fact, the converse is also true). In
particular, the solved position in which 14 and 15 are interchanged is unsolvable.

Hint. Define the parity of a position of the puzzle to be the parity of the permutation s
of tiles (0 or 1) plus the parity of the number of the row containing the vacant spot, modulo
2. A slide of a tile to the right or left does not change either of the summands, so does not
change the sum. On the other hand, a slide up or down composes the permutation s with a
cycle of length 4 (so changes its parity), and at the same time changes the parity of the row
number, so the sum remains unchanged. This implies the statement.

What happens for an m-by-n puzzle with one missing tile? Explain why for m,n ≥ 2,
every even permutation with the right lower corner missing is solvable. (Hint: do the 2 by
3 case by hand, then use induction).

Remark. In the late 1880s Sam Loyd offered a $ 1,000 prize for solving the puzzle with
the usual order of numbers and 14 and 15 reversed. This had been proved to be impossible in
1879, but many people spent many hours, days and weeks in a fruitless search for a solution!

1.3. Groups of rotations, motions, symmetries. Often one considers groups G of all
transformations of X that preserve some structure on X (in many cases, of geometric origin).
In this case, it is usually obvious that G satisfies conditions 1-3.

Here are some examples of groups of transformations.

1. The group of automorphisms of a graph Γ, i.e. the group of invertible transformations
g : V → V of the set V of vertices of Γ and g : E → E of the set E of edges of Γ, such that
an edge e goes from a vertex x to a vertex y if and only if g(e) goes from g(x) to g(y). (The
graph Γ may have multiple edges and self-loops, and may or may not be oriented).

E.g., the group Zn of automorphisms of an oriented cycle of length n has n elements
(which are residues modulo n, with composition being addition modulo n), while the group
of automorphisms of an unoriented cycle of length n, D2n, has 2n elements.
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2. The group of translations of a space Rn, for example the plane R2 or 3-space R3

(i.e., the group of transformations that preserve distances and directions). This group can
be identified with Rn itself, by looking at where the origin goes. The composition is then
the usual addition of vectors. We can also consider translations of R by integers or rational
numbers, giving the groups Z and Q. Another example is the group of dilations (homotheties)
of Rn; it can be identified with the set R×+ of positive real numbers, with composition being
multiplication. If we also allow central symmetry, we will get the group of all nonzero real
numbers R×. One can also consider dilations by a rational factor, giving the group Q× of
nonzero rational numbers, with composition being multiplication.

3. The group of transformations of the plane or 3-space preserving the origin, distances,
and orientation. These groups are denoted by SO(2) and SO(3), respectively, and called
the special orthogonal groups. It is obvious that SO(2) consists of rotations of the plane
around the origin, by some angle θ, −1800 ≤ θ < 1800 (where a positive angle corresponds
to a counterclockwise rotation).

Exercise 1.7. Show that the composition of the reflections with respect to two lines L1, L2

through the origin making an angle α with each other is a rotation by the angle 2α around
the origin. Deduce that any rotation of the plane around the origin is a composition of two
reflections s ◦ t with respect to lines through the origin, and the reflection s (or t) can be
chosen arbitrarily.

In three dimensions, it is also true that any element of SO(3) is a rotation around an axis,
but this is less obvious.

Proposition 1.8. Any element g ∈ SO(3), g 6= Id is a counterclockwise rotation around a
unique (directed) axis L by a uniquely determined angle 0 < θ < 1800.

Proof. It is clear that any nontrivial rotation uniquely dertermines L and θ. So we just need
to show that g is indeed a rotation around an axis. We first show that g is a composition
of two such rotations. Let i, j,k be the standard basis of the 3-space, and i′, j′,k′ be their
images under g. By a rotation, we can align i with i′, and by a second rotation j with j′ and
k with k′ (using that i′, j′,k′ is right handed, as g preserves orientation).

Now we show that a composition of two rotations is itself a rotation. Let g, h be rotations
around axes Lg, Lh. Clearly, we may assume that Lg 6= Lh. Let Pg,h be the plane through Lg

and Lh, and let t be the reflection with respect to this plane. Then, as follows from Exercise
1.7, there exist reflections r and s such that g = r ◦ t and h = t ◦ s. So g ◦ h = r ◦ s, and
thus g ◦ h is a rotation around the intersection line of the planes of the reflections r and s
by twice the angle between these planes. �

4. The group of origin-preserving symmetries of the plane or 3-space, i.e. transformations
which preserve distances and the origin. Any symmetry is either a rotation or the composition
of a rotation with a reflection with respect to any fixed line (respectively, plane) through the
origin. These groups are denoted by O(2) and O(3), and called the orthogonal groups.
Note that the central symmetry is a rotation in 2 dimensions, but is not in 3 dimensions.

5. The group of motions of the plane or the 3-dimensional space (Galileo transformations),
i.e. transformations that preserve distances and orientation. It is easy to see that any motion
is a composition of a rotation and a translation. This is the group of symmetries of the laws
of classical (Newtonian) mechanics.
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6. The group of distance preserving transformations (isometries) of the plane or 3-space.

7. The group of linear transformations of the n-dimensional space Rn, i.e. transformations
which preserve addition of vectors and multiplication of them by scalars. This group is
denoted by GL(n,R) and called the general linear group.

8. The group of rotations of a polytope, i.e. rotations of the space that map the polytope
to itself.

Exercise 1.9. What are the orders of these groups for regular polygons and Platonic solids?

Solution. For the regular polygon with n vertices in the plane, we get a group of order n
(in fact, Zn). If the polygon is in 3-space, it can also be flipped, so we get a group of order
2n (in fact, D2n).

For the tetrahedron, we have 3 rotations by 1800 around axes through midpoints of edges,
8 rotations around axes through vertices (4 by 1200 and 4 by 2400, in the counterclockwise
direction), and the identity transformation, so altogether 3+8+1=12.

For the cube: 8 vertices, 12 edges, 6 faces. So, rotations around axes through edges: 6;
rotations around axes through vertices: 4 × 2 = 8; rotations around axes through faces:
3 × 3 = 9; and the identity transformation. Altogether 6+8+9+1=24. The same result
holds for the octahedron (which is dual to the cube).

For the icosahedron: 12 vertices, 30 edges, and 20 faces. So, rotations around axes through
edges: 15; rotations around axes through vertices: 6×4 = 24; rotations around axes through
faces: 10×2 = 20; and the identity transformation. Altogether 15+24+20+1=60. The same
result is valid for the dodecahedron (which is dual to the icosahedron).

9. The group of symmetries of a wallpaper pattern. We will see that there are 17 such
groups (we exclude “boring” patterns which are preserved by arbitrary shifts in some direc-
tion).

10. The group of symmetries of a (crystal) lattice in 3 dimensions. Such groups are called
crystallographic groups. There are 230 such groups (Fedorov groups).

2. Abstract groups

2.1. The definition of an abstract group. It often happens that groups G1, G2 originally
defined as groups of transformations of two different sets X1, X2 nevertheless turn out to be
the same. For instance, we claim that the groups of rotations of the tetrahedron, cube, and
icosahedron may be identified with A4, S4, and A5, respectively. To see this, we observe that
the group of the tetrahedron acts on the set of 4 vertices by even permutations, the group
of the cube acts on the set of 4 main diagonals by all permutations, and the group of the
icosahedron acts on the 5 inscribed tetrahedra by even permutations.

This shows that the set X on which a group G acts by transformations is not a natural
attribute of G, and thus it would be good to be able to work with the group G without
referring to X at all. This leads us to the notion of an abstract group.

To come up with the definition of an abstract group, observe that a group G of trans-
formations of a set X is equipped with the composition law G × G → G, (a, b) 7→ ab, the
identity element e = Id, and the inversion operation a 7→ a−1, which satisfy the following
axioms:

Axiom 1. Associativity: (ab)c = a(bc), a, b, c ∈ G.
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Axiom 2. The unit axiom: ea = ae = a for any a ∈ G.
Axiom 3. The inverse axiom. aa−1 = a−1a = e for any a ∈ G.
This motivates the following definition of an abstract group.

Definition 2.1. A group is a set with a multiplication operation G×G→ G, (a, b) 7→ ab,
the identity element e, and the inversion operation a 7→ a−1, satisfying axioms 1-3.

Note that the commutativity, ab = ba, is not required. If it is satisfied for any a, b ∈ G,
one says that G is a commutative, or abelian group. In such groups, the operation is
often denoted by + and called addition (rather than multiplication).

Example 2.2. 1. The trivial group {e} is the group consisting of one element.
2. Any group of transformations is an abstract group.

Exercise 2.3. (i) Show that the unit and inverse in a group are unique. Thus, the group
structure is completely determined by the multiplication operation.

(ii) Show that if in a group ac = bc or ca = cb then a = b (cancelation property).
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Lecture 2

Definition 2.4. A subgroup of a group G is a subset H ⊂ G containing e, which is closed
under the multiplication and the inversion, i.e., for a, b ∈ H, one has ab, a−1 ∈ H.

Definition 2.5. The order of an element a ∈ G is the smallest positive integer n such that
an = e (if n does not exist, we agree that the order of a is infinite).

Obviously, if a ∈ G is an element of order n then it generates a subgroup Zn in G, and
if a has infinite order, then it generates a subgroup Z in G. These groups are called cyclic
groups.

Exercise 2.6. (i) Show that if G is a finite group then every element of G has finite order.
(ii) Express the order of a permutation s ∈ Sn in terms of its cycle decomposition. (Answer:

it is the least common multiple of the cycle lengths).
(iii) What is the smallest n such that Sn contains an element of order 2009? (Answer:

n = 90).

Definition 2.7. Let G,K be two groups. A homomorphism φ : G → K is a mapping
which preserves multiplication, i.e. φ(ab) = φ(a)φ(b).

Exercise 2.8. (i) Show that any homomorphism preserves the unit and the inversion oper-
ation.

(ii) Show that if a homomorphism is invertible, then its inverse is also a homomorphism.
(iii) Show that the composition of two homomorphisms is a homomorphism.

Example 2.9. The function sign : Sn → {1,−1} is a homomorphism.

Definition 2.10. A homomorphism of groups is an isomorphism if it is invertible (i.e.,
bijective).

Two groups between which there is an isomorphism are called isomorphic. In group
theory, such groups are regarded as “the same”. An important class of problems in group
theory is to classify groups satisfying given conditions up to isomorphism (“classification
problems”).

Exercise 2.11. Let G be a group, and g ∈ G. Show that the map G → G given by
a 7→ gag−1 (called the conjugation by g) is an isomorphism.

Definition 2.12. The direct product (or Cartesian product) of two groups G,K is the
group G×K which consists of pairs (g, k), g ∈ G, k ∈ K, with componentwise multiplication.

Similarly one defines the direct product of more than two groups. In particular, one can
define the Cartesian powers Gn of a group G.

Example 2.13. The group of symmetries of a diamond (which is not a square) is Z2 × Z2.

3. Actions of groups on sets

3.1. Group actions. An important basic notion of group theory is that of an action of a
group on a set.

Definition 3.1. An action of a group G on a set X is a homomorphism φ : G→ Perm(X).
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Equivalently, an action of G on X is a map G×X → X, (g, x) 7→ gx (called the action
map), such that g(hx) = (gh)x and ex = x. Indeed, if we are given such a map, then we
can define φ by φ(g)(x) = gx, and vice versa.

Example 3.2. The trivial action: gx = x for all g ∈ G, x ∈ X.

Note that we have already seen many examples of group actions, since if G is a group of
transformations of X, then G acts on X in a natural way.

Let us show that the notion of an abstract group is, in fact, equivalent to the notion of a
group of transformations. For this, it suffices to show that any abstract group G is in fact a
group of transformations of some set X. We take X to be the group G itself, and define the
action of G on X by setting the action map G×X → X to be the multiplication of G. This
gives a homomorphism φ : G → Perm(G) given by φ(g)(h) = gh, which is clearly injective.
(The fact that φ(gk) = φ(g)φ(k) follows from the associativity axiom, while the fact that
φ(g) is invertible follows from the unit and inverse axioms). Thus, we get a realization of
any group G as a group of transformations. In particular, we have

Proposition 3.3. Any finite group is isomorphic to a subgroup of Sn for some n.

3.2. Orbits of group actions. Let G be a group acting on a set X. The orbit of x ∈ X
is the set Gx ⊂ X (which is stable under the action of G).

Exercise 3.4. Find the orbits of the action of SO(2) on R2, and of SO(3) on R3.
Answer: these are concentric circles (respectively, spheres), with the exception of the

origin, which is a single orbit.

Proposition 3.5. Two orbits of a group action on a set X are either disjoint or coincide.
Thus, X is a disjoint union of orbits.

Proof. Suppose z ∈ Gx ∩ Gy. Then there exist a, b ∈ G such that z = ax = by, so
y = b−1z = b−1ax, and hence Gy = Gx. �

Definition 3.6. A G-action on X is called transitive if there is only one orbit. In this case
X is called a homogeneous G-space.

Example 3.7. 1. The sphere is a homogeneous space for the group SO(3) of rotations of
the 3-space.

2. The sets of vertices, edges, faces of a Platonic solid are homogeneous spaces for the
group of its rotations.

Definition 3.8. The isotropy group, or stabilizer Gx of a point x ∈ X is the subgroup
of all g ∈ G such that gx = x. The action is free if Gx is the trivial group for all x.

It is easy to see that if x, y belong to the same orbit, then the stabilizers Gx, Gy are
conjugate (in particular, isomorphic); namely, if gx = y then gGxg

−1 = Gy.

Example 3.9. Any group G acts on itself by conjugation: (g, x) 7→ gxg−1. Orbits of this
action are called conjugacy classes, and the stabilizer Gx is called the centralizer of x;
it is the set of g ∈ G which commute with x, i.e. gx = xg. The center Z(G) of G consists
of x ∈ G which form a 1-element conjugacy class, i.e. Gx = G. Clearly, Z(G) is a subgroup
of G.

Remark 3.10. G is abelian if and only if Z(G) = G.
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Exercise 3.11. (i) Show that s, t ∈ Sn belong to the same conjugacy class if and only if
they have the same number of cycles of each length. Thus, the number of conjugacy classes
in Sn is the number of partitions of n.

(ii) Find conjugacy classes in S3 and S4.

Exercise 3.12. Find conjugacy classes in the group A5 of rotations of the icosahedron,
and interpret them in terms of the cycle decompositions in S5. Are (12345) and (12354)
conjugate in A5?

Exercise 3.13. Find conjugacy classes in SO(3).

3.3. Cosets and Lagrange’s theorem. Let G be a group, and H be a subgroup of G.

Definition 3.14. A left coset of H in G is a set of the form gH, where g ∈ G. Similarly,
a right coset of H in G is the set of the form Hg, where g ∈ G.

Thus, right cosets are orbits of the action of H on G via (h, g) 7→ hg, and left cosets are
orbits of the action of H on G via (h, g) 7→ gh−1. Note that these actions are free, i.e., the
map H → gH given by h 7→ gh and the map H → Hg given by h → hg are bijections (by
the cancelation property). Also, hH = Hh = H for all h ∈ H.

Example 3.15. 1. Let G = R2 and H = R be the horizontal axis. Then left and right
cosets of H in G are the horizontal lines.

2. Let G = S3 and H = {Id, (12)}. Then the left cosets of G in H are H, {(13), (123)},
{(23), (132)}, while the right cosets are H, {(13), (132)}, {(23), (123)}.
Proposition 3.16. If two left cosets of H in G intersect, then they coincide, and similarly
for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of
right cosets of H.

Proof. This is a special case of Proposition 3.5. �

Corollary 3.17. (Lagrange’s theorem) If G is a finite group and H is a subgroup of G, then
the order of H divides the order of G. In particular, the order of every element of G divides
the order of G.

Proof. The ratio |G|/|H| is the number of left (or right) cosets of H in G, so it is an
integer. �

Definition 3.18. The number of left (or right) cosets of H in G is called the index of H
in G.

Note that this definition makes sense even when H is infinite. E.g. even numbers form a
subgroup 2Z of index 2 in Z.

Corollary 3.19. Any group G of prime order p is isomorphic to the cyclic group Zp.

Proof. Let a ∈ G, a 6= e. Then the order of a is > 1 and must divide p, so it is p. Thus, G
contains Zp, hence G ∼= Zp. �

The set of all left cosets of H in G is denoted by G/H. This set has a natural action of G
via (a, gH) → agH (check that this is well defined!). Moreover, it is easy to see that there
is only one orbit, so G/H is a homogeneous G-space. Finally, the stabilizer Gx of the point
x = H is nothing but the group H itself.
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In fact, any homogeneous G-space X can be identified with G/H, where H = Gx for some
x ∈ X. Namely, the bijective map G/H → X is given by the formula gH 7→ gx (check that
this is well defined!).

Example 3.20. 1. R/Z is a circle, R2/Z2 is a torus.
2. The sphere in 3-space is SO(3)/SO(2).
3. The real projective plane (the set of lines through the origin in R3) is SO(3)/O(2).

Example 3.21. Consider the action of the group G of rotations of an icosahedron on its
vertices, faces, and edges. Then the stabilizer of a vertex is Z5, the stabilizer of an edge is
Z2, and the stabilizer of a face is Z3. So we have three ways of computing the order of this
group: 12× 5 = 30× 2 = 20× 3 = 60.

Example 3.22. 1. The group Sn acts transitively on the set Pm,n of placements of m
people into n ≥ m seats. The stabilizer of a placement is Sn−m. Thus, Pm,n = Sn/Sn−m, so
|Pm,n| = n!

(n−m)!
.

2. The group Sn acts transitively on the set Cm,n of subsets (combinations) of m elements
among 1, ..., n. The stabilizer of a subset is Sm × Sn−m. Thus, Cm,n = Sn/(Sm × Sn−m), so
|Cm,n| = n!

m!(n−m)!
=
(
n
m

)
.

Exercise 3.23. Show that if a group G has a prime power order pn > 1 then the center
Z(G) is nontrivial.

Solution: By Lagrange’s theorem, the order of every conjugacy class of G is a power of
p. Also, the sum of these orders is pn. Since one of these orders equals 1 (for the identity
element), at least p of these orders must be equal to 1.

3.4. Counting colorings. How many distinct ways are there to color the faces of a regular
dodecahedron in red and blue? (We call two colorings distinct if they cannot be trans-
formed into each other by a rotation). It turns out that this question can be solved using
group theory. Namely, one can use the following theorem, called the Polya enumeration
theorem.

Theorem 3.24. Suppose that a finite group G acts on a finite set X. Then number of
colorings of X in n colors inequivalent under the action of G is

N(n) =
1

|G|
∑
g∈G

nc(g),

where c(g) is the number of cycles of g as a permutation of X.

Proof. Let Xn be the set of colorings of X in n colors. Our job is to compute the number
of G-orbits on Xn. Instead of counting G-orbits, let us count pairs (g, C), where C ∈ Xn

is a coloring, and g ∈ GC is an element of G preserving C. The orbit of C has |G|/|GC |
elements, and each element in this orbit will appear |GC | times in our counting, so each orbit
will appear |G| times. Hence, we will get the correct answer N(n) if we divide the final count
by |G|.

Now, to count pairs (g, C), let’s count for every g ∈ G all the colorings C with which
it can appear. These C are just colorings invariant under g. Decomposing X into orbits
(=cycles) of g, we see that the color along the cycle has to be constant, and this is the only
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restriction. Thus, the number of possible C is just nc(g). Summing over all g ∈ G, we get
the theorem. �

Example 3.25. We can now find the number of colorings of the faces of a dodecahedron
in n colors. Recall that its group of rotations is G = A5 of order 60. The element 1 has 12
cycles, so it contributes n12. An element of order 2 is a rotation around the line connecting
midpoints of two opposite edges, so it has 6 cycles of length 2, and contributes n6. There
are 15 such elements, so we get 15n6. An element of order 3 is a rotation around the axis
passing through two opposite vertices. It has 4 cycles of length 3, so we get n4. There are 20
such elements, so we get 20n4. Finally, an element of order 5 has 4 cycles of length 1, 1, 5, 5
(so n4), and there are 24 such elements, so we get 24n4. Overall,

N(n) =
n12 + 15n6 + 44n4

60
.

Note that this is always an integer, even if it’s not clear from the formula. For example, for
two colors, we get N(2) = 96. For three colors, we have N(3) = 9099.

Exercise 3.26. Compute the number of colorings of other regular polytopes in n colors.
Specialize to n = 2.

Example 3.27. How many distinct necklaces can one make out of m triangular beads of a
colors? (The beads have to point in the same direction along the necklace). The group of
symmetries is G = Zm. An element k ∈ G has order m/GCD(k,m), and has GCD(k,m)
cycles of length m/GCD(k,m). So we get that the number of necklaces is

N =
1

m

m−1∑
k=0

aGCD(k,m).

For example, if m = p is a prime, then we get

N = a+
ap − a
p

.

Note that the fact that this is an integer is Fermat’s Little Theorem (for prime powers):
ap−a is divisible by p if p is a prime. So, as a by-product, we obtain a proof of this theorem.

For instance, if a = 2, then there are 8 distinct necklaces on 5 beads, and 20 on 7 beads.

The Polya enumeration theorem has a weighted generalization, which allows one to count
colorings with a prescribed number of colors of each type. To do so, let us introduce a
counting variable ti for the i-th color. We want to get a generating function (polynomial)
P (t1, ..., tn) such that the number of colorings with ri occurrences of the i-th color will be
the coefficient of tr11 ...t

rn
n in this polynomial.

To compute P , consider an element g ∈ G, and let’s compute the contribution of colorings
fixed by g. Let cm = cm(g) be the number of cycles of length m in g; so

∑
m cm = c(g). It is

clear that the polynomial counting colorings just of cycles of length m is (tm1 + ... + tmn )cm .
Thus, we get the following general version of the Polya enumeration:

Theorem 3.28. We have

P (t1, ..., tn) =
1

|G|
∑
g∈G

∏
m≥1

(tm1 + ...+ tmn )cm(g).
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The previous version is obtained just by setting ti = 1 for all i.

Example 3.29. Let us compute the polynomial P (t1, t2) for colorings of a dodecahedron in
2 colors. In fact, since it is homogeneous, it’s enough to compute P (t, 1). We have

P (t, 1) =
1

60
((t+ 1)12 + 15(t2 + 1)6 + 20(t3 + 1)4 + 24(t+ 1)2(t5 + 1)2) =

t12 + t11 + 3t10 + 5t9 + 12t8 + 14t7 + 24t6 + 14t5 + 12t4 + 5t3 + 3t2 + t+ 1.

In particular, this means that the number of colorings with 6 red and 6 blue faces is 24.

11



Lecture 3

4. Rings, fields and vector spaces

4.1. Rings and fields.

Definition 4.1. A ring is an abelian group R with a multiplication operation R×R→ R,
(a, b) 7→ ab, such that

1) (ab)c = a(bc) (associativity of multiplication);
2) there is an element 1 such that 1 · a = a · 1 = a for all a; and
3) a(b+ c) = ab+ ac, (b+ c)a = ba+ ca, a, b, c ∈ R (the distributive law).
A ring R is commutative if ab = ba for all a, b ∈ R.
A field is a commutative ring R in which every nonzero element a has an inverse a−1 such

that aa−1 = 1.

Thus, the set of invertible elements of a ring R is a group, called the multiplicative
group of R and denoted by R×.

Example 4.2. Z is a commutative ring, while Q, R, C are fields. Also, Zn is a commutative
ring, which is a field if n = p is a prime. In this case it is often denoted by Fp (to remember
that it is a field). An example of a not necessarily commutative ring is the ring of matrices
of size n over any ring R, Mat(n,R) (with usual matrix multiplication).

4.2. Vector spaces. Let F be a field, and consider the n-dimensional vector space F n over
F . Let e1, ..., en be the standard basis of F n, i.e., ei = (0, ..., 1, ..., 0), where 1 stands on the
i-th place. Any vector (x1, ..., xn) can be written as x1e1 + ...+ xnen.

A (linear) subspace of F n is a subset V that is closed under addition and multiplication
by elements of F .

If V 6= F n, then we may identify V (preserving addition and multiplication by elements
of F ) with a subspace of F n−1. Indeed, let i be such that the vector ei does not belong to V
(it must exist since V 6= F n). Let V ′ ⊂ F n−1 be the subset of vectors obtained by deleting
the i-th coordinate from vectors of V . Then the natural map V → V ′ is an isomorphism
(check it!).

By iterating this process, we can identify any subspace V of F n with Fm for some m ≤ n.
In fact, the number m has an intrinsic meaning. Namely, let us say that v1, ..., vr ∈ V are

linearly independent if the relation a1v1 + ...+ arvr = 0, ai ∈ F , implies that all ai = 0.

Proposition 4.3. m is the maximal number of linearly independent vectors in V .

Proof. Since V ∼= Fm, it admits m linearly independent vectors, so we need to show that Fm

does not admitm+1 of them. This is shown by induction inm. Namely, let v1, ..., vm+1 ∈ Fm.
If the last coordinate of all of them is zero, then they are in Fm−1 and we can use the induction
assumption. Otherwise, at least one of them (say, vm+1) has a nonzero last coordinate. Then
there are numbers b1, ..., bm ∈ F such that the last coordinates of the vectors vi − bivm+1

vanish for i = 1, ...,m. So these vectors are in Fm−1, and again we are done by the induction
assumption. �

Definition 4.4. The number m is called the dimension of V , and denoted by dimV . A
basis of V is any collection of m linearly independent vectors in V .
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It follows from the above that if v1, ..., vm is a basis of V , then any vector in V can be
uniquely written as a1v1 + ...+ amvm, ai ∈ F .

An affine subspace U of F n is a coset (i.e., shift) of a linear subspace U0; namely,
U = v + U0 for some v ∈ V . If dimU0 = 1, we say that U is a line; if dimU0 = 2, we say
that U is a plane.

4.3. Linear transformations and matrices. Let R be a commutative ring. A linear
transformation of Rn is a transformation that preserves addition of vectors and multipli-
cation of vectors by scalars. Thus, any linear transformation g is determined by ge1, ..., gen,
which can be arbitrary vectors.

Let us write gej as
∑n

j=1 gijei, where gij ∈ R. In this way, we attach to each linear

transformation g a square matrix (=table) [g] = (gij), and vice versa. Then the composition
of linear transformations becomes the standard multiplication law for matrices.

Thus the group GL(n,R) of invertible linear transformations of Rn can also be defined as
the group of invertible n by n matrices g = (gij). The invertibility condition is equivalent
to the condition that the determinant of g is in R× (i.e., nonzero if R = F is a field). For
instance, for n = 2, the determinant is g11g22 − g12g21, so GL(2, R) is the group of 2 by 2
matrices with entries in R such that g11g22 − g12g21 ∈ R×.

Note that if R = F is a field, then g is invertible if and only if ge1, ..., gen is a basis of F n;
so bases of F n are in bijective correspondence with elements g ∈ GL(n, F ).

Thus, we can define groups GL(n,Z), GL(n,Q), GL(n,R), GL(n,C), GL(n,Fp) (the latter
group is finite).

Exercise 4.5. Find the order of GL(n,Fp), where p is a prime.

Solution. For any field F , GL(n, F ) acts transitively on the set of nonzero vectors in F n.
For F = Fp, there are pn − 1 such vectors. The stabilizer H of en is the set of matrices g
with last column (0, 0, ..., 1) and the diagonal block (gij), 1 ≤ i, j ≤ n − 1 being invertible.
So if Nn = |GL(n,Fp)| then

Nn = Nn−1p
n−1(pn − 1).

Hence, by induction,
Nn = pn(n−1)/2(p− 1)...(pn − 1).

Exercise 4.6. Show that GL2(F2) = S3.

4.4. The game of SET. The game of SET has an intrinsic connection to group theory
since a SET is just a line in the 4-dimensional space F4

3 over F3.
Namely, recall that SET has 81 = 34 cards which represent all 34 possible combinations

of four features: number of symbols (1,2,3), type of symbol (oval, diamond, squiggle), color
(red, green, purple) and shading (solid, striped, open), and a set is a collection of 3 cards
where each feature is either the same on all three cards or different in all three cards.

Let us assign 0, 1, 2 to each feature in an arbitrary way (e.g., 3=0, 1=1, 2=2; oval=0,
squiggle=1, diamond=2; red=0, green=1, purple=2; solid=0, striped=1, open=2). Then
each SET card is represented by a vector in F4

3, and each vector corresponds to a unique card.
For example, the card with two green solid squiggles corresponds to the vector (2, 1, 1, 0).

Now note that for x, y, z ∈ F3, we have x+y+z = 0 if and only if x, y, z are all the same or
all different. This means that a SET corresponds to a triple of vectors S = {v1,v2,v3} ⊂ F4

3

such that v1 + v2 + v3 = 0.
13



Let a = v1 − v3. Then the equation v1 + v2 + v3 = 0 implies that v2 − v3 = 2a. Hence,
S is the set of vectors v3 + ta, t ∈ F3, which is an (affine) line. Conversely, any affine line S
consists of vectors v1 = v3 + a,v2 = v3 + 2a, v3 for some v3, a ∈ F4

3, so v1 + v2 + v3 = 0,
i.e. it is a SET.

Exercise 4.7. How many SETs are there?

Solution: The number of lines through the origin is 34−1
3−1 = 40. Such a line may be shifted

to make an arbitrary line. There are 34 ways to do so for each line, but then we get each
line 3 times. So altogether we have 33 = 27 distinct ways of shifting, and thus 27 · 40 = 1080
distinct SETs.

Exercise 4.8. What is the chance that when you deal 12 SET cards, there will be no SET
containing the first card?

Solution: 78×76×...×60
79×...×70 = 0.46....

Exercise 4.9. You deal 12 SET cards. What is the average number of SETs you can find?

Solution: The number of 12-tuples of cards is
(
81
12

)
. Then number of those of them that

contain a given SET is
(
78
9

)
. The total number of SETs is 1080. So the average number of

SETs per deal is

1080×
(

78

9

)
/

(
81

12

)
=

220

79
,

aproximately 2.78.

Exercise 4.10. Show that if you remove 26 SETs from the complete collection of SET cards,
then the remaining triple is a SET.

Solution: A set defines a triple of distinct vectors whose sum is zero. Since the sum of
all vectors in F4

3 is zero, we get the result.

Exercise 4.11. What is the probability that a given collection of 3,4,5 SET cards does not
contain a SET?

Solution: For 3 cards, it’s 78/79, approximately 0.987 (two cards are chosen arbitrarily,
for the third one there is one forbidden case out of 79). For 4 cards: there is a 78/79 chance
to pick the first three so they are not a SET. Now for the 4th card there are 3 forbidden
possibilities. So the chance is 78

79
· 75
78

= 75
79

, approximately 0.95. The case of 5 cards is a
bit more complicated. Let the first 4 cards correspond to vectors x, y, z, t (no two of them
lie on the same line). There are two possibilities. The first possibility is that these vectors
are not in the same plane. In this case, we may assume that they are 0,−e1,−e2,−e3,
and the forbidden vectors for the 5th card are e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, all distinct.
The chance of x, y, z, t not being in the same plane is (78/79) · (72/78) = 72/79, so we get
(72/79) · (71/77). Now, the chance that x, y, z, t are in the same plane is 3/79; given this, we
can assume (up to permutation) that these vectors are 0,−e1,−e2,−e1−e2, so the forbidden
vectors are all the other vectors of the plane spanned by e1, e2, and there are 5 of them, so
we get a chance of 72/77. So altogether we get 72·74

79·77 , which is approximately 0.875.

Exercise 4.12. A superSET is a collection of at least two SET cards such that any two of
them are contained in a SET (made out of the cards of this superSET).
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(i) How many cards can there be in a superSET?
(ii) Find the number of superSETs of each size.
(iii) How many SETS are contained in a superSET of each size?

Solution: (i) The number of cards in a superSET is 3,9,27, or 81, since it is an affine
subspace of F4

3, hence can be identified with Fm
3 , 1 ≤ m ≤ 4.

(ii) For size 9, we have to count 2-planes in the 4-space over F3. First count the 2-planes
through the origin. For the first basis vector we have 34−1 = 80 possibilities, for the second
one 34− 3 = 78, but this is all modulo GL(2,F3), which has order 48. So altogether we have
80 · 78/48 = 130 such planes. Thus, the total number of planes is 9 · 130 = 1170.

For size 27, we have to count 3-hyperplanes in the 4-space. Those that pass through the
origin correspond to linear equations a1x1 + ...+ a4x4 = 0, where not all ai are zero, and ai
can be scaled simultaneously. There are (34 − 1)/2 = 40 such equations (up to scaling). So
altogether we have 3 · 40 = 120 such hyperplanes.

(iii) For size 9, 3 · 4 = 12 SETs; for size 27, 9 · 13 = 117 SETs.

4.5. The projective SET. The projective SET is a game of 31 cards, on which there
are red, green, blue, brown, and black triangles. Each triangle may be present only once
or not at all, and all combinations occur exactly once, except the empty card. A SET is a
collection of 3 cards on which a triangle of each color either does not occur at all or occurs
twice (i.e., on two different cards). The game is played as the usual SET, starting with 8
cards.

Like the usual SET, projective SET can be interpreted in terms of group theory. Namely,
the cards can now be viewed as nonzero vectors in F5

2. Specifically, to every card we attach a
vector whose first coordinate (0 or 1) indicates the absence or presence of a red triangle, the
second - green triangle, the third - blue triangle, the forth - brown triangle, and the fifth -
black triangle. Then it is easy to see that a SET is nothing but a collection of vectors a, b, c
such that a+ b+ c = 0, i.e. a 2-plane in F5

2 through the origin with the origin deleted.
One can also consider the deck of cards as the collection of lines through the origin, called

the 4-dimensional projective space, F2P4. Then SETs are projective lines in this space, hence
the name “projective SET”.

Exercise 4.13. (i) How many projective SETs are there?
Answer: 155.
(ii) How many projective SETs are, on average, in a deal of 8 cards?
Answer: 56/29.
(iii) A projective superSET is a collection S of cards such that any two cards are contained

in a set inside S. What are the possible values of |S|?
Answer: 3, 7, 15, 31.
(iv) How many superSETs are there for each size?
Answer: 155, 155, 31, 1.
Note that the first two numbers coincide. Can you explain why?

5. Normal subgroups

If G is a group and H is a subgroup of G, then G/H is a homogeneous G-space, but in
general not a group. The naive definition aH · bH = abH does not really work, since we
can have a1H = a2H, but a1bH 6= a2bH. The simplest example is G = S3, H = {1, (12)},
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a1 = (13), a2 = (123), b = (13) (we have a1b = Id, a2b = (23)). However, this definition
works in the special situation when H is a normal subgroup.

Definition 5.1. H is a normal subgroup of G if its left and right cosets coincide.

Equivalently, H is normal if it is preserved by conjugations by g ∈ G. If H is normal, then
aHbH = abH, so the above definition works, and G/H is naturally a group. This group is
called the quotient group of G by H.

Example 5.2. 1. Any subgroup of an abelian group is normal. We have Zn = Z/nZ, where
nZ is the group of integers divisible by n.

2. G is a normal subgroup in G×K, and (G×K)/G = K.
3. Any subgroup of index 2 is normal (since there are only two right (left) cosets of H in

G, and the nontrivial one must be the complement of H in G, whether it is a right or a left
coset). The quotient is Z2.

4. The center Z(G) is normal in G.
5. The group of translations of the Euclidean space is normal in the group of motions (the

quotient being the group of rotations), but the group of rotations is not.
6. The group of elements of S4 which have two cycles of length 2 or are trivial is isomorphic

to Z2 × Z2 and normal.

Definition 5.3. The kernel Kerφ of a group homomorphism φ : G→ K is the set of g ∈ G
such that φ(g) = e. The image Imφ of φ is the set of elements of the form φ(g) ∈ K, where
g ∈ G.

Proposition 5.4. (i) The image of φ is a subgroup of K.
(ii) The kernel of φ is a normal subgroup of G.
(iii) the quotient group G/Kerφ is naturally isomorphic to Imφ.

Exercise 5.5. Prove this proposition.

Example 5.6. S4/(Z2 × Z2) = S3. Indeed, we have a surjective homomorphism S4 → S3

obtained by the action of the group of rotations of the cube on the coordinate axes, or by
action of S4 on the splittings of 1, 2, 3, 4 into two pairs. The kernel is easily seen to be
Z2 × Z2.

Exercise 5.7. Show that any group of order p2, where p is a prime, is isomorphic to Zp2 or
to Zp × Zp.

Exercise 5.8. Show that if G is a group of order pn, where p is a prime, then G admits a
surjective homomorphism φ : G→ Zp.

Solution: The proof is by induction in n. The base is clear. Let us prove the induction
step. As shown above, Z(G) is nontrivial, so has an element z of order p. If G = (z),
there is nothing to prove. Otherwise, by the induction assumption, G/(z) has a surjective
homomorphism into Zp, hence so does G.

Exercise 5.9. Show that any group G of order 2p, where p is an odd prime, is either Z2p or
D2p. In particular, every group of order 6 is either Z6 or S3.

Solution: If there is an element of order 2p, then the group is Z2p. Otherwise, we claim
there is always an element of order p. Indeed, otherwise, since orders of elements can only be
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1, 2, p, we have elements a 6= b such that a, b, ab have order 2. Then these elements generate
a Z2 × Z2, which is impossible by Lagrange’s theorem. Thus, there is a subgroup Zp ⊂ G,
which is normal, since it is of index 2. Let g ∈ G be an element outside this subgroup.
Then g2 = 1 (otherwise there is an element of order 2p). Also, if a is the generator of Zp,
(ga)2 = 1, so ga = a−1g, and we get D2p.

17



Lecture 4

6. Classification of finitely generated abelian groups

Let G be a group, and S be a subset in G. We say that G is generated by S if any
element of G is a product of elements of S and their inverses. A group is finitely generated
if it can be generated by a finite set.

Example 6.1. The symmetric group Sn is generated by the transpositions of neighbors
(i, i+ 1).

Exercise 6.2. Let a, b, c be elements of the group of rotations of the icosahedron which
preserve a face, its edge, and an endpoint of this edge, respectively. Then G is generated by
any two of these three elements.

The following important theorem (whose proof is beyond the scope of these notes) classifies
finitely generated abelian groups.

Theorem 6.3. Any finitely generated abelian group is uniquely representable as a direct
product of (finitely many) cyclic groups of infinite or prime power orders.

Exercise 6.4. Show explicitly why Z2 × Z2 is not isomorphic to Z4.

Note that it follows from this theorem that if n = pm1
1 ...pmk

k is a prime factorization, then
Zn is isomorphic to Zp

m1
1
× ... × Zp

mk
k

. An attentive reader will notice that this is nothing

but the celebrated Chinese Remainder Theorem in elementary number theory.

Exercise 6.5. Show that the group Q of rational numbers (which is infinitely generated) is
not a a direct product of cyclic groups.

Solution: Q has no nontrivial homomorphisms to cyclic groups.

7. Groups of order 8

According to the previous subsection, there are three abelian groups of order 8 - Z8, Z2×Z4,
and Z2 × Z2 × Z2. This is also easy to show directly. Let us now consider the nonabelian
groups of order 8. We have seen that such a group must have a nontrivial center Z(G), and
G/Z(G) cannot be cyclic. So |Z(G)| = 2 (i.e. Z(G) = Z2), and G/Z(G) = Z2 × Z2. Let
i, j be two elements of G that project to generators of G/Z(G), and let z be the generator
of Z(G). Then we must have ij = zji, and we can have i2 = e, j2 = e, or i2 = z, j2 = e, or
i2 = z, j2 = z, up to swapping i, j. The first two cases are in fact equivalent, by replacing i
with ij, and is nothing but the group of symmetries of the square, D8. The last case gives
the quaternnion group Q8.

Exercise 7.1. Show that D8 is not isomorphic to Q8.

Hint. Count elements of order 2.
Thus, we have classified all the groups of order < 12.
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8. Semidirect products

Let G be a group, K another group, and suppose that G acts on K by group automor-
phisms (i.e., isomorphisms onto itself). We will write gk as gk. Then one can define the
semidirect product G n K, which is the usual product of sets K × G with the operation
(k1, g1)(k2, g2) = (k1

g1k2, g1g2). For example, if the action of G on K is trivial, this is the
usual direct product. Note also that K is a normal subgroup in GnK, and (GnK)/K = G.

The following series of examples shows that semidirect products are ubiquitous.

Example 8.1. 1. The group D2n of symmetries of the n-gon is Z2 n Zn, where the action
of Z2 on Zn is by a→ −a.

2. The group Sn is Z2 nAn, where the action is by conjugation by any odd permutation.
3. S4 = S3 n (Z2 × Z2).
4. The group of symmetries of the n-dimensional cube is Sn n Zn

2 .
5. The groups of motions of the plane and 3-space are SO(2) nR2 and SO(3) nR3.
6. The group of symmetries of the SET game (I.e., permutations of cards that map SETs

to SETs)is GL(4,F3) n F4
3.

Example 8.2. The Sudoku group (i.e. the group of symmetries of the Sudoku game) is

G = (D8 n (S3 n S3
3)2)× S9.

(permutations of rows and columns inside triples, permutation of triples of rows and columns,
symmetries of the square, permuting digits). The order of this group is 8 · 38 · 9!, which is
approximately 5 trillions. If you apply an element of this group to a Sudoku problem, you get
a formally equivalent problem, which most likely looks totally different. This allows one to
indefinitely make a living selling collections of Sudoku problems if one has only one Sudoku
problem to start with. Namely, you can make about 700 Sudoku problems for each human
on earth!

9. Simple groups

Definition 9.1. A group G is called simple if it is not trivial, and does not contain any
nontrivial normal subgroups, i.e. normal subgroups other than G itself and the trivial group.

Example 9.2. 1. The group Zp is simple for prime p.
2. SO(2) is not simple, but SO(3) is simple.

Exercise 9.3. Show that A5 is a simple group, but A4 is not.

Solution: As we saw, conjugacy classes in A5 have sizes 1, 15, 20, 12, 12. No subset of
these numbers containing 1 adds up to a divisor of 60 different from 1 and 60. This implies
the statement, since a normal subgroup of a group G is a union of (some) conjugacy classes
of G. A4 is not simple since it contains a normal subgroup Z2 × Z2.

Proposition 9.4. The alternating group An for n ≥ 5 is simple.

Proof. Suppose H 6= {e} is a normal subgroup of An. Then H contains a nontrivial conjugacy
class C of An.

Let us show that this conjugacy class has ≥ n elements. Indeed, assume that the cycle
decomposition of an element of C involves a cycle of length ≥ 3. Then C contains a per-
mutation in which 1 is contained in such a cycle. If the cycle has length p + 1, then there
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are at least (n − 1)...(n − p) ways to fill the remaining positions of the cycle, so the size of
conjugacy class is at least (n−1)(n−2)...(n−p)/2 ≥ (n−1)(n−2)/2 ≥ n. Thus, it remains
to consider the case where the only cycles are of length 1 and 2. In this case, we have a
permutation where 1 is in a cycle of length 2. There are n− 1 ways to fill this cycle, and for
each such way, there are more than one way to fill the rest, unless this is just a transposition
(here we use that n ≥ 5). Finally, the conjugacy class of transpositions has n(n− 1)/2 ≥ n
elements.

Thus, |H| > n.
Now we can proceed by induction. We have proved the base of induction, n = 5. Now

assume that An−1 is simple. Let H be normal in An. If H ∩ An−1 is nontrivial, then H
contains An−1, so H contains (123), and hence (ijk) for any i, j, k. But (ijk) generate An,
so H = An.

It remains to consider the case H ∩ An−1 being trivial. In this case, An−1 embeds into
An/H, so |H| ≤ n. Thus, H is the trivial group. �

Simple groups are important because any finite group can be decomposed into simple ones
in a unique way, similarly to how a molecule can be decomposed into atoms. More precisely,
we have the following theorem, called the Jordan-Hölder theorem.

Theorem 9.5. Let G be a finite group. Then there exists a sequence of subgroups G =
G0 ⊃ G1 ⊃ ... ⊃ Gn = {e} such that Gi+1 is normal in Gi, and the groups Hi := Gi−1/Gi

are simple. Moreover, the sequence of groups H1, ..., Hn, up to permutation, depends only
on G and not on Gi.

Definition 9.6. The sequence H1, ..., Hn is called the composition series of G.

This theorem implies that if we understand finite simple groups, then to some extent
we will understand all the finite groups. (With the understanding that this is not the full
picture, since there are many complicated ways in which simple groups Hi can be “glued
together” into G. This is similar to the distinction in chemistry between ordinary chemical
formula and structural formula of a substance).

Proof. To prove the existence of Gi, we can choose Gi to be a maximal normal subgroup
in Gi−1 (not equal Gi−1 itself). Now we prove uniqueness of the composition series by
induction in |G|. Assume that there are two collections of subgroups, Gi and G′i. If G1 = G′1,
the statement follows from the induction assumption. Otherwise, we have homomorphisms
f : G→ H1, f

′ : G→ H ′1, which combine into a surjective homomorphism f ′′ : G→ H1×H ′1.
Let K be the kernel of this homomorphism. Let L1, ..., Lr be the composition series of K
(well defined by the induction assumption). Then G1 has composition series

(H2, ..., Hn) = (H ′1, K1, ..., Kr),

and G′1 has composition series

(H ′2, ..., H
′
m) = (H1, K1, ..., Kr).

Thus, adding H1 to the first series and H ′1 to the second one, we get

(H1, H2, ..., Hn) = (H ′1, H
′
2, ..., H

′
m),

as desired. �
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Exercise 9.7. (i) Show that if H is a normal subgroup in G then the composition series of
G is obtained by combining the composition series of H and G/H.

(ii) Show that if G is a group of order pn, where p is a prime, then its composition series
consists of n copies of Zp.

Exercise 9.8. Find the composition series of Sn.

Solution: For n = 3, Z2,Z3. For n = 4, three copies of Z2 and Z3. For n ≥ 5, Z2 and An.

Definition 9.9. A finite group G is solvable if all its composition factors are cyclic.

A theorem of Burnside (whose proof is beyond the scope of these notes) states that any
group whose order has only two prime divisors (i.e. of order paqb, where p, q are primes) is
solvable. Also, the fact that the groups Sn are solvable for n ≤ 4 but not solvable for n ≥ 5
is the reason why equations of order < 5 can be solved in radicals, and equations of order 5
and higher cannot, in general.

Since any finite group can be decomposed into simple groups, it is important to classify
finite simple groups. This is an extremely difficult problem - one of the most difficult problems
in all mathematics. At the moment, it is believed that this problem is solved, but the solution
(completed around 1980) takes many thousands of pages and is written by many people, and
some people believe that there is no complete certainty that it does not contain mistakes.

The answer is that there are the following kinds of finite simple groups:
1) cyclic groups of prime order;
2) alternating groups An for n ≥ 5;
3) simple groups of Lie type (basically, consisting of matrices over finite fields satisfying

some special algebraic equations). E.g., SL2(Fp)/{±1} is simple for p ≥ 5 (where SL2 stands
for matrices with determinant 1), although for p = 5 it coincides with A5.

4) 26 sporadic groups. The smallest of them has order 7920, the largest one (the Monster)
about 1053.
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Lecture 5

10. Finite subgroups of SO(2) and SO(3)

Exercise 10.1. Show that any finite subgroup of SO(2) is a cyclic group Zn.

Theorem 10.2. The finite subgroups of SO(3) are Zn, D2n, the tetrahedral group A4, the
cube group S4, and the icosahedral group A5.

Proof. Let G be a finite subgroup of SO(3). Consider the action of G on the sphere. Any
nontrivial element of G is a rotation around an axis by a nontrivial angle. So the only fixed
points are the intersection points of the axis with the unit sphere, which are two opposite
poles.

If P is a pole then the stabilizer of P is the group GP of g ∈ G which are rotations around
the line connecting P with the center of the sphere. Such group is obviously cyclic, of some
order m. Now let P1, ..., Pk represent orbits of poles and have orders m1, ...,mk. Then their
orbits have orders n/mi. Thus the number of pairs (g, P ) where P is a pole and g a nontrivial
element preserving it is ∑

i

n(mi − 1)

mi

.

On the other hand, this is twice as many as the number of nontrivial elements of G, as any
such element preserves exactly two poles. So we have

2(n− 1) =
∑
i

n(mi − 1)

mi

,

or

2(1− 1

n
) =

k∑
i=1

(1− 1

mi

).

To classify solutions of this equation, assume n > 1 and note that it can be written as

k∑
i=1

1

mi

= k − 2 +
2

n
.

As mi ≥ 2, we have k = 2 or 3. If k = 2 then we get

n

m1

+
n

m2

= 2,

which implies that m1 = m2 = n and we have the cyclic group Zn. If k = 3 then we get

n

m1

+
n

m2

+
n

m3

= n+ 2,

which implies, assuming m1 ≤ m2 ≤ m3, that m1 = 2. If m2 = 2, then m3 = n/2, so
G has a cyclic subgroup of index 2, which is normal, so it must be the dihedral group Dn

(with its usual action on the sphere). Now, if m2 ≥ 3 then there are only three solutions for
mi: (2, 3, 3), (2, 3, 4), (2, 3, 5), giving n = 12, 24, 60. It is easy to check that these situations
correspond to cases of A4, S4, and A5. �
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11. The wallpaper groups

11.1. Classification of wallpaper groups.

Definition 11.1. A wallpaper group is a group G of symmetries of the plane R2 which
contains a lattice L (generated by two linearly independent vectors v, u), which is a subgroup
of finite index in G.

The name of wallpaper groups comes from the fact that they are groups of symmetries of
a wallpaper pattern (periodically repeating in two directions).

Theorem 11.2. There are 17 wallpaper groups, up to an isomorphism.

The rest of the section is dedicated to the (sketch of) proof of this theorem.
First consider orientation preserving wallpaper groups. We will assume that L is the

largest lattice contained in G. Also, let K be the image of G in SO(2). Then K = Zm for
some m, and G = K n L (as G ∩ R2 = L). We claim that m = 1, 2, 3, 4 or 6 (for m = 4
we need the square lattice, and for m = 3 or m = 6 the hexagonal lattice). Indeed, let
v ∈ L be a nonzero vector, and R be the generating rotation of K (by angle α). Then
Rv + R−1v = mv, where m is an integer. But |mv| ≤ 2|v|, so m = 2, 1, 0,−1,−2, which
corresponds to the 5 cases above.

Thus, we have 5 wallpaper groups preserving orientation. One of the common ways to
denote them is called “orbifold notation”, invented by John Conway. This notation has to do
with the orbit space (orbifold) R2/G. It is obtained by folding and gluing the fundamental
domain of G (which is a region containing exactly one representative of each orbit) along
its boundary. It is easy to see that topologically, this gives a torus for m = 1 and a sphere in
all other cases. But if we remember the stabilizers, all these spheres are different. Namely,
for m = 2 there are 4 special points of order 2 (so it is denoted 2222), for m = 3 there are
3 special points of of order 3 (so it is denoted 333), for m = 4 there are 2 special points of
order 4 and one special point of order 2 (so it is denoted by 442), and for m = 6 there are
special points of order 6, 3, 2 (so it is denoted 632). The case of m = 1 is denoted just by
“o” (no special points).

Now consider groups that contain orientation reversing symmetries. Such a group G
contains a group G+ which is of index 2 and orientation preserving (hence one the five
groups above). Suppose first that G contains a reflection. In this case, the classification is
determined by which of the centers of rotational symmetry (i.e., special points) lie on the
reflection line. The reflection is denoted by *, and the centers of rotation symmetry which
are on the reflection line are written after the * (dihedral symmetry), while the centers of
rotational symmetry not on the line are written before the *. We get the following list:
G+=2222: 0, 2, or 4 centers of rotation lie on the reflection line. The first case is denoted

22* (two centers of rotation modulo symmetry, both not on the reflection line), the second
22*2 (three centers, one on the reflection line, two are not), and the third *2222 (four centers
on the reflection line).
G+=333: 1 or 3 centers of rotation lie on the reflection line. The first case is denoted 3*3,

the second *333.
G+=442: 1 or 3 centers of rotation on the reflection line. The first case is denoted by 4*2,

the second by *422.
G+=632: all 3 centers of rotation lie on the reflection line. This case denoted by *632.
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G+ = L (case “o”): in this case we can have (for a rectangular lattice) a reflection in a
vertical line through the origin. This creates two reflections in two parallel lines differing by
a half-period, so this case is denoted by **. Another possibility is a reflection of a rhombic
lattice in the diagonal line (which we take to be vertical). This contains a gliding symmetry
x→ −x, y → y + 1, which is not obtained from rotations and reflections; such a symmetry
is denoted by “x” in Conway notation. This symmetry is preserved by the reflection, so we
put the x after the *, i.e. *x.

This makes 15 cases altogether. Finally, consider the case when there are no reflections,
which gives two remaining possibilities. If there are no reflections, an element of G which is
not in G+ has to be a gliding symmetry. The gliding symmetry has order 2 on the torus,
and has no fixed points. So if there are no rotations, there are no fixed points, and we get
that G acts freely on R2, and R2/G is the Klein bottle. This case is denoted by xx, since
in this case we have two gliding symmetries with lines differing by a half-period. Otherwise,
since the gliding symmetry has no fixed points on R2/G+, there must be an even number of
centers of rotations of each type. This only happens in the case 2222, so we get 22x (two
centers of rotation modulo symmetry, which are not fixed by the symmetry).

11.2. Recognition of planar patterns. Let us now describe how to recognize planar pat-
terns according to the above classification. Let m be the maximal order of rotational sym-
metry of the pattern.

m=1: No reflections, no glides: o. Glides, but no reflections: xx. Reflections, but no
glides: **. Reflections and glides: *x.

m=2: 1) No reflections. No glides: 2222. Glides: 22x.
2) With reflections. 2 centers of rotation modulo symmetry: 22*. 3 centers: 2*22. 4

centers: *2222.
m=3: No reflections: 333. Reflections and 2 centers of symmetry: 3*3. 3 centers: *333.
m=4: No reflections: 442. Reflections and 2 centers of symmetry: 4*2. 3 centers: *442.
m=6: No reflections: 632: Reflections: *632.
Remark. More about recognition of wallpaper patterns can be found at D. Bayer’s

website:
https://www.math.columbia.edu/˜bayer/symmetry/wallpaper/

We recommend the reader to practice with recognition of patterns available at this website.
For this, it is convenient to use the diagram
http://www-math.mit.edu/˜etingof/Patternsdiagram.pdf

12. The group of the Rubik cube

Let G be the group of the Rubik cube, i.e. the group of all the transformations which can
be obtained by alternating the elementary transformations (rotations of faces by 900).

Clearly, any such trasformation g permutes the 12 edge cubies (with a possible flip of each)
and the 8 corner cubies (with a possible 1200 or 2400 rotation of each), and is determined
completely by its action on the edge and corner cubies. Thus, G is a subgroup of S :=
(S12 n Z12

2 )× (S8 n Z8
3).

If any configuration could be transformed into any other by elementary transformations,
then G would coincide with S. However, it turns out that there are three invariants of a
configuration, with values in Z2, Z2, and Z3, respectively, which are the only obstructions
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to identification of two configurations using elementary transformations. For this reason, we
have the following result.

Theorem 12.1. G is a normal subgroup of index 12 in S, which is the kernel of a certain
homomorphism φ = (φ1, φ2, φ3) : S → Z2 × Z2 × Z3.

This means that if we take the Rubik cube apart and randomly put it together, then the
probability that the cube can be solved is 1/12.

Proof. Let g ∈ S, g = (a, x, b, y), a ∈ S12, b ∈ S8, x = (x1, ..., x12) ∈ Z12
2 , y = (y1, ..., y8) ∈ Z8

3.
Then φ1(g) := sign(a)sign(b), φ2(g) :=

∑
xi, φ3(g) :=

∑
yi.

Let us explain why G is contained in Kerφ.
First, G is contained in the kernel of φ1, because for g being an elementary transformation,

both a and b are cycles of length 4, hence both odd. Also, G is contained in the kernel of φ3

because elementary transformations have order 4.
Finally, let us show that G is contained in the kernel of φ2. To do so, let us put zeros and

ones on the edge cubies, so that in the initial position, the horizontal faces have zeros and all
other faces have ones. We’ll say that an edge cubie is positively oriented if 0 is perpendicular
to the x-axis and 1 to the y-axis, or 0 to the y-axis and 1 to the z-axis, or 0 to the z-axis
and 1 to the x-axis; otherwise we say that the edge cubie is negatively oriented. Clearly, a
rotation of a Rubik cube face flips the orientation of all of its four edge cubies, which implies
that the number of positively oriented edge cubies modulo 2 is preserved. This implies that
G is indeed contained in the kernel of φ2.

It remains to see why G equals K = Kerφ. This is nontrivial, but follows from the
algorithm of solving the Rubik’s cube. Namely, it is known that one can

1) flip any two adjacent edge cubies simultaneously (hence any two edge cubies simulta-
neously);

2) turn one corner cubie clockwise 120 degrees and an adjacent one counterclockwise by
120 degrees (hence one can do this with any two corner cubies);

3) cyclically permute three edge cubies;
4) cyclically permute three vertex cubies.
It is easy to see that combining these transformations with face rotations, we can get any

element of K, as desired.
�
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