Problem set 5, due October 19

- (1) In this problem X is a smooth variety over a field k of characteristic zero, sheaves are considered with respect to the Zarisky topology.
 - (a) Let $\omega \in \Omega^1(X)$ be a one form. Show that the map $\mathcal{O} \ni f \mapsto f$, $Vect_X \ni v \mapsto v + \langle \omega, v \rangle$ extends to an automorphism of the sheaf D_X iff ω is closed.
 - (b) Let Ω_{cl}^1 be the sheaf of closed 1-forms. For $h \in H^1(\Omega_{cl}^1)$ define a sheaf of algebras D_h on X, which is locally isomorphic to D(X).
 - (c) Recall that isomorphism classes of line bundles on X are in bijection with cohomology classes $H^1(X, \mathcal{O}^*)$, where \mathcal{O}^* is the sheaf of invertible functions. Consider the morphism of sheaves $\mathcal{O}^* \to \Omega^1_{cl}$, $f \mapsto \frac{df}{f}$. For a line bundle L let $c_1(L) \in H^1(\mathcal{O}^*)$ be the image of the corresponding class in $H^1(X, \mathcal{O}^*)$ under the induced map $H^1(X, \mathcal{O}^*) \to H^1(X, \Omega^1_{cl})$. Identify $D_{c_1(L)}$ with the sheaf of differential operators acting on the sections of L.

We will write D_L instead of $D_{c_1(L)}$.

- (2) For which $i \in \mathbb{Z}$ is \mathbb{P}^n "affine with respect to $D_{\mathcal{O}(i)}$ "? In other words, for which *i* does the functor of global sections provide an equivalence of categories between quasicoherent sheaves of $D_{\mathcal{O}(i)}$ -modules and modules over global sections of $D_{\mathcal{O}(i)}$?
- (3) Assume that X is a D-affine variety, and G is an affine algebraic group acting on X. Let D_X^{glob} be the algebra of global differential operators. Show that the category of G-equivariant D_X -modules is equivalent to the category of D_X^{glob} -modules M endowed with a G-action whose differential coincides with the action of \mathfrak{g} on M coming from the embedding $\mathfrak{g} \to D_X^{glob}$.
- (4) Let $X = \mathbb{P}^1$, G = SL(2). Show that D_X^{glob} is equal to the quotient of $U(\mathfrak{g})$ by the ideal generated by the Casimir element C.
- (5) Let G be an algebraic group, K ⊂ G a subgroup. Recall that a (g, K)-module is a vector space M endowed with an action of g and an algebraic (in particular, locally finite) action of K which are compatible in the obvious sense (i.e. if we let t = Lie(K) then we require that the two t-actions of t coming from g-action and K-action coincide).
- (6) Let G = PGL(2) and let K ⊂ G be the image of the subgroup of diagonal matrices. Use the above results to show that there exist exactly 3 irreducible (g, K)-modules on which C acts by 0.

Write the above (\mathfrak{g}, K) -modules explicitly.