1) In this problem X is a smooth variety over a field k of characteristic zero, sheaves are considered with respect to the Zariski topology.

(a) Let $\omega \in \Omega^1(X)$ be a one form. Show that the map $\mathcal{O} \ni f \mapsto f$, $\text{Vect}_X \ni v \mapsto v + \langle \omega, v \rangle$ extends to an automorphism of the sheaf D_X iff ω is closed.

(b) Let Ω^1_{cl} be the sheaf of closed 1-forms. For $h \in H^1(\Omega^1_{cl})$ define a sheaf of algebras D_h on X, which is locally isomorphic to $D(X)$.

(c) Recall that isomorphism classes of line bundles on X are in bijection with cohomology classes $H^1(X, \mathcal{O}^*)$, where \mathcal{O}^* is the sheaf of invertible functions. Consider the morphism of sheaves $\mathcal{O}^* \to \Omega^1_{cl}$, $f \mapsto df$. For a line bundle L let $c_1(L) \in H^1(\mathcal{O}^*)$ be the image of the corresponding class in $H^1(X, \mathcal{O}^*)$ under the induced map $H^1(X, \mathcal{O}^*) \to H^1(X, \Omega^1_{cl})$.

Identify $D_{c_1(L)}$ with the sheaf of differential operators acting on the sections of L.

We will write D_L instead of $D_{c_1(L)}$.

2) For which $i \in \mathbb{Z}$ is \mathbb{P}^n “affine with respect to $D_{\mathcal{O}(i)}$”? In other words, for which i does the functor of global sections provide an equivalence of categories between quasicoherent sheaves of $D_{\mathcal{O}(i)}$-modules and modules over global sections of $D_{\mathcal{O}(i)}$?

3) Assume that X is a D-affine variety, and G is an affine algebraic group acting on X. Let D^glob_X be the algebra of global differential operators. Show that the category of G-equivariant D_X-modules is equivalent to the category of D^glob_X-modules M endowed with a G-action whose differential coincides with the action of g on M coming from the embedding $g \to D^\text{glob}_X$.

4) Let $X = \mathbb{P}^1$, $G = SL(2)$. Show that D^glob_X is equal to the quotient of $U(\mathfrak{g})$ by the ideal generated by the Casimir element C.

5) Let G be an algebraic group, $K \subset G$ – a subgroup. Recall that a (\mathfrak{g}, K)-module is a vector space M endowed with an action of \mathfrak{g} and an algebraic (in particular, locally finite) action of K which are compatible in the obvious sense (i.e. if we let $\mathfrak{k} = \text{Lie}(K)$ then we require that the two \mathfrak{k}-actions of \mathfrak{k} coming from \mathfrak{g}-action and K-action coincide).

6) Let $G = PGL(2)$ and let $K \subset G$ be the image of the subgroup of diagonal matrices. Use the above results to show that there exist exactly 3 irreducible (\mathfrak{g}, K)-modules on which C acts by 0.

Write the above (\mathfrak{g}, K)-modules explicitly.