(1) In this problem X is a smooth variety over a field k of characteristic zero, sheaves are considered with respect to the Zarisky topology.
(a) Let $\omega \in \Omega^{1}(X)$ be a one form. Show that the map $\mathcal{O} \ni f \mapsto f$, V ect $_{X} \ni v \mapsto v+\langle\omega, v\rangle$ extends to an automorphism of the sheaf D_{X} iff ω is closed.
(b) Let $\Omega_{c l}^{1}$ be the sheaf of closed 1-forms. For $h \in H^{1}\left(\Omega_{c l}^{1}\right)$ define a sheaf of algebras D_{h} on X, which is locally isomorphic to $D(X)$.
(c) Recall that isomorphism classes of line bundles on X are in bijection with cohomology classes $H^{1}\left(X, \mathcal{O}^{*}\right)$, where \mathcal{O}^{*} is the sheaf of invertible functions. Consider the morphism of sheaves $\mathcal{O}^{*} \rightarrow \Omega_{c l}^{1}, f \mapsto \frac{d f}{f}$. For a line bundle L let $c_{1}(L) \in H^{1}\left(\mathcal{O}^{*}\right)$ be the image of the corresponding class in $H^{1}\left(X, \mathcal{O}^{*}\right)$ under the induced map $H^{1}\left(X, \mathcal{O}^{*}\right) \rightarrow H^{1}\left(X, \Omega_{c l}^{1}\right)$. Identify $D_{c_{1}(L)}$ with the sheaf of differential operators acting on the sections of L.
We will write D_{L} instead of $D_{c_{1}(L)}$.
(2) For which $i \in \mathbb{Z}$ is \mathbb{P}^{n} "affine with respect to $D_{\mathcal{O}(i)}$ "? In other words, for which i does the functor of global sections provide an equivalence of categories between quasicoherent sheaves of $D_{\mathcal{O}(i)}$-modules and modules over global sections of $D_{\mathcal{O}(i)}$?
(3) Assume that X is a D-affine variety, and G is an affine algebraic group acting on X. Let $D_{X}^{g l o b}$ be the algebra of global differential operators. Show that the category of G-equivariant D_{X}-modules is equivalent to the category of $D_{X}^{g l o b}$-modules M endowed with a G-action whose differential coincides with the action of \mathfrak{g} on M coming from the embedding $\mathfrak{g} \rightarrow D_{X}^{\text {glob }}$.
(4) Let $X=\mathbb{P}^{1}, G=S L(2)$. Show that $D_{X}^{g l o b}$ is equal to the quotient of $U(\mathfrak{g})$ by the ideal generated by the Casimir element C.
(5) Let G be an algebraic group, $K \subset G$ - a subgroup. Recall that a (\mathfrak{g}, K)module is a vector space M endowed with an action of \mathfrak{g} and an algebraic (in particular, locally finite) action of K which are compatible in the obvious sense (i.e. if we let $\mathfrak{k}=\operatorname{Lie}(K)$ then we require that the two \mathfrak{k}-actions of \mathfrak{k} coming from \mathfrak{g}-action and K-action coincide).
(6) Let $G=P G L(2)$ and let $K \subset G$ be the image of the subgroup of diagonal matrices. Use the above results to show that there exist exactly 3 irreducible (\mathfrak{g}, K)-modules on which C acts by 0 .

Write the above (\mathfrak{g}, K)-modules explicitly.

