1. Compute the length of the $\mathbb{C}[x, y]$-module

$$
M=\mathbb{C}[x, y] /\left(y^{2}-x^{3}, x^{2}-y^{3}\right)
$$

Find the maximal ideals associated to M, and for each of them find the length of $M_{\mathfrak{m}}$.
2. Find the Hilbert-Samuel series of $\mathbb{C}[x, y]$ with respect to the ideal $\left(x^{2}, y^{3}\right)$.
3. Let I be the ideal $\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Describe this ideal as a module over $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by generators and relations.
4. Let I be the ideal in $\mathbb{C}[x, y]$ consisting of polynomials which vanish when $y=0$ and also at the points $(0,1),(0,-1)$. Find a finite set of generators for I.
5. Let $I \subset R$ be a proper ideal, and $G \cdot R$ be the associated graded ring with respect to the I-adic filtration. Suppose $\cap_{n \geq 0} I^{n}=0$. Show that if $G^{\bullet} R=R / I \oplus I / I^{2} \oplus \ldots$ is a domain then R is a domain. Is the converse true?
6. Let I be the intersection of finitely many maximal ideals in $\mathbb{C}[x, y]$. Show that I can be generated by two elements.
7. (a) The group μ_{n} of roots of unity of order $n \geq 2$ acts on $\mathbb{C}[x, y]$ by $a(x, y)=\left(a x, a^{-1} y\right)$. Describe the algebra of invariants $\mathbb{C}[x, y]^{\mu_{n}}$ by generators and relations (you should need three generators).
(b) Let G be the group generated by μ_{n} and the element g sending (x, y) to $(y,-x)$. Describe the algebra of invariants $\mathbb{C}[x, y]^{G}$ by generators and relations (again you should need three generators).
8. Which of the following rings are Noetherian:
(i) $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] /\left(x_{i+1}-i x_{i}, i \geq 1\right)$
(ii) $\mathbb{C}[[x, y]] /\left(x^{2}-y^{3}\right)$
(iii) The ring R_{∞} of holomorphic functions on \mathbb{C}.
(iv) The ring R_{r} of holomorphic functions on the open disk of radius r.
(v) The ring $R_{0}=\cup_{r>0} R_{r}$ of germs of holomorphic functions near 0 (nested union).
9. Let $R \subset \mathbb{C}[x]$ be the ring of polynomials such that $f(j)=f(-j)$ for $j=1, \ldots, m$. Show that R is generated by 2 elements, and find the defining relation between these elements. Is R normal?
10. (a) Let G be a finite subgroup of $G L_{n}(\mathbb{C})$. Show that the algebra $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ is normal.
(b) Show that the algebra $R=\mathbb{C}[x, y, z] /\left(z^{2}-x y\right)$ is normal (you may use problem 7).

