1. Compute the length of the \(\mathbb{C}[x, y] \)-module
 \[M = \mathbb{C}[x, y]/(y^2 - x^3, x^2 - y^3). \]
 Find the maximal ideals associated to \(M \), and for each of them find the length of \(M_m \).

2. Find the Hilbert-Samuel series of \(\mathbb{C}[x, y] \) with respect to the ideal \((x^2, y^3)\).

3. Let \(I \) be the ideal \((x_1, \ldots, x_n) \subset \mathbb{C}[x_1, \ldots, x_n] \). Describe this ideal as a module over \(\mathbb{C}[x_1, \ldots, x_n] \) by generators and relations.

4. Let \(I \) be the ideal in \(\mathbb{C}[x, y] \) consisting of polynomials which vanish when \(y = 0 \) and also at the points \((0, 1), (0, -1)\). Find a finite set of generators for \(I \).

5. Let \(I \subset R \) be a proper ideal, and \(G^*R \) be the associated graded ring with respect to the \(I \)-adic filtration. Suppose \(\cap_{n \geq 0} I^n = 0 \). Show that if \(G^*R = R/I \oplus I/I^2 \oplus \ldots \) is a domain then \(R \) is a domain. Is the converse true?

6. Let \(I \) be the intersection of finitely many maximal ideals in \(\mathbb{C}[x, y] \). Show that \(I \) can be generated by two elements.

7. (a) The group \(\mu_n \) of roots of unity of order \(n \geq 2 \) acts on \(\mathbb{C}[x, y] \) by \(a(x, y) = (ax, a^{-1}y) \). Describe the algebra of invariants \(\mathbb{C}[x, y]^{\mu_n} \) by generators and relations (you should need three generators).
 (b) Let \(G \) be the group generated by \(\mu_n \) and the element \(g \) sending \((x, y)\) to \((y, -x)\). Describe the algebra of invariants \(\mathbb{C}[x, y]^G \) by generators and relations (again you should need three generators).

8. Which of the following rings are Noetherian:
 (i) \(\mathbb{Z}[x_1, x_2, \ldots]/(x_{i+1} - ix_i, i \geq 1) \)
 (ii) \(\mathbb{C}[[x, y]]/(x^2 - y^3) \)
 (iii) The ring \(R_\infty \) of holomorphic functions on \(\mathbb{C} \).
 (iv) The ring \(R_r \) of holomorphic functions on the open disk of radius \(r \).
 (v) The ring \(R_0 = \cup_{r > 0} R_r \) of germs of holomorphic functions near 0 (nested union).

9. Let \(R \subset \mathbb{C}[x] \) be the ring of polynomials such that \(f(j) = f(-j) \) for \(j = 1, \ldots, m \). Show that \(R \) is generated by 2 elements, and find the defining relation between these elements. Is \(R \) normal?

10. (a) Let \(G \) be a finite subgroup of \(GL_n(\mathbb{C}) \). Show that the algebra \(\mathbb{C}[x_1, \ldots, x_n]^G \) is normal.
 (b) Show that the algebra \(R = \mathbb{C}[x, y, z]/(z^2 - xy) \) is normal (you may use problem 7).