1. Let q be a prime, $R=\mathbb{Z}$ and $S=\mathbb{Z}[\sqrt{q}]$. Find the primes in S lying over each prime $p \in \mathbb{Z}$ (use quadratic reciprocity).

Solution. Let \mathfrak{p} be a prime ideal in S lying over (p). This means that \mathfrak{p} contains p, so S / \mathfrak{p} is a quotient of $\mathbb{F}_{p}[z] /\left(z^{2}-q\right)$. If $p=q$ then we must have $S / \mathfrak{p}=\mathbb{F}_{p}$, so $\mathfrak{p}=(\sqrt{p})$. Otherwise, $\mathbb{F}_{p}[z] /\left(z^{2}-q\right)$ is $\mathbb{F}_{p^{2}}$ if q is a nonsquare $\bmod p$, in which case $\mathfrak{p}=(p)$, and $\mathbb{F}_{p}[z] /\left(z^{2}-q\right)=\mathbb{F}_{p} \times \mathbb{F}_{p}$ if q is a square $\bmod p$, in which case we have two choices for \mathfrak{p}. To tell if q is a square, recall quadratic reciprocity. Namely, 2 is a square mod $p>2$ iff p is $\pm 1 \bmod 8$, and $q>2$ is a square $\bmod p$ iff p IS NOT a square $\bmod q$ when p, q are both of the form $4 k+3$, and iff p IS a square $\bmod q$ otherwise.
2. Let $R=\mathbb{C}[x, y, z] /\left(x^{2}+y^{2}-z^{2}+1\right)$. For a nonzero $v \in \mathbb{C}^{3}$, let $E_{v} \subset\left(\mathbb{C}^{3}\right)^{*}$ be the space of linear functions a such $a(v)=0$, and let a_{1}, a_{2} be a basis of E_{v}. Find all v for which R is module finite over $\mathbb{C}\left[a_{1}, a_{2}\right]$ (i.e., we have an instance of Noether normalization).

Solution. Consider the inner product $(x, y, z)^{2}=x^{2}+y^{2}-z^{2}$. If $v^{2} \neq 0$ then after renormalizing v we can find a basis $e_{1}, e_{2}, v=e_{3}$ such that $e_{i} e_{j}=0$ for $i \neq j$ and $e_{1}^{2}=1, e_{2}^{2}=1, e_{3}^{2}=1$. So if x_{1}, x_{2}, x_{3} are the coordinates with respect to this basis, then the ideal is generated by $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1$. So $R=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)$ and this is clearly module finite (free of rank 2) over $\mathbb{C}\left[x_{1}, x_{2}\right]$.

However, suppose that $v^{2}=0$. In this case we can find a basis e_{1}, $e_{2}, v=e_{3}$ such that $e_{1}^{2}=1, e_{2} e_{3}=e_{3} e_{2}=1$, and other inner products are zero. So if x_{1}, x_{2}, x_{3} are the coordinates with respect to this basis, then the ideal is generated by $x_{1}^{2}+x_{2} x_{3}-1$. So $R=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}^{2}+\right.$ $\left.x_{2} x_{3}-1\right)$. To check if this is module finite over $\mathbb{C}\left[x_{1}, x_{2}\right]$, let us mod out by x_{1}. We get $\mathbb{C}\left[x_{2}, x_{3}\right] /\left(x_{2} x_{3}-1\right)=\mathbb{C}\left[x_{2}, x_{2}^{-1}\right]$, which is not module finite over $\mathbb{C}\left[x_{2}\right]$. So R is not module finite over $\mathbb{C}\left[x_{1}, x_{2}\right]$.
3. (a) Let I be the ideal of polynomials in $\mathbb{C}[x, y, z]$ which vanish on the three coordinate axes. Find a finite set of generators for I.
(b) Let J be the ideal of polynomials in x, y, z that vanish on the plane $z=0$ and on the z-axis. Find a finite set of generators for J.
(c) Let $R=\mathbb{C}[x, y, z] / J$. Find the Krull dimension of R.
(d) Let S be a ring of Krull dimension d, and $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \ldots \subset \mathfrak{p}_{r}$ be a strictly increasing chain of primes in S which cannot be refined (i.e., we cannot insert more primes into it). Does it follow that $r=d$?

Solution. (a) I is generated by $x y, x z, y z$.
(b) J is generated by $x z$ and $y z$.
(c) The Krull dimension of R is 2 .
(d) No. Let $S=\mathbb{C}[x] \oplus \mathbb{C}$. Then $d=1$, but $\mathbb{C}[x] \subset S$ is both a maximal and minimal prime, so cannot be extended to a chain, so $r=0$. Another counterexample is the ring from (c).
4. Let I be the ideal in $\mathbb{C}[x, y]$ generated by $x y^{2}$ and $x^{2} y$. Construct infinitely many irredundant primary decompositions of I.

Solution. One can take $Q_{1}=(x), Q_{2}=(y)$, and $Q_{3}=\left(x^{n}, x^{2} y, x y^{2}, y^{m}\right)$.
5. Let p be a prime. Show that there are exactly four isomorphism classes of Artinian rings with p^{2} elements, and describe these rings. Which of them are algebras over the field \mathbb{F}_{p} ?

Solution. Any such ring A is a direct sum of local ones, and we can have 1 or 2 summands. For 2 summands, it has to be $\mathbb{F}_{p} \oplus \mathbb{F}_{p}$. So it remains to consider the local case. If A is a field, $A=\mathbb{F}_{p^{2}}$. Otherwise, A has a maximal ideal I such that $A / I=\mathbb{F}_{p}$, and I is 1-dimensional. If $p=0$ in A, then we have $\mathbb{F}_{p} \subset A$, and choosing any $x \in I, x \in 0$, we get $A=\mathbb{F}_{p}[x] / x^{2}$. If $p \neq 0$ in A, then $p \in I$, so $p^{2}=0$, and $A=\mathbb{Z} / p^{2} \mathbb{Z}$. This is the only one which is not an \mathbb{F}_{p}-algebra.

