1. Let $q$ be a prime, $R=\mathbb{Z}$ and $S=\mathbb{Z}[\sqrt{q}]$. Find the primes in $S$ lying over each prime $p \in \mathbb{Z}$ (use quadratic reciprocity).
2. Let $R=\mathbb{C}[x, y, z] /\left(x^{2}+y^{2}-z^{2}+1\right)$. For a nonzero $v \in \mathbb{C}^{3}$, let $E_{v} \subset\left(\mathbb{C}^{3}\right)^{*}$ be the space of linear functions $a$ such $a(v)=0$, and let $a_{1}, a_{2}$ be a basis of $E_{v}$. Find all $v$ for which $R$ is module finite over $\mathbb{C}\left[a_{1}, a_{2}\right]$ (i.e., we have an instance of Noether normalization).
3. (a) Let $I$ be the ideal of polynomials in $\mathbb{C}[x, y, z]$ which vanish on the three coordinate axes. Find a finite set of generators for $I$.
(b) Let $J$ be the ideal of polynomials in $x, y, z$ that vanish on the plane $z=0$ and on the $z$-axis. Find a finite set of generators for $J$.
(c) Let $R=\mathbb{C}[x, y, z] / J$. Find the Krull dimension of $R$.
(d) Let $S$ be a ring of Krull dimension $d$, and $\mathfrak{p}_{0} \subset \mathfrak{p}_{1} \subset \ldots \subset \mathfrak{p}_{r}$ be a strictly increasing chain of primes in $S$ which cannot be refined (i.e., we cannot insert more primes into it). Does it follow that $r=d$ ?
4. Let $I$ be the ideal in $\mathbb{C}[x, y]$ generated by $x y^{2}$ and $x^{2} y$. Construct infinitely many primary decompositions of $I$.
5. Let $p$ be a prime. Show that there are exactly four isomorphism classes of Artinian rings with $p^{2}$ elements, and describe these rings. Which of them are algebras over the field $\mathbb{F}_{p}$ ?
