1. Let \(j : \mathbb{A}^1 \rightarrow \mathbb{P}^1 \) be the natural embedding. Let \(p(x) \) be any non-constant polynomial and let \(M(e^p) \) denote the \(D_{\mathbb{A}^1} \)-module generated by the function \(e^p \).

 a) Prove that \(D(\mathbb{C}) \cong M(e^{-p}) \).

 b) Show that the natural map \(j_!(M(e^p)) \rightarrow j_*(M(e^p)) \) is an isomorphism (hint: prove that \(j_*(M(e^p)) \) is irreducible and then use (a)).

2. Let \(j : \mathbb{G}_m \rightarrow \mathbb{A}^1 \). Show that the direct image of \(j_!(\mathcal{O}) \) to the point is zero.

3. Let \(M \) denote the following \(D \)-module on \(\mathbb{G}_m \): it consists of expressions \(p(x, \lambda)x^{i} + \lambda \) where \(p \in k[x, x^{-1}, \lambda] \) (note that we do not allow to divide by \(\lambda \)). Define \(\mathcal{E}_n = M/\lambda^nM \) (again considered as a \(D \)-module on \(\mathbb{G}_m \)). Note that multiplication by \(\lambda \) induces a nilpotent endomorphism of \(\mathcal{E}_n \).

 a) Show that \(\mathcal{E}_n \) is \(\mathcal{O} \)-coherent of rank \(n \) and that every irreducible subquotient of \(\mathcal{E}_n \) is isomorphic to \(\mathcal{O} \) (i.e. that \(\mathcal{E}_n \) is a successive extension of \(n \) copies on \(\mathcal{O} \)).

 b) Show that \(\mathcal{E}_n \) is indecomposable.

 c) Show that \(\mathcal{E}_n \) is uniquely determined by the conditions a and b (up to an isomorphism).

 d) Explain the existence and uniqueness of \(\mathcal{E}_n \) ”topologically” (using the notion of monodromy).

4. In this problem we want to compute \(j_!(\mathcal{E}_n) \). Here \(j \) is the embedding of \(\mathbb{G}_m \) into \(\mathbb{A}^1 \).

 a) Show that there exists an indecomposable \(D_{\mathbb{A}^1} \)-module \(N \) satisfying the following conditions: there exist short exact sequences

 \[
 0 \rightarrow j_!(\mathcal{O}_\mathbb{G}_m) \rightarrow N \rightarrow \mathcal{O}_{\mathbb{A}^1} \rightarrow 0
 \]

 and

 \[
 0 \rightarrow \mathcal{O}_{\mathbb{A}^1} \rightarrow N \rightarrow j_!\mathcal{O}_{\mathbb{G}_m} \rightarrow 0.
 \]

 In particular, \(N \) has \(\mathcal{O}_{\mathbb{A}^1} \) as both submodule and a quotient module and \(\delta_0 \) as a subquotient (sitting ”between” the two \(\mathcal{O} \)'s). Construct \(N \) both explicitly and by computing the correspondin Ext-groups.

 b) Prove that \(\delta \) is neither a submodule, nor a quotient of \(N \).

 c) Show that a) and b) imply that \(N = j_!(\mathcal{E}_2) \). This example shows that in general when \(j : U \rightarrow X \) is an open embedding the module \(j_!(M) \) may have subquotients concentrated on \(X \setminus U \) (we only know that it has neither quotients nor submodules concentrated on the complement).

 d) Explain how \(j_!(\mathcal{E}_n) \) looks like.

5. Let \(a_1, \ldots, a_n \) be generic complex numbers, and \(X \) be the open set in \(\mathbb{C}^{n+1} \) with coordinates \(t, z_1, \ldots, z_n \), defined by the inequalities \(t \neq z_i, z_i \neq z_j \). Let \(Y \) be the open set in \(\mathbb{C}^n \) defined by the inequalities \(z_i \neq z_j \), and let \(\pi : X \rightarrow Y \) be the map sending

1 Problems 1, 2, 3, 4 were proposed by A. Braverman.
(t, z_1, ..., z_n) to (z_1, ..., z_n). Let L be the \mathcal{O}-coherent D-module on X generated by the function $\psi = \prod_{i=1}^n (t - z_i)^{a_i}$.

(a) Compute $\pi^\ast(L)$. Namely, show that $\pi^\ast(L)$ is an \mathcal{O}-coherent D-module on Y of rank $n - 1$, which is a trivial vector bundle on Y, and calculate the corresponding Gauss-Manin connection on this bundle. (You will obtain the simplest nontrivial case of the so called Knizhnik-Zamolodchikov equations).

(b) Provide integral formulas for flat sections of $\pi^\ast(L)$ (using Pochhammer loops).