18.769: Algebraic D-modules. Fall 2013

Instructor: Pavel Etingof
Problem set 6 (due Tuesday, December 10) ${ }^{1}$

1. Let $j: \mathbb{A}^{1} \rightarrow \mathbb{P}^{1}$ be the natural embedding. Let $p(x)$ be any non-constant polynomial and let $M\left(e^{p}\right)$ denote the $\mathcal{D}_{\mathbb{A}^{1}}$-module generated by the function e^{p}.
a) Prove that $\mathbb{D}\left(M\left(e^{p}\right)\right) \simeq M\left(e^{-p}\right)$.
b) Show that the natural map $j_{!}\left(M\left(e^{p}\right)\right) \rightarrow j_{*}\left(M\left(e^{p}\right)\right)$ is an isomorphism (hint: prove that $j_{*}\left(M\left(e^{p}\right)\right)$ is irreducible and then use (a)).
2. Let $j: \mathbb{G}_{m} \rightarrow \mathbb{A}^{1}$. Show that the direct image of $j_{!}(\mathcal{O})$ to the point is zero.
3. Let M denote the following \mathcal{D}-module on \mathbb{G}_{m} : it consists of expressions $p(x, \lambda) x^{\lambda+i}$ where $p \in k\left[x, x^{-1}, \lambda\right]$ (note that we do not allow to divide by λ). Define $\mathcal{E}_{n}=M / \lambda^{n} M$ (again considered as a \mathcal{D}-module on \mathbb{G}_{m}). Note that multiplication by λ induces a nilpotent endomorphism of \mathcal{E}_{n}.
a) Show that \mathcal{E}_{n} is \mathcal{O}-coherent of rank n and that every irreducible subquotient of \mathcal{E}_{n} is isomorphic to \mathcal{O} (i.e. that \mathcal{E}_{n} is a successive extension of n copies on \mathcal{O}).
b) Show that \mathcal{E}_{n} is indecomposable.
c) Show that \mathcal{E}_{n} is uniquely determined by the conditions a and b (up to an isomorphism).
d) Explain the existence and uniqueness of \mathcal{E}_{n} "topologically" (using the notion of monodromy).
4. In this problem we want to compute $j_{!*}\left(\mathcal{E}_{n}\right)$. Here j is the embedding of \mathbb{G}_{m} into \mathbb{A}^{1}.
a) Show that there exists an indecomposable $\mathcal{D}_{\mathbb{A}^{1}}$-module N satisfying the following conditions: there exist short exact sequences

$$
0 \rightarrow j_{*} \mathcal{O}_{\mathbb{G}_{m}} \rightarrow N \rightarrow \mathcal{O}_{\mathbb{A}^{1}} \rightarrow 0
$$

and

$$
0 \rightarrow \mathcal{O}_{\mathbb{A}^{1}} \rightarrow N \rightarrow j!\mathcal{O}_{\mathbb{G}_{m}} \rightarrow 0 .
$$

In particular, N has $\mathcal{O}_{\mathbb{A}^{1}}$ as both submodule and a quotient module and δ_{0} as a subquotient (sitting "between" the two \mathcal{O} 's). Construct N both explicitly and by computing the correspondin Ext-groups.
b) Prove that δ is neither a submodule, nor a quotient of N.
c) Show that a) and b) imply that $N=j_{!*}\left(\mathcal{E}_{2}\right)$. This example shows that in general when $j: U \rightarrow X$ is an open embedding the module $j_{!*}(M)$ may have subquotients concentrated on $X \backslash U$ (we only know that it has neither quotients nor submodules concentrated on the complement).
d) Explain how $j_{!*}\left(\mathcal{E}_{n}\right)$ looks like.
5. Let a_{1}, \ldots, a_{n} be generic complex numbers, and X be the open set in \mathbb{C}^{n+1} with coordinates t, z_{1}, \ldots, z_{n}, defined by the inequalities $t \neq z_{i}, z_{i} \neq z_{j}$. Let Y be the open set in \mathbb{C}^{n} defined by the inequalities $z_{i} \neq z_{j}$, and let $\pi: X \rightarrow Y$ be the map sending

[^0]$\left(t, z_{1}, \ldots, z_{n}\right)$ to $\left(z_{1}, \ldots, z_{n}\right)$. Let L be the \mathcal{O}-coherent D-module on X generated by the function $\psi=\prod_{i=1}^{n}\left(t-z_{i}\right)^{a_{i}}$.
(a) Compute $\pi_{*}(L)$. Namely, show that $\pi_{*}(L)$ is an \mathcal{O}-coherent D-module on Y of rank $n-1$, which is a trivial vector bundle on Y, and calculate the corresponding Gauss-Manin connection on this bundle. (You will obtain the simplest nontrivial case of the so called Knizhnik-Zamolodchikov equations).
(b) Provide integral formulas for flat sections of $\pi_{*}(L)$ (using Pochhammer loops).

[^0]: ${ }^{1}$ Problems 1, 2, 3, 4 were proposed by A. Braverman.

