18.769: Algebraic D-modules. Fall 2013 Instructor: Pavel Etingof

Problem set 1 (due Thursday, September 19)

Below k is a field of characteristic 0. All affine spaces are over k. The purpose of this problem set is to gain some intuition on the relation between standard functions (or distributions) and D-modules. Problems marked with * are more difficult. ¹

1. For $\lambda \in k$ let $M(x, \lambda)$ denote the $\mathcal{D}(\mathbb{A}^1)$ -module with basis $x^{\lambda+i}$ for all $i \in \mathbb{Z}$ with the standard action of differential operators (note that here λ is an actual element of k and not a variable). We showed in class that $M(x, \lambda)$ is holonomic.

a) Show that $M(x, \lambda)$ is irreducible if and only if $\lambda \notin \mathbb{Z}$.

b) There is an obvious homomorphism $\phi : \mathcal{D}(\mathbb{A}^1)/\mathcal{D}(\mathbb{A}^1)(x\partial - \lambda) \to M(x,\lambda)$ sending 1 to x^{λ} . For which λ is it an isomorphism?

c)* Try to generalize a) to the case of an arbitrary polynomial p in n variables. (Hint: show that $M(p, \lambda) := \mathbb{C}[x_1, ..., x_n, p^{-1}]p^{\lambda}$ is irreducible iff λ is not an integer translate of a root of the Bernstein-Sato polynomial $b(\lambda)$ of p).

2. Let M be the D-module on \mathbb{A}^2 (with coordinates (x, y)) "generated by the function $e^{x/y}$ ", i.e. M consists of all expressions of the form $y^n p e^{x/y}$ where $n \in \mathbb{Z}$, $p \in \mathbb{C}[x, y]$ subject to the relation $y^{n+1} p e^{x/y} = y^n (y \cdot p) e^{x/y}$. The action of differential operators is standard.

a) Show that M is holonomic and irreducible.

b)* Compute the (geometric) singular support of M.

3. In this problem we consider *D*-modules on \mathbb{A}^1 with coordinate *x*. For every $a \in \mathbb{A}^1$ we let δ_a denote the corresponding *D*-module of δ -functions. In other words, δ_a has a basis $\{\delta_a^{(n)}\}_{n=0}^{\infty}$ and the action of differential operators is given by

$$x\delta^{(n)}_a = -n\delta^{(n-1)}_a + a\delta^{(n)}_a \quad \partial\delta^{(n)}_a = \delta^{(n+1)}_a$$

where $(x - a)\delta_a^{(0)} = 0$. We have seen that δ_a is irreducible and holonomic.

Let $\mathcal{O} = k[x]$ with the standard action of differential operators. Show that $\operatorname{Ext}^{1}(\delta_{0}, \mathcal{O})$ (as *D*-modules) and $\operatorname{Ext}^{1}(\mathcal{O}, \delta_{0})$ are isomorphic to k (hint: construct explicitly the corresponding extensions $0 \to \mathcal{O} \to M \to \delta_{0} \to 0$ and $0 \to \delta_{0} \to M \to \mathcal{O} \to 0$; you may want to look at $\mathcal{D}(\mathbb{A}^{1})/(x\partial - \lambda)\mathcal{D}(\mathbb{A}^{1})$ for integer λ).

4. Let f(x) be a nonzero rational function in one complex variable, and let N_f be the *D*-module on the affine line generated by (a branch of) the multivalued analytic function

$$\exp\left(\int f(x)dx\right).$$

a) Show that N_f is holonomic. For which f is N_f isomorphic to the quotient $\mathcal{D}(\mathbb{A}^1)/\mathcal{D}(\mathbb{A}^1)(Q\partial - P)$, where f = P/Q and P, Q are relatively prime polynomials?

b) Find the composition factors of N_f and the number $c = c(N_f)$.

c) For which f, g is N_f isomorphic to N_g ?

¹Problems 1-3 were composed by A. Braverman in 2002