18.769: Algebraic D-modules. Fall 2013

Instructor: Pavel Etingof
Problem set 1 (due Thursday, September 19)
Below k is a field of characteristic 0 . All affine spaces are over k. The purpose of this problem set is to gain some intuition on the relation between standard functions (or distributions) and D-modules. Problems marked with $*$ are more difficult. ${ }^{1}$

1. For $\lambda \in k$ let $M(x, \lambda)$ denote the $\mathcal{D}\left(\mathbb{A}^{1}\right)$-module with basis $x^{\lambda+i}$ for all $i \in \mathbb{Z}$ with the standard action of differential operators (note that here λ is an actual element of k and not a variable). We showed in class that $M(x, \lambda)$ is holonomic.
a) Show that $M(x, \lambda)$ is irreducible if and only if $\lambda \notin \mathbb{Z}$.
b) There is an obvious homomorphism $\phi: \mathcal{D}\left(\mathbb{A}^{1}\right) / \mathcal{D}\left(\mathbb{A}^{1}\right)(x \partial-\lambda) \rightarrow M(x, \lambda)$ sending 1 to x^{λ}. For which λ is it an isomorphism?
c)* Try to generalize a) to the case of an arbitrary polynomial p in n variables. (Hint: show that $M(p, \lambda):=\mathbb{C}\left[x_{1}, \ldots, x_{n}, p^{-1}\right] p^{\lambda}$ is irreducible iff λ is not an integer translate of a root of the Bernstein-Sato polynomial $b(\lambda)$ of p).
2. Let M be the D-module on \mathbb{A}^{2} (with coordinates (x, y)) "generated by the function $e^{x / y}$ ", i.e. M consists of all expressions of the form $y^{n} p e^{x / y}$ where $n \in \mathbb{Z}$, $p \in \mathbb{C}[x, y]$ subject to the relation $y^{n+1} p e^{x / y}=y^{n}(y \cdot p) e^{x / y}$. The action of differential operators is standard.
a) Show that M is holonomic and irreducible.
b)* Compute the (geometric) singular support of M.
3. In this problem we consider D-modules on \mathbb{A}^{1} with coordinate x. For every $a \in \mathbb{A}^{1}$ we let δ_{a} denote the corresponding D-module of δ-functions. In other words, δ_{a} has a basis $\left\{\delta_{a}^{(n)}\right\}_{n=0}^{\infty}$ and the action of differential operators is given by

$$
x \delta_{a}^{(n)}=-n \delta_{a}^{(n-1)}+a \delta_{a}^{(n)} \quad \partial \delta_{a}^{(n)}=\delta_{a}^{(n+1)}
$$

where $(x-a) \delta_{a}^{(0)}=0$. We have seen that δ_{a} is irreducible and holonomic.
Let $\mathcal{O}=k[x]$ with the standard action of differential operators. Show that $\operatorname{Ext}^{1}\left(\delta_{0}, \mathcal{O}\right)$ (as D-modules) and $\operatorname{Ext}^{1}\left(\mathcal{O}, \delta_{0}\right)$ are isomorphic to k (hint: construct explicitly the corresponding extensions $0 \rightarrow \mathcal{O} \rightarrow M \rightarrow \delta_{0} \rightarrow 0$ and $0 \rightarrow \delta_{0} \rightarrow M \rightarrow \mathcal{O} \rightarrow 0$; you may want to look at $\mathcal{D}\left(\mathbb{A}^{1}\right) /(x \partial-\lambda) \mathcal{D}\left(\mathbb{A}^{1}\right)$ for integer $\left.\lambda\right)$.
4. Let $f(x)$ be a nonzero rational function in one complex variable, and let N_{f} be the D-module on the affine line generated by (a branch of) the multivalued analytic function

$$
\exp \left(\int f(x) d x\right)
$$

a) Show that N_{f} is holonomic. For which f is N_{f} isomorphic to the quotient $\mathcal{D}\left(\mathbb{A}^{1}\right) / \mathcal{D}\left(\mathbb{A}^{1}\right)(Q \partial-P)$, where $f=P / Q$ and P, Q are relatively prime polynomials?
b) Find the composition factors of N_{f} and the number $c=c\left(N_{f}\right)$.
c) For which f, g is N_{f} isomorphic to N_{g} ?

[^0]
[^0]: ${ }^{1}$ Problems 1-3 were composed by A. Braverman in 2002

