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1. Introduction

Ever since the arrival of covid-19, we have been showered with
various numbers from all sides. People have been using them to justify
their views on the pandemic response. As this conversation has be-
come unduly politicized, some people have been misusing numbers to
promote all kinds of questionable theories about covid and misleading
others and themselves.

• Covid is as bad as a bad flu, or just a tiny bit worse.
• Masks and social distancing don’t really work.
• Lockdowns aren’t effective.
• Vaccines are dangerous and don’t help much.
• We are already at herd immunity.
And so on.
The numbers they quote are usually correct, but they often give

them out of context, to support their preconceived opinions.
This mini-course is about learning how to use guesstimation and

other kinds of math to interpret covid-related and other numbers you
see in the news and social networks, and use them to correctly assess
risks and make rational decisions.

The first part will use only very elementary math, and will be
accessible to middle schoolers. The second part, which concerns the
SIR model, will be a bit more advanced and involve some high school
math, such as calculus.

Disclaimer 1: There will be only math and no biology (in
fact, I don’t know any!).

Disclaimer 2: We will not be able to actually debunk any the-
ories by covid deniers or antivaxxers so that they would concede. Any
math we do is necessarily based on some non-mathematical assump-
tions you have to believe, and they will question these assumptions
rather than the math. There is nothing we can do about this as math-
ematicians; ultimately we have to develop our own views based on some
beliefs, common sense and the math. In this mini-course we will only
worry about getting the math right.

2. The effective contact rate, infectious rate, and basic
reproduction ratio

The spread of infection during an epidemic is characterized by
how various quantities, such as

• the fraction S of susceptible people,
• the fraction I of infectious people,
• the fraction B of people who have had the infection, etc.
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change in time. This depends on several parameters.

2.1. Effective contact rate. The first parameter β is called the ef-
fective contact rate. It is the reciprocal

β =
1

tc

of the average time tc between two “effective” contacts of an infectious
person (i.e., ones which result in this person infecting someone else).

We have

β = β∗p,

where β∗ is the suitably normalized number of contacts between people
per unit of time and p is the probability that infection will be passed
during a contact between an infectious person and a susceptible one,
called the secondary attack rate.

2.2. Infectious rate. The second parameter γ is called the infectious
rate. It is the reciprocal

γ =
1

tr

of the average time tr an infected person remains infectious, i.e., the
average time it takes an infectious person to be removed from the epi-
demic through recovery or death. So we assume that a recovered person
acquires immunity and cannot get sick again.1

2.3. Basic reproduction ratio. It is convenient to rescale time by
replacing t by the dimensionless quantity

T = γt =
t

tr
.

In other words, we take tr as the natural unit of time. Then it turns
out that the dynamics of the infection spread depends only on the ratio

R0 :=
tr
tc

=
β

γ
=
β∗p

γ
= β∗ · p · tr.

So R0 is the average number of people infected by a sick person. It
is the basic reproduction ratio, one of the main parameters in epi-
demiology.

1Note that this is not quite so for many infections, including covid-19.



4

2.4. Exponential growth. At the beginning of the epidemic, the in-
fection grows exponentially with exponent c := R0 − 1:

(1) I(T ) = I0e
cT ,

although later the growth slows down as the epidemic “runs out of
fuel”. This is similar to computing compound interest on a bank
account, with c playing the role of the interest rate.

In more detail, consider first the simplified discrete model, when
“interest” is computed every unit of time. So at T = 1 the people
infectious at T = 0 stop being infectious, but each of them is replaced,
on average, by R0 = 1+c others. So we have I(1) = I0R0, I(2) = I0R

2
0,

etc., i.e.,
I(T ) = I0R

T
0

for positive integer T .
However, this is only an approximation since new infections ap-

pear continuously, not only at integer values of T . We will get a better
approximation if we compute the “interest” not with interval 1 but
more often, with interval 1/2. In time 1/2, about half of the infectious
people at T = 0 will stop being infectious, with each replaced by R0

others. Thus
I(1

2
) = I0

2
+ I0

R0

2
= I0(1 + c

2
).

So I(1) = I0(1 + c
2
)2 and in general

I(T ) = I0(1 + c
2
)2T ,

where T is now a half-integer. More generally, if the “interest” is
computed with intervals 1/k for a positive integer k, we get

I( 1
k
) = I0(1− 1

k
) + I0

R0

k
= I0(1 + c

k
),

so
I(T ) = I0(1 + c

k
)kT ,

where T is now a multiple of 1/k. In the limit k → ∞ (which corre-
sponds to computing the ”interest” continuously), we have

(1 + c
k
)k → ec,

so we get (1).
Thus for infection to be able to spread widely and cause an epi-

demic, one must have R0 > 1.

Example 1. For real infectious diseases R0 normally varies from
1.2 (seasonal flu) to 18 (measles). The list of values of R0 for various
diseases can be found at https://en.wikipedia.org/wiki/Basic_

reproduction_number. According to this list, the original covid strain
had R0 ≈ 3, while for the delta variant R0 is between 8 and 9 (according

https://en.wikipedia.org/wiki/Basic_reproduction_number
https://en.wikipedia.org/wiki/Basic_reproduction_number
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to the latest CDC data). The only common diseases whose R0 is higher
are measles, mumps and chickenpox.

The number R0, however, is not an absolute constant for a given
disease, and it is hard to define, let alone compute, precisely. It depends
on many things, such as the density of population, people’s lifestyle and
habits in a given country, etc. The table gives a range of values of R0

for each disease which characterize the spread of the infection without
any intervention. In reality, once an epidemic begins, people change
their behavior, trying to mitigate the spread of infection. The goal
of mitigation measures, such as lockdowns, social distancing, mask
mandates, isolation and quarantine is to reduce R0. Namely, lock-
downs reduce β∗, masking and distancing reduce p, and isolation
and quarantine reduce tr, i.e., increase γ.

2.5. Effective reproduction ratio. The number R0 is the reproduc-
tion ratio of the infection at the beginning of the epidemic, assuming all
the population is susceptible (S = 1). If a proportion of the population
has immunity through having had the disease or through vaccination
(S < 1) then R0 is replaced by the effective reproduction ratio
Re = R0S (i.e., R0 is multiplied by the probability that a given contact
is susceptible).

2.6. Herd immunity. In particular, when S = 1
R0

, we get Re = 1, so
the infection can no longer expand, and for larger S it starts to wane.
This happens when the fraction of immune people is

H = 1− 1

R0

.

This is called the herd immunity threshold.
Herd immunity can be reached by enough people getting infected,

or through vaccination, or both. However, for high R0, when H is close
to 1, it is hard to reach by vaccination alone, since there are many
people resisting vaccination, and since vaccines do not provide 100%
immunity.

Example 2. For the seasonal flu H ≈ 1 − 1
1.2

= 1
6
≈ 17%, for

the original covid strain H ≈ 1 − 1
3

= 2
3
≈ 67%, while for the delta

variant H ≈ 1 − 1
8

= 7
8

= 87.5%. Thus, we may not be able to reach
herd immunity from the delta variant through vaccination alone.

However, even after the herd immunity is reached, the infection
continues to spread, albeit at a waning rate. So the proportion of
people who will eventually get sick (without mitigation) is larger than
H (although, curiously, it is less than 1!). We will see that when R0 is
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close to 1, the share of people who will ultimately get sick is about 2H.
For example, for seasonal flu it is about 32%, which for the US is about
100 million. The actual number of flu cases seen every year is smaller
(about three times, on average), because of flu shots, weakening of the
virus as the weather warms up, and other reasons.

Finally, an important caveat: when we talk about herd immunity,
we assume that the geographic and social distribution of the immune
portion of the population are uniform, which is often not the case. If in
some parts of the country the percentage of immune population is lower
than H, the infection will continue to spread in those areas, the faster
the lower this percentage. The same applies if non-immune people
tend to hang out with each other, e.g. because attitude to vaccination
is correlated to the social stratum.

This is what is happening now in areas with low vaccination rates.
For example, on August 5, 2021, the 7-day average daily case count in
Florida reached 18,120, while in Massachusetts it was 906.2. But the
Massachusetts’ population is only 3 times less than Florida’s. Thus
the case count per capita in Florida on that day (averaged over the
preceding week) was 6 times higher than in Massachusetts.

2.7. Doubling time. Finally, a good characteristic of the epidemic at
the growth stage is the doubling time td of the infection. It solves
the equation

ec
td
tr = 2,

which yields

td =
tr log 2

c
≈ 0.7tr

c
.

For example, for the original strain of covid (R0=3) and tr = 7 days
(as was in the first wave), we get

td ≈ 2.5 days.

This is what was observed in New York City during the exponential
growth period.

Note that td is easy to measure from available data, and one can
also estimate tr (the time a sick person can keep infecting others). So
we can use this equation to compute R0 (or Re):

R0 ≈ 1 + 0.7
tr
td
.

2The 7-day average is a more robust quantity than the daily case count since on
weekends a lot fewer cases are recorded.
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For example, recent data from Florida shows that the 7-day average
of the number of new infections doubled in 7 days (July 10-July 17,
2021). So we get Re = 1.7. Now td has increased to 14 days, so we
get Re ≈ 1.35. This is quite far from R0 ≈ 8 for the delta variant, but
we should remember that there are many mitigation measures: masks,
social distancing, testing, isolation, quarantine, many immune people,
etc.

3. CFR and IFR

3.1. The CFR. The case fatality rate (CFR) of an infection is

CFR :=
number of confirmed deaths

number of confirmed cases
.

The CFR is normally easy to compute because both of these numbers
are readily available.

Example 3. For instance, for covid all this data is on the website
https://www.worldometers.info/coronavirus/. According to this
website, there are about 200 million confirmed covid cases in the world
thus far (as of August 5, 2021), and about 4.3 million fatalities. So we
get CFR=2.15%. And we get about the same number for individual
countries. E.g., for the US, about 36 million cases and about 635,000
deaths, so CFR=1.75%, and for the UK about 6 million cases and
130,000 deaths, so CFR=2.2%.3

The CFR, however, is not very useful, since both numbers (con-
firmed cases and confirmed deaths) can deviate considerably from re-
ality.4

Example 4. The CFR for covid in NYC during the first wave
(March-April 2020) was about 10%, while in the second wave (De-
cember 2020-January 2021) it was under 2%. Did they get better at
treating covid? Somewhat, but not nearly this much. Most of this
effect is due to very limited testing during the first wave (since a covid
case is registered on the basis of a positive PCR test). So we see that
during the first wave, at most one out of five cases was reported (in
fact, we will see that it was even less than that).

But even if testing is readily available, many cases are not re-
ported, because people just don’t go to get tested. In fact, it is now

3These numbers have been going down and will continue to do so as more people
are getting vaccinations. The CFR can also decrease as doctors get better at
treating the disease.

4For example, if the same patient has two positive tests a few days apart, this
may be recorded as two separate cases.

https://www.worldometers.info/coronavirus/
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known that many cases of covid are asymptomatic, so people may not
even know that they are sick! Estimates show that even now, when you
can get tested for free in a pharmacy (although, importantly, with some
wait time), every other covid case is probably missed, maybe even two
out of three at the peaks: https://www.npr.org/sections/health-

shots/2021/02/06/964527835/why-the-pandemic-is-10-times-worse-

than-you-think (Exercise: why is the headline of this article mislead-
ing?). So during the first wave in NYC, it could be that as few as just
one out of ten (or even fifteen) covid cases was reported.

The number of confirmed deaths is somewhat more reliable but
not really solid either, because there can be different protocols of re-
porting a covid death.5 Namely, since most covid deaths occur in very
old and/or sick people, even in presence of a positive PCR test one
may question if the patient died from covid or from other causes while
being covid positive. This can also be affected by authorities who do
not want people to see a high death toll (as happened in Russia where
covid deaths have been underreported, likely for political reasons).6

Also, even though CFR for covid is currently about 2% in most
countries, it varies from country to country.

Example 5. In Israel for covid CFR=0.73%, in United Arab
Emirates 0.3%, while in the US it is 1.75% and in Italy 2.9%. Did the
first two do so much better? Maybe somewhat, but not this much. To
understand this discrepancy, it is important to remember that the vast
majority of covid deaths occurs in people over 65. So we should look
at the percentage of population in this age group. In the US we find
16.5%, in Italy 23.1%, while in Israel 12.4% and in UAE only 1.1%.
This explains the discrepancy with UAE, especially given that UAE is
at the very top in testing per capita (and it was so already early in the
pandemic), so they have likely discovered a higher proportion of cases
than other countries.

On the other hand, it still appears that Israel did better than the
US and Italy. Maybe somewhat, but we should remember that Israel
largely avoided the first wave of covid in March-April 2020 when tests
were scarce, so they were able to detect a larger percentage of cases.
That was not the case in the US in March-April 2020, and even less so

5E.g., according to https://www.cdc.gov/coronavirus/2019-ncov/cases-

updates/burden.html, only 1 in 1.3 actual covid deaths were reported in the US
by May 31, 2021.

6We note that now in Russia there is other covid data coming from Rosstat which
is more accurate.

https://www.npr.org/sections/health-shots/2021/02/06/964527835/why-the-pandemic-is-10-times-worse-than-you-think
https://www.npr.org/sections/health-shots/2021/02/06/964527835/why-the-pandemic-is-10-times-worse-than-you-think
https://www.npr.org/sections/health-shots/2021/02/06/964527835/why-the-pandemic-is-10-times-worse-than-you-think
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
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in Italy, where there was a big wave early in the pandemic (February-
March 2020) when very few tests were available. Only 1 in about 15
cases was detected in this wave.

3.2. The IFR. Thus, we see that CFR is indeed not a very good
measure of severity of the disease. A much better one is the IFR,
infection fatality rate,

IFR :=
number of actual deaths

number of actual cases
.

This is still not very well defined though, since the definition of a covid
case and covid death is subject to argument. Also, while it is not
affected by availability of testing, by the same reason it is hard to
compute, since at least the denominator is not easily available and has
to be estimated.

This lack of information is widely used by covid deniers, who
claim that the denominator is in fact much larger, and consequently
IFR much smaller than people think. For the flu, the IFR is about
0.1% to 0.17%, so they claimed that covid is just as bad as the flu or
just a tiny bit worse. As more and more data started to come out and
it became increasingly difficult to defend this claim, they changed the
narrative slightly and started saying that covid is about twice as bad
as the flu, with IFR=0.3%. They used it as a basis for questioning
mitigation measures, as we take no such drastic measures for the flu
season.

This claim, however, has no merit for a number of reasons. One is
that since covid is much more contagious than the flu (even the original
strain, let alone the new variants, such as the delta variant), without
mitigation a lot more people will get infected during the same period
of time (in fact, in the US it is already more than the flu, even with
pretty severe lockdowns, mitigation measures, etc.) But also this claim
is based on two statements:

Statement 1. Covid cases are more underreported than is widely
believed.

Statement 2. Covid deaths are overreported.
So how can one estimate the true numbers of cases and deaths

and the IFR to verify these statements?
For the number of cases, covid deniers claimed that a lot more

people actually got sick than reported. As we know, they are right
about that, and the disagreement with mainstream experts is only to
what extent it is so. One way to estimate that is random antibody
tests.
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Example 6. On April 23, 2020 the New York State announced
that according to random antibody testing, 14% of its residents had
antibodies for covid-19. By that day, NY had reported about 270,000
cases, for about 20 million population, i.e., the reported rate was about
1.35%. This means that slightly less than one out of 10 cases was
reported (i.e., the ascertainment bias was about 10), and the true
number of cases in NY state by that date estimates to 2.8M. On the
other hand, the reported total number of covid deaths by that day
was about 21,000. This gives IFR≈ 0.75%, which is 4 to 7.5 times
worse than the flu (not taking into account that it is also more con-
tagious). This is about average among the numbers given in various
studies (credible estimates vary from 0.5% to over 1%).

In fact, 14% may have been an overshoot since the antibody test-
ing was held in stores, and people who go to stores are more likely to
get sick. If so, the estimate for the IFR will be closer to 1%.

We can also try to guesstimate what percentage of population,
say in NY state, have had covid so far. Our computation gives 2.8M
until April 23, 2020. From April 23 to September 1, 2020 there were
about 200,000 more reported cases, but the testing was ramped up,
so let’s say 1 out of 5 cases was found during this period. This gives
another 1 million cases. Finally, since September 1, 2020, there were
about 1.8 million registered cases, but the testing was adequate, so
let us say about 1 out of 2 cases was found. This would give another
3.6 million. Thus we get a total of 7.4 million. The population of
NY is roughly 20 million, so we get that about 42% of New Yorkers
have had covid so far. With about 54,000 deaths so far in NY, we get
IFR≈ 0.73%, agreeing with our previous estimate of 0.75%.

A similar computation nationwide gives about

1 · 10 + 5 · 5 + 30 · 2 = 95 million ,

or 95/330 ≈ 29% of the US population. With the death toll 635, 000,
this gives IFR≈ 0.67%.

CDC at https://www.cdc.gov/coronavirus/2019-ncov/cases-
updates/burden.html gives a somewhat higher figure for the esti-
mated total number of infections nationwide: 120 million (i.e., their
estimate for the percentage of unreported cases is a bit larger than
ours). But they also say only 1 in 1.3 covid deaths is reported. So
their estimate for the IFR is 0.68%.

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
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3.3. Hospitalization rates. One can similarly define the case hos-
pitalization rate CHR and the infection hospitalization rate IHR:

CHR :=
number of hospitalizations

number of confirmed cases
,

IHR :=
number of hospitalizations

number of actual cases
.

They have similar behavior to CFR and IFR, and for covid tend to
be about 3.25 times higher. E.g. the website https://gis.cdc.

gov/grasp/covidnet/COVID19_5.html suggests that there have been
slightly over 2 million reported covid hospitalizations nationwide, about
3.25 times higher than the death toll. So we have IHR≈ 0.75 · 3.25% =
2.44%. Also since there have been about 36 million reported cases
(until the beginning of the new wave), we get CHR≈ 5.7%.7

3.4. Health care system overload. Now imagine that we have a
poorly controlled covid surge in the UK in which only 10% of the
population (=6.7 million) gets infected and which lasts 3 months (this
actually happened in the winter of 2020/2021). This means that on av-
erage there would be 70,000 cases a day, so twice as many, i.e. 140,000
at the peak. About 2.5% of these will need hospitalization, that’s
about 3,500. If a covid patient is in the hospital for 1 week on av-
erage8 (see https://www.nuffieldtrust.org.uk/resource/chart-

of-the-week-how-long-do-covid-19-patients-spend-in-hospital)
then about 25,000 covid patients would have to be in UK hospitals at
a time. At least 1/3 of these patients (8,000) will require ICU care.
So this would overwhelm the health care system, as there are only
6,500 ICU/critical care beds in the UK (https://link.springer.
com/article/10.1007/s00134-012-2627-8/tables/2). Thus with-
out any mitigation at all the health care system will be overwhelmed
by a factor of 5 or higher.

7Unfortunately, the total number of hospitalizations due to covid is reported
only by some states, so the total over the US is not known precisely. Based on
the data from https://covidtracking.com/data, the ratio of hospitalizations to
deaths varies widely, in the range 1 to 6, but for most states it is between 2.5 and
4, which roughly agrees with the estimate of 2 million nationwide. Our estimate
3.25 is in the middle of that range. On the other hand, the site https://www.cdc.

gov/coronavirus/2019-ncov/cases-updates/burden.html estimates that 1 in
1.8 covid hospitalizations is recorded, and estimates the actual number of covid
hospitalizations in the US as 6.2 million, which for reported hospitalizations yields
6.2/1.8 ≈ 3.4 million, which is at odds with the above estimate of 2 million.

8We observe that the length of stay decreased during covid waves; this is because
people were discharged prematurely due to shortage of beds.

https://gis.cdc.gov/grasp/covidnet/COVID19_5.html
https://gis.cdc.gov/grasp/covidnet/COVID19_5.html
https://www.nuffieldtrust.org.uk/resource/chart-of-the-week-how-long-do-covid-19-patients-spend-in-hospital
https://www.nuffieldtrust.org.uk/resource/chart-of-the-week-how-long-do-covid-19-patients-spend-in-hospital
https://link.springer.com/article/10.1007/s00134-012-2627-8/tables/2
https://link.springer.com/article/10.1007/s00134-012-2627-8/tables/2
https://covidtracking.com/data
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html
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4. Excess mortality

Covid deniers also claim (using that the vast majority of covid
deaths occur among very old and sick people) that covid deaths are
overreported, namely many deaths from old age or other illnesses are
reported as being from covid, when there is a positive covid test (State-
ment 2). At the beginning of the pandemic, they said that this would
be obvious once the excess mortality data for a long enough period
(such as a year or two) come in. Let us see if they were really right.

Excess mortality is the number of additional deaths in a given
state or country compared to the normal (=average) number during
a similar period. According to CDC, excess mortality since Feb 1,
2020 in the US is about 760,000 (https://www.cdc.gov/nchs/nvss/
vsrr/covid19/excess_deaths.htm). At the same time, the number
of reported covid deaths is about 635,000 (including probable ones).
So did 125,000 covid deaths go unreported? Some of them, but not all.
Some of this is due to overloading the health care system, postponement
of treatments, hesitancy to go to the hospital for fear of being infected,
change in lifestyle due to lockdowns, etc. (This 125,000, while a large
number, is about 4% of annual deaths in the US). The part of this
125,000 that should be directly attributed to covid depends on the exact
definition of a covid death. In any case, it does not look like any over-
reporting took place (more likely, covid deaths in the US were under-
reported, if anything; indeed, as mentioned above, CDC estimates that
only 1 out of 1.3 covid deaths in the US is reported). If we assume that
half of these are under-reported covid deaths (probably most having
occurred early when tests were scarce), i.e., 10% under-reporting, we
will get 700,000 deaths from covid, and our estimate 0.75% for the IFR
should be upgraded to 0.83%. Note that this is about 0.2% of the US
population (330 million).9

On the other hand, if we look at Russia, they report about 135,000
deaths from covid by July 1, 2021, while the excess mortality by that
date, according to the recent data of Rosstat, is about 557,000. So we
see that covid deaths in Russia are severely underreported (at least 3
times). Also given that Russia’s population is about 145 million, this is
about 0.4% of the population, twice as much as in the US. This is
due to low vaccination and rampant disregard for mitigation measures
(such as mask wearing).10

9One should also take into account that covid measures reduced flu activity to
very low levels, thereby reducing mortality. This makes covid mortality a bit higher.

10Using the estimate of 0.75% for the IFR, we get that about 50% of the popu-
lation in Russia have had covid-19. For Israel this computation gives about 13%,

https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
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What covid deniers should really do now to save their face is
upgrade the ”long term” for excess mortality from 1-2 years to 10 years
or more. Hopefully the pandemic will subside by then, and since most
covid fatalities are very old and sick people, they would likely not have
made it to the end of this term anyway. So the effect of covid will be
hard to see. In fact, by the same token, excess mortality may even go
negative after the pandemic ends, so they may argue that covid is a
good thing after all!

5. Risk estimation

You can use back-of-the-envelope calculations of this sort to esti-
mate the risk of a given activity with regard to catching covid-19. For
example, suppose you ride in a train car in Massachusetts on May 18,
2021. Suppose there are 100 people in this car. What is the chance
that none of them was infectious with covid-19, assuming that a covid
patient is contagious for 10 days?

Well, you can look up 7-day average the number of new cases
in Massachusetts on that day. It is 620. So for 10 days it is about
6,200. These people are no problem since they likely won’t be in the
subway car (they are quarantined). However, we know that there were
likely at least as many, possibly twice as many others who are not (yet)
detected. Let us say, 9,000. This is about every 750-th person. So the
probability is

p1 ≈
(

1− 1

750

)100

≈ exp(− 1
7.5

) ≈ 0.88.

So this is relatively safe (12% chance of contact).
On the other hand, on April 13, 2021 the 7-day average number of

new cases was about 2,100, about 3.4 times higher. So the probability
will now be

p2 ≈ (0.88)3.4 ≈ 0.65.

So there is more than 1 in 3 chance that there is a contagious person
in the car, between any two stops of the train, (35%).

Another question is whether this person will infect you, or not.
This depends on how far away you are, how long you are exposed, and
whether any of you or both wear a mask (which was required at that
time). If you both do, this may well not happen.

Example 7. How safe is a 100-person camp starting August 14,
2021 (say, with all participants from Massachusetts, for simplicity)?

but we should correct for the demographics by multiplying by about 4/3, which
gives 17%. For the US, as we have computed, this percentage is about 29%.
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We look up the 7-day average of new cases on that day, it is about
1,200. So over 10 days it’s 12,000. So we should assume that there
are 18,000 contagious people walking around, about 1 in 400. So the
probability of having no contagious person in the camp is

p3 = (1− 1
400

)100 ≈ 0.78,

i.e., there is a 22% chance of an infectious person in the camp. However,
CDC says that a vaccinated person is 3 times less likely to be infected.
So if everyone in the camp is vaccinated, we get

p4 ≈ 0.781/3 ≈ 0.92,

i.e., 8% chance of an infected person in the camp. So to make it safer,
the camp may require PCR tests for participants, possibly also rapid
tests at the entrance. This will lower the chance significantly (at least
by a factor of 2), bringing the risk to 4% or less. And if participants of
the camp are not random and mostly come from families of people who
work from home and don’t go to big gatherings and/or live in parts
of the state with lower incidence of covid, then this will be further
diminished.

6. Incubation period

There is, however, an aspect in which this calculation is too op-
timistic if a surge is just beginning. The issue is that covid, like many
infectious diseases, has an incubation period, and also it takes time
for a test to get through. For this reason, infection cases (those which
do get discovered) are discovered with a delay. This is shown clearly
on Chart 7 in https://tomaspueyo.medium.com/coronavirus-act-

today-or-people-will-die-f4d3d9cd99ca, where the delay for covid
is taken to be 8 days. We have seen that for R0 = 3 and tr = 7 days,
the doubling time is 2.5 days, so during this delay period the number of
infections grows more than 8-fold. Thus when we look at the number
of new cases, we should multiply this number by 8. This means that
during this period, for every fatality we have about 1,000 sick
people walking around (most of them yet undiscovered!)

In the camp safety problem, the doubling time in Massachusetts
is about 14 days, so we should multiply the number of actual cases only
by about 1.5. This increases the risk roughly by the same factor.

7. Shelter-in-place orders

During the covid pandemic many cities and countries issued shelter-
in-place orders. For example, in March 2020 Israel issued an order that

https://tomaspueyo.medium.com/coronavirus-act-today-or-people-will-die-f4d3d9cd99ca
https://tomaspueyo.medium.com/coronavirus-act-today-or-people-will-die-f4d3d9cd99ca
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people should not go further from their house than 100 meters. Why
is this helpful, and how much?

To understand this, we may use a very simple model. First sup-
pose that people ride a subway in a big city. An infectious person
remains infectious only one day, but during this day infects four neigh-
bors on the subway car. Suppose one infectious person comes to the
city. How many people will be infected in one week? In n days (when
n is not too large) we get N = 4n, so in a week N = 47 ≈ 16, 000.
(Basically, we have the discrete time model with R0 = 4 and tr = 1).

On the other hand, assume that the city is under a shelter in place
order. We will model it by people sitting at vertices of a square lattice
(points with integer coordinates), and every day an infected person
infects four neighbors at distance ≤ 5 from that person. (of course, if
one of them is already infected, nothing happens). How many people
will be infected in one week from one person at (0, 0)? In n days the
infected people will be restricted to the disk of radius 5n around the
origin, and the number of points in this disk is about π · (5n)2, which
gives an upper bound for the number of people infected. In particular,
in one week we get π · 352 < 4, 000.

We see that the infection spreads much slower under the shelter-
in-place order (it grows quadratically, rather than exponentially). This
is because after a while, many of the neighbors being infected at each
step are already infected, so in reality each infected person infects less
than 4 people (so R0 < 4 and decreases with n, approaching 1 for large
n).

8. Variants

Biologists explain that a virus mutates towards higher transmis-
sibility (and this is what happened and continues to happen with the
coronavirus). Why does this happen?

Mutation is a random process, and on a rare occasion it produces,
purely by chance, a more transmissible variant. And if this variant
manages to spread widely enough, it will beat the one in circulation and
become prevalent. To understand why this happens and how quickly,
let us consider the following simple model.

Suppose the existing variant has Re = 1.5, while the new one
has Re = 2. Suppose initially the new variant comprises only 1% of
cases. Suppose both variants grow exponentially. How fast will the
new variant become prevalent?

After (rescaled) time T , the first variant grows by e0.5T , while the
second one by eT . So the proportion of the second variant in time T
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will be approximately

P =
0.01eT

0.01eT + 0.99e0.5T
=

1

1 + 99e−0.5T
.

So the value of T when the second variant becomes prevalent is a
solution of the equation

99e−0.5T = 1,

i.e.,

T = 2 log 99 ≈ 9.2.

If tr = 7 days, we get that the second variant becomes 50% prevalent
in about 9 weeks, i.e., about 2 months.

What about 90% prevalence? This happens when

99e−0.5T =
1

0.9
− 1 =

1

9
so

T = 2 log 891 ≈ 13.6.

So this happens in another month.

9. Vaccine safety

Adverse effects of vaccination can be reported to VAERS (Vaccine
Adverse Effects Reporting System). Since covid vaccinations started,
this system has recorded a sharp increase in the number of reported se-
rious complications and deaths. In particular, the system has recorded
1,736 deaths in the US on days 0,1,2 after vaccination. Antivaxxers
are eager to point out that this is as much as from all other vac-
cines ever since 1990! (see https://www.ronjohnson.senate.gov/

services/files/A4A76F9A-9B29-4CF9-B987-F9097A3F4CB7).
Does it mean covid vaccines are dangerous, more so than other

vaccines administered previously, as is claimed by antivaxxers?
Let us compute. One thing important to remember is that deaths

reported to VAERS are deaths after vaccination, not necessarily be-
cause of vaccination. Now, covid vaccines have been given to more
than 2/3 of elderly population in the US. Every year in the US there
are about 3 million deaths, most of them elderly people. So about 2
million of them are vaccinated. This is about 6,000 deaths per day,
or 18,000 per three days. 10 times as much as people dying on day
0,1,2 after vaccination in the VAERS system! So even if they don’t
vaccinate people who are ”actively dying”, this easily accounts for the
deaths reported at VAERS (since more than 10% of deaths happen
suddenly).

https://www.ronjohnson.senate.gov/services/files/A4A76F9A-9B29-4CF9-B987-F9097A3F4CB7
https://www.ronjohnson.senate.gov/services/files/A4A76F9A-9B29-4CF9-B987-F9097A3F4CB7
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But what about this figure being as big as all the deaths from
vaccines in the previous 30 years? Is this alarming? Let us compute
again. Remember, the covid vaccination campaign of 2021 was un-
precedented, by far largest in human history. How many times are you
vaccinated in your life? Just a few times. So the number of covid vac-
cinations is at least, say, 1/3 of other vaccinations in the last 30 years.
And these are done when you are a kid or a young person, much less
likely to die!11

We see that the VAERS data does not, in fact, give any grounds
for questioning the safety of covid vaccines.

10. Vaccine efficacy

Vaccine efficacy, or efficiency, is said to be p if it reduces the
probability to get infected, symptomatic, become seriously ill, or die of
the disease by a factor 1 − p. It is usually given as a percentage. For
example, efficacy of 40% against infection means that the probability
of getting infected is multiplied by 0.6.

Vaccine efficacy can be estimated by looking at breakthrough
cases, i.e. covid cases among fully vaccinated people. CDC has been
keeping track only of the serious cases, which led to hospitalization or
death. There are about 8,000 such cases for the period May 1-August
9, 2021. What does it tell us about vaccine efficiency against serious
disease?

Let us compute. There have been 3.5 million registered covid
cases in the US during this period. On average, during this period,
40% of the population had been vaccinated (in fact, more among older
people, but we will neglect that). So we may assume that at least 1.4
million of these cases were among the vaccinated. So we obtain that
CHR among the vaccinated is ≤ 8

1400
= 0.57%. For comparison, as we

computed, the CHR among general population is about 5.7%, which
is 10 times more. So we see that vaccines are at least 90% effective
against serious disease.

The number of breakthrough fatalities during the same period
was about 1,500. This gives CFR among the vaccinated of about 0.1%
and IFR about 0.05%, twice less than seasonal flu. This is 15 times less
than for unvaccinated (0.75%), giving efficacy of at least about 94% at
preventing death from covid-19. In fact, these figures are even bigger

11Here we excluded flu shots, which are performed in large quantities every year.
However, since they have been around for many years, deaths “from a flu shot” are
rarely reported to VAERS.
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since the vaccination rate among the older population was higher than
40%.12

Also during this period there were about 40,000 covid deaths, so
only 3.7% of covid deaths occurred among vaccinated people. Given
that 2/3 of the older population was vaccinated, this needs to be di-
vided by 2, which shows that in fact vaccination decreases the proba-
bility of dying from covid by a factor of 30. In other words, there is
97% efficacy at preventing death from covid-19.

For the delta variant, vaccines are less effective at preventing the
infection itself (in mild form). Israel reports 40% for Pfizer. So the

vaccine replaces R0 with R̃0 = 0.6R0 if all people are vaccinated. This
does not seem like much, so what’s the point of organizations (such
as MIT, for instance) to require vaccination? Well, let us compute.

Suppose initially R0 = 2. Then R̃0 = 1.2, so this increases the dou-
bling time 5-fold! Adding regular testing, one may further decrease R0

to a value below 1, making it impossible for the infection to spread
altogether.

Example 8. On August 15, 2021, in Israel there were 214 unvac-
cinated and 301 fully vaccinated hospitalized covid patients (https://
www.covid-datascience.com/post/israeli-data-how-can-efficacy-

vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated).
Does this mean the vaccine does not work against serious disease? Let
us compute. Here is the age distribution of these patients, with vacci-
nation rates given in green:

Thus, computing over the whole population, we get about 67%
efficacy, while if we compute more carefully for age groups, we get
efficacy of about 92% in the population under 50 and 85% in the
population over 50, both much bigger than 67%! This is an instance
of the so-called Simpson’s paradox: https://en.wikipedia.org/

wiki/Simpson%27s_paradox.

12On the other hand, not all breakthrough cases may be reported.

https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://en.wikipedia.org/wiki/Simpson%27s_paradox
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11. The SIR epidemiological model

Let us now discuss the most basic model of infection spread –
the SIR model, https://en.wikipedia.org/wiki/Compartmental_
models_in_epidemiology.

11.1. The SIR differential equations. The SIR model has two un-
known functions – the fraction of susceptible population S = S(t)
and the fraction of infected population, I = I(t). We also have the
fraction of removed population, R = 1− I−S, all the remaining peo-
ple who are removed from the epidemic through recovery or death (this
explains the abbreviation SIR). Thus the fraction of people infected by
the time t is N(t) = 1− S(t).

Infections are passed from the infected to the susceptible, so the
number of new infections appearing per unit of time is proportional to
IS, and the coefficient is the effective contact rate β = t−1c . Thus for
the rate of change of S we get the first equation of the SIR model:

dS

dt
= −βIS.

The second equation of the SIR model describes the rate of change
of I. This change comes from two sources: (1) susceptible people
become infected (the rate of this, according to the first equation, is
βIS), and (2) infected people are removed (recover or die). The rate
of such removal is, of course, proportional to I, namely, it equals γI
where γ = t−1r is the infectious rate. So the second equation of the
SIR model is

dI

dt
= βIS − γI.

Recall that we rescaled time by setting T := γt. We then get

dS

dT
= −R0IS,

dI

dT
= R0IS − I,

where R0 = β
γ

= tr
tc

is the basic reproduction ratio.

The initial conditions are I(0) = I0, S(0) = S0 = 1− I0 for some
small I0 > 0 (the epidemic begins from just a handful of cases, which
is a tiny fraction of the population). By Picard’s theorem, there is a
unique solution with such initial conditions, which describes the spread
of the infection.

Note that when T is small, I is small and S is close to 1, so the
second equation of the SIR system is well approximated by the linear
equation

I ′ = cI, c := R0 − 1,

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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giving

I(T ) ≈ I0e
cT ,

as we already discussed above. This is the initial period of exponential
growth.

The second equation also tells us at which point the infection
(i.e., the number of active cases I(T )) starts to wane. This happens
when dI

dT
= 0, i.e., R0S = 1, which yields S = 1/R0. Thus the total

number of people who have been infected by this time is

H = 1− S = 1− 1

R0

,

which is the herd immunity threshold.

11.2. Solving the SIR equations. To find the solution of the SIR
equations, note that we can eliminate I using the first equation:

I = − S ′

R0S
= −(logS)′

R0

.

Then the second equation takes the form

−(logS)′′ = −R0S
′ + (logS)′.

Thus, integrating, we get

−(logS)′ = C −R0S + logS.

The initial condition tells us that

R0I0 = R0(1− S0) = C −R0S0 + logS0.

So

C = R0 − logS0.

Thus we get

−(logS)′ = R0 −R0S + log
S

S0

,

i.e.,

(2) S ′ = S(R0(S − 1)− log(S/S0)).

with initial condition S(0) = S0.
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11.3. How many people will never get sick? This, in particular,
tells us what fraction of the population S∞ will never get sick (curiously,
it is not zero!). Namely, it is determined by the condition that S ′ = 0,
which leads to the transcendental equation

R0(S∞ − 1) = log(S∞/S0).

Exponentiating, we get

e−R0eR0S∞ = S−10 S∞.

So setting Q := R0S∞, we get

Qe−Q = S0R0e
−R0 .

Thus introducing the Lambert function

W (x) =
∞∑
n=1

nn−1

n!
xn

which is inverse to f(y) = ye−y (as follows from the Lagrange inversion
theorem), we obtain

Q = W (S0R0e
−R0),

i.e.,

S∞ =
W (S0R0e

−R0)

R0

≈ W (R0e
−R0)

R0

(as S0 is close to 1). Note that W (R0e
−R0) is the second solution of

the equation xe−x = R0e
−R0 (the first solution is R0). For R0 = 1 both

solutions are 1 (maximum point for the function y = xe−x). Thus if
R0 = 1 + c for small c then W (R0e

−R0) ≈ 1 − c. So for R0 close to 1
we have

S∞ ≈
1− c
1 + c

≈ 1− 2c.

So the fraction of people who will get sick is about 2c, or about 2H,
where H is the herd immunity threshold. In other words, the herd
immunity threshold is reached approximately in the middle of the epi-
demic.

On the other hand, for large R0

S∞ ≈ e−R0 ,

i.e., decays exponentially fast with R0.

Example 9. If R0 = 1.2 (seasonal flu) we have S∞ ≈ 0.68,
i.e. about 32 % will get sick (although the herd immunity threshold
is H = 1 − 1

1.2
≈ 16.6%, about half as much, as expected). If R0 = 2

(optimistic estimate for the original covid strain) then S∞ ≈ 0.2 so
80% will get sick (while H = 1 − 1

2
= 50%). But if R0 = 8 (the delta
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variant) then S∞ ≈ 0.00033, i.e. only 3 people in 10, 000 will remain
uninfected. Virtually everyone will get sick! (However, in real life the
epidemic will usually be mitigated, so R0 will quickly drop to a much
smaller value).

11.4. Logistic growth. This tells us the behavior of S(T ) at the end
of the epidemic. Namely, as T → ∞, the function S(T ) approaches
S∞, and the derivative of the function S(R0(S− 1)− log(S/S0)) at S∞
is

−D = 2R0S∞ −R0 − log(S∞/S0)− 1 ≈ 2R0S∞ −R0 − log(S∞)− 1.

So for R0 close to 1 we have D ≈ R0 − 1, while for large R0 we have
D ≈ 1.

Thus for large T we have

S(T ) ≈ S∞(1 + e−D(T−T1)).

for some T1 ∈ R. So

I(T ) =
D

R0(1 + eD(T−T1))
≈ D

R0

e−D(T−T1).

This is the range of logistic growth.

11.5. The exact solution of the SIR equations. Let us now come
back to solving the SIR equations. Separating variables, we have

dS

S(R0(S − 1)− log(S/S0))
= dT.

So

T =

∫ S0

S

dx

x(R0(1− x) + log(x/S0))
=

∫ R0

R0+log(S/S0)

dv

v −Kev
,

where
K := S0R0e

−R0

(setting v := R0 + log(x/S0)). So define the special function

VK(u) :=

∫ u

1

dv

v −Kev

(it cannot be expressed more explicitly). Then we get

T = VK(R0)− VK(R0 + log(S/S0)).

So we obtain the exact solution in implicit form:

S(T ) = R−10 KeV
−1
K (T0−T ),

where T0 := VK(R0). So we see that as S0 → 1 (i.e., I0 → 0), the
function S(T ) does not depend on S0 very much, except it gets shifted
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by VK(R0). Moreover, the exponential form of the solution for small T
implies that this time shift is

T0 ≈ −
log I0
c

.

11.6. The approximate solution. When S is close to 1, we have an
approximation

log(S) ≈ S − 1.

Thus at the beginning of the epidemic the differential equation for S
can be approximated by

S ′ = cS(S − 1).

Moreover, c := R0 − 1 is small then his approximation is good for all
T since we know that in this case S will never get below a threshold
approximately equal to 1− 2c.

This equation can be solved explicitly:

S(T ) =
1

1 + (S−10 − 1)ecT
.

So the total share of infected people by the time T is

B(T ) = 1− S(T ) =
(1− S0)e

cT

S0 + (1− S0)ecT
=

1

1 + e−c(T−T0)
,

where

T0 =
log S0

1−S0

c
.

So what does this approximate solution look like? The rate of
growth B′(T ) (i.e., the renormalized number of new infections) is

B′(T ) = −S ′(T ) =
S0c
1−S0

e−cT

(1 + S0

1−S0
e−cT )2

=
c

4 cosh2 c(T−T0)
2

.

This has the shape of a solitary wave that we often see on the news.

11.7. Duration of the surge. Thus

T = T0 −
1

c
log

(
1−B
B

)
.

So if B = 0.05 then

T ≈ T0 −
3

c
,

while if B = 0.95 then

T ≈ T0 +
3

c
.
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So if we define the duration of the epidemic as the period between
B = 0.05 and B = 0.95, we will get the value

T =
6

c
.

In other words, the actual duration is

t =
6tr
c
.

For example, assume that R0 = 1.5 and tr = 7 days (slightly mitigated
original strain of covid). Then t = 84 days. This is close to the duration
of the first covid wave.
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