Lecture 4. Modules

Let R be a ring. An R-module is an abelian group M, written additively, with scalar multiplication $R \times M \rightarrow M$ s.t.
\[x(m_1 + m_2) = x m_1 + x m_2 \]
\[x(y m) = (x y) m \]
\[1 \cdot m = m. \]

Example: if R is a field, an R-module is a vector space.

A Z-module is an abelian group.

A submodule $N \subseteq M$ is a subgroup closed under scalar mult.

Example: R is an R-module, submodules $= \text{ideals of } R$.

An ideal M, R-module $\Rightarrow \alpha M \subseteq M$ submodule.

Annihilator of $m \in M$ is $\text{Ann} \{x \in R \mid x m = 0\}.

\text{Ann} (M) = \{x \in R \mid \forall m \in M \quad x m = 0\}$. These are ideals.

Homomorphisms: M, N R-modules, $\varphi : M \rightarrow N$

Homomorphisms are homomorphisms of groups.

Def. φ is a module homomorphism if it commutes with scalar mult., i.e. $\varphi(x m) = x \varphi(m)$.

Hom $\in \text{End}_R(M)$, $\text{End}_R(M)$ is a module.

Isomorphism \Rightarrow bijective homomorphism. In this case φ^{-1} is also a homomorphism.

Set of homomorphisms $\text{Hom}_R (M, N) = \text{Hom}_R (M, N)$.

This is also an R-module.

Endomorphisms: $\text{End}_R (M) = \text{Hom}_R (M, M)$

Endomorphisms is an R-module.

Endomorphisms: $\text{End}_R (M)$ also denoted $\text{End}_R (M)$ or $\text{End}(M)$

E.g. $\forall x \in R \quad \mu_x : M \rightarrow M \mu_x(m) = x m. \quad \mu_x \in \text{End}_R (M)$.
So have \(\mu : R \rightarrow \text{End}_\mathbb{Z} M \). (note that the latter is noncommutative). Also \(\mu : R \rightarrow \text{End}_\mathbb{Z} M \) is the same thing as a module structure.

Faithful module: \(\mu \) is injective, or \(\text{Ann}(M) = 0 \).

E.g. \(R \) is a faithful module \((x \cdot 1 = 0 \Rightarrow x = 0)\).

Algebras: \(R^1 \rightarrow R \Rightarrow \) \(R^1 \) is an \(R \)-algebra.

Then any \(R \)-module is also an \(R^1 \)-module via restriction of scalars. In particular, \(R^1 \) is an \(R \)-module.

Suppose \(R^1 = R/\alpha \). Then an \(R \)-module \(M \) comes from an \(R^1 \)-module \((\text{descends to } R^1) \) if \(\alpha M = 0 \).

Subalgebra: \(R'' \subset R^1 \) being closed under scalar mult. by \(R \). \(R'' \) generated by \(x_1, \ldots, x_n \in R^1 \) is the smallest subalgebra containing them. We denote it by \(R[[x_1, \ldots, x_n]] \). If \(R'' = R^1 \), say \(R^1 \) is gen. by \(x_1, \ldots, x_n \). Not we can have relations between \(x_i \).

Fr. gen. algebra over \(R \): \(R = R[x_1, \ldots, x_n] \).

Residue module. (quotient). \(R \) rig. \(M / M' \) modules. \(M / M' \) is an \(R \)-module.

\(\varphi : M \rightarrow N \) homomorphism. Then \(\varphi \) descends to \(\varphi : M / M' \rightarrow N \) \(\iff \varphi / M' = 0 \).

\(\bar{\varphi} : M / \ker \varphi \rightarrow N \) inj. \(\bar{\varphi} : M / \ker \varphi \rightarrow \text{Im} \bar{\varphi} \) isom. So \(M / M' \) has a UMP: \(\text{Hom}(M / M', N) \hookrightarrow \{ \bar{\varphi} : M \rightarrow N / \ker \varphi \}_{\text{isom}} \).
Cyclic modules: M cyclic if $\text{Im} \phi = M$

$M = R \cdot m$. Then $R/\text{Ann}(M) \cong M$. So cyclic modules with fixed M are exactly R/\mathfrak{a}, or \mathfrak{a} a R ideal.

Noether isomorphisms: $\text{LCM}CN$

$N \cong N/M$
\downarrow
$N/\mathfrak{a} \cong (N/\mathfrak{a})/M/\mathfrak{a}$

$L, M \in N, L + M = \{l + m, l \in L, m \in M\}$.

$L \rightarrow L/(L \cdot 0)M$

\downarrow

$L + M \rightarrow (L + M)/M$

Cokernels, coimages: R a ring $\phi: M \rightarrow N$ linear map (homom).

$\text{Coker} \phi = N/\text{Im} \phi$
$\text{Coim} \phi = M/\ker \phi$.

$\text{Coim} \phi \cong \text{Im} \phi$. By first Noether isom.

UMP of cokernel: $\text{Hom} (\text{coker} \phi, P) = \{ \psi \in \text{Hom} (N, P) | \psi \circ \phi = 0 \}$.

Free modules: A set M an R-module,

$m, n \in M$. Say M generate M if $M = \{ \sum_{\alpha \in \Lambda} a_{\alpha} m_{\alpha} | a_{\alpha} \in R \}$.

Almost all monomials are 0. Similarly define submodule generated by m_{α} (if it is not the whole M).

$\{m_{\alpha}\}$ linearly independent if $\sum a_{\alpha} m_{\alpha} = 0$
$\Rightarrow a_{\alpha} = 0$.
M free if it has a lin. indep. set of
generators (a basis). E.g. a vector space
is always free.

M is fin. gen. if it has a finite set of gen.
We'll see below that any two linear
have the same number of elements.
So M free of rank ℓ if M has a basis of
ℓ elements. Write rank $(M) = \ell$.

Ex. $R^\infty = RA$ - restricted vectors
$(x_\ell) \ : \ x_\ell \in R \ \ , \ \ x_\ell = 0 \ \text{for almost all } \ell$.
Has standard basis $e = (0, 1, 0)$.

$\text{Hom}(RA, M) = \text{Maps}(\Lambda, M)$. (U^M of RA).

$\Psi : RA \to M$

Ψ surjective $\Leftrightarrow M$, gen. M

injective $\Leftrightarrow M$, lin. indep.

bijective $\Leftrightarrow M^\times$ is a free basis.

M free of ℓ $\Leftrightarrow M \cong \mathbb{R}^\ell$.

Ex. Q over \mathbb{Z} is not free, not f.-gen., as
a module or even as an algebra.

Thm. R a PIB, E a free R-module,
ℓ a free basis, FCE submodule, then F has
which has a basis indexed by a subset
of Λ.
Proof. Well order \(\Lambda \). For all \(\lambda \), let \(\pi_\lambda: E \to \mathbb{R}^\lambda \) be the \(\lambda \)-th projection. For \(\mu \), let \(E'_\mu = \bigoplus_{\ell \neq \mu} R_{e_\ell} \), \(F_\mu = F \cap E'_\mu \). Then \(\pi_\mu(F_\mu) = \langle a_\mu \rangle \subset \mathbb{R} \), as \(\mathbb{R} \) is a P.D. Choose \(f_\mu \in F_\mu \) with \(\pi_\mu(F_\mu) = a_\mu \). Set \(\Lambda_0 = \{ \mu \mid \mu \in \Lambda, a_\mu \neq 0 \} \). We will show that \(\{ f_\mu \mid \mu \in \Lambda_0 \} \) is a free basis of \(F \).

First show that \(\{ f_\mu \mid \mu \in \Lambda_0 \} \) are linearly independent. Suppose \(\sum_{\mu \in \Lambda_0} c_\mu f_\mu = 0 \) for some \(c_\mu \in \mathbb{R} \). Let \(\Lambda_1 = \{ \mu \in \Lambda_0 : c_\mu
eq 0 \} \) (finite set). Suppose \(\Lambda_1 \neq \emptyset \). Let \(\mu_1 \) be the greatest elem. of \(\Lambda_1 \). Then \(\pi_{\mu_1}(f_\mu) = 0 \) for \(\mu < \mu_1 \), as \(f_\mu \in E'_\mu \).

So \(\pi_{\mu_1} \left(\sum_{\mu \in \Lambda_0} c_\mu f_\mu \right) = c_{\mu_1} a_{\mu_1} \). But \(c_{\mu_1} \neq 0 \) and \(a_{\mu_1} \neq 0 \), a contradiction. So \(\{ f_\mu \mid \mu \in \Lambda_0 \} \) are lin. ind.

Now we prove the spanning property of \(f_\mu \). Let \(\Lambda_1 = \{ \mu \in \Lambda_0 : \mu \leq \lambda \} \). Suppose \(\Lambda_2 \) is least such that \(\{ f_\mu \mid \mu \in \Lambda_2 \} \) does not generate \(F_\lambda \). This exists because our order is a well-order. Given \(f \in F_\lambda \), let \(f = \sum_{\mu \in \Lambda_1} c_\mu f_\mu \), \(c_\mu \in \mathbb{R} \), so \(\pi_{\lambda}(f) = (c_{\lambda}) \).

But \(\pi_{\lambda}(F_\lambda) = \langle a_{\lambda} \rangle \). So \(c_{\lambda} b_\lambda a_{\lambda} \) for some \(b_\lambda \in \mathbb{R} \).

Let \(g = f - b_\lambda f_\lambda \). Then \(g \in F_\lambda \), \(\pi_{\lambda}(g) = 0 \). So \(g \in F_\nu \) for some \(\nu \in \Lambda_0 \) with \(\nu < \lambda \).
Hence \(g = \sum_{\mu \in \Lambda} b_{\mu} f_{\mu} \) for some \(b_{\mu} \in R \).

So \(f = \sum_{\mu \in \Lambda} b_{\mu} f_{\mu} \), a contradiction.

Thus, \(\{ f_{\mu} \} \) is a basis, as desired.

Ex. \(R = \mathbb{C}[x, y] \), \(\langle x, y \rangle \) is not a free module.

Direct product: \(\prod_{\lambda \in \Lambda} M_{\lambda} = (m_{\lambda}) \) (vectors)

Direct sum: \(\bigoplus_{\lambda \in \Lambda} M_{\lambda} = (m_{\lambda}) \), almost all \(\lambda \in \Lambda \) are 0. (restricted vectors).

But if \(\Lambda \) is finite, they are the same.

\[
\text{Hom}(L, \prod_{\lambda} M_{\lambda}) = \prod_{\lambda} \text{Hom}(L, M_{\lambda})
\]

\[
\text{Hom}(\bigoplus_{\lambda} M_{\lambda}, L) = \prod_{\lambda} \text{Hom}(M_{\lambda}, L).
\]