The dimension of M
\[\dim M = \max \{ \dim (R/I) : I \text{ a chain of primes} \} \]
Assume R Noetherian, M f.gen. Then M has fin. many min. assoc. primes. They are also min. primes in $\text{Supp} M$. Thus
\[\dim M = \max \{ \dim R/I_0 : I_0 \in \text{Supp} M \text{ minimal} \} \]

Parameter. R a ring, $M \cong R$-mod.
Denote \mathfrak{m} of max. ideals in $\text{Supp} M$ as $\text{rad} M$, and call it the radical of M.
If there are fin. many such max. ideals, call M semilocal.
Call $q < \text{rad} M$ a parameter ideal for M if M/qM is Artinian.
\[\text{Ex: } M = R = \left[E[x_1, \ldots, x_e] / I \right]_m \text{ then } \text{rad } M = m \]
Assume M is f.gen. Then $\text{Supp } M = V(\text{Ann } M)$
So M is semilocal $\iff R/\text{Ann } M$ is a semilocal ring.

Assume R Noetherian, so M Noetherian.
Fix $q < R$. Then M/qM is Artinian $\iff \ell(M/qM) < \infty$.
But $\ell(M/qM) < \infty$ $\iff \text{Supp } (M/qM)$ consists of fin. many max. ideals, etc.
Also
$$\text{supp} \left(\frac{M}{qM} \right) = \text{Supp}M \setminus V(q) = V(\text{Ann} M) \setminus V(q)$$

$$= V(\text{Ann} M + q).$$

Set $q' = \text{Ann} M + q$.

Then M/qM is Artinian $\implies V(q')$ consists of f.m. max ideals

$$\implies (\text{Akhizuki-Hopkins}) \ R/q', \text{ Artinian}.$$
So by exer 19.18 R/q', Artinian

$$\implies q'$ is cont a product of max ideals each containing q'.

So each lies in $\text{supp} M$, hence contains $\text{rad}(M)$. Thus R/q' Artinian $\iff q' \supset m^n$ for some n. Assume M semilocal, so $\text{Supp} M$ has f.m. many max ideals. Then their product is cont in m. Thus, conversely, if $q' \supset m^n$ for some $n > 0$, then R/q' Artinian. Thus:

Prove: q is a parau ideal \iff

$m \supset q' \supset m^n$ for some n, or

iff $m = \sqrt{q'} (\iff V(m) = V(q'))$.

In particular, m^n is a parau ideal $\forall n$.
Assume \(q \) is a parameter ideal. Then the Hibi-Keel-Samuel polynomial \(P_q(M, n) \) exists. Also \(P_{m}(M, n) \) exists, and the two polynomials have the same degree. (by exercise above), since \(m = \sqrt{q} \) and \(P_{m} = P_{q} \). Thus the degree is the same for any parameter ideal. Denote this common degree by \(d(M) \).

(See ex. R local ring of a variety, \(M \) f.g. \(R \)-module).

Alternatively, \(d(M) = \text{order of polyg at } 1 \) of \(H(E_{M}, t) \) (it is 1 less than that of \(E_{M}, t+1 \)).

Let \(s(M) \) be the smallest \(s \) such that \(x_1 \ldots, x_s \in M \) with \(l(M/x_1 \ldots, x_s M) < \infty \). (if \(l(M) < \infty \) then \(s(M) = 0 \)). We say that \(x_1 \ldots, x_s \in M \) form a system of parameters for \(M \) if \(s = s(M) \) and \(l(M/x_1 \ldots, x_s M) \) holds. Such a sop generates a parameter ideal.
Lemma. R Noeth, $M \neq 0$ a Noeth semilocal module, Q a prun ideal of M, $x \in \text{rad } M$.

Let $K = \text{Ker } (M \rightarrow M)$.

1. $s(M) \leq s(M/xM) + 1$.

2. $\dim (M/xM) \leq \dim M - 1$ if $x \neq 0$ for any $\emptyset \neq \text{supp } M$ with $\dim R/\emptyset = \dim M$.

3. $\deg (p_q (K, n) - p_q (M/xM, n)) \leq d(M) - 1$.

Proof. For (1), let $x \in s(M/xM)$. Then $x_1, \ldots, x_s \in \text{rad } (M/xM)$ with $\ell (M/\langle x, x_1, \ldots, x_s \rangle M) < \infty$.

Also $\text{supp } M/xM = \text{supp } M/\text{N} (\langle x \rangle)$. But $x \in \text{rad } M$, so $\text{supp } M/xM$ and $\text{supp } M$ have the same max. ideals. So $\text{rad } (M/xM) = \text{rad } M$.

Thus $s(M) \leq s + 1 \implies (1)$.

For (2) Take chain $\emptyset_0 \supsetneq \emptyset \supsetneq \emptyset \supsetneq \emptyset_0$ in $\text{supp } M/xM$.

Again $\text{supp } M/xM = \text{supp } M/\text{N} (\langle x \rangle)$. So $x \in \emptyset_0 \subseteq \text{supp } M$.

So $\dim R/\emptyset_0 < \dim M$ by hypothesis.

Hence $r \leq \dim M - 1 \implies (2)$.

To prove (3), note $xM = \text{Im } M/xM$. Form two exact sequences.
0 \to K \to M \to xM \to 0
0 \to xM \to M \to M/xM \to 0.

Thus \(d(K) \leq d(M) \), \(d(xM) \leq d(N) \).

Also
\[
P_2(K, n) + P_2(xM, n) - P_2(M, n)
\]
and
\[
P_2(xM, n) + P_2(M/xM, n) - P_2(M, n)
\]
are of degree \(\leq d - 1 \).

So their difference is too. Thus get (3).

Thm. (Dimension). \(R \) Noetherian, \(M \neq 0 \) a f.g. semi-local module. Then
\[
\dim M = d(M) = s(M) < \infty.
\]

Pf. Let's prove a cycle of inequalities.
First let us show \(\dim M \leq d(M) \). We proceed by induction in \(d(M) \). Suppose \(d(M) = 0 \).
Then \(\ell(M/M_{m+1}M) \) stabilizes. So \(m^n M = m^{n+1} M \)
for some \(n \). Hence \(m^n M = 0 \) by Nakayama lemma applied over the semi-local ring
\(R/\text{Ann}(M) \). So \(\ell(M) < \infty \). So \(\dim M = 0 \). (exercise above)

Suppose \(d(M) \geq 1 \). Then \(\dim R/M_{\phi_0} = \dim M \)
for some \(\phi_0 \in \text{supp} M \). Then \(\phi_0 \) is minimal.
So \(\phi_0 \in \text{Ass } M \). Hence \(M \) has a submodule
from \(R/\phi_0 \). Further, \(d(N) \leq d(M) \).
Take a chain of primes $p_0 \neq p_r \in \text{Supp} \ N$. If $r = 0$ then $r \leq d(M)$. Suppose $r = 1$. Then we have $x \notin \mathfrak{p}_1 \setminus p_0$. Also since p_0 is not maximal for each maximal ideal $n \in \text{Supp} \ N$, there exists $x_n \in n \setminus p_0$. Set $x = x_1 \Pi x_n$.

Then $x \in (p_1 \cap n) \setminus p_0$. Then $p_1 \neq p_0$ lies in $\text{Supp} \ N \setminus N(\langle x \rangle)$, which is $\text{Supp} (N/xN)$. So $r - 1 \leq \dim (N/xN)$.

However, M is injective on N as $N \cong R/p_0$ and $x \notin p_0$. So by previous lemma, we get $d(N/xN) \leq d(N) - 1$.

But $d(N) \leq d(M) = d(\mathfrak{p}_1)$ so $\dim (N/xN) \leq d(N/xN)$ by the induction hypothesis. Thus $r \leq d(M)$.

Thus $\dim M \leq d(M)$.

Second, let's prove $d(M) \leq s(M)$. Let g be a prime ideal of M with $s(M)$ generators. Then $d(M) = \deg P_g(M, n)$, but $\deg P_g(M, n) \leq s(M)$.

Finally, let's prove that $s(M) \leq \dim M$.

Let $r := \dim M$, which is finite since $r \leq d(M)$.

The proof is by induction on r.

If $r = 0$ then M is of finite length, so $s(M) = 0$ and there is nothing to prove.
- 7 -

Suppose \(r \leq 1 \). Let \(P_1, \ldots, P_n \) be the primes of \(\text{Supp} M \) with \(\dim R/P_i = r \). No \(P_i \) is maximal as \(r \leq 1 \). So \(m \notin P_i \). Hence by prime avoidance \(\exists x \in m \) s.t. \(x \notin P_i \) for any \(i \).

So, the previous lemma yields \(s(M) \leq s(M/xM) + 1 \), and \(\dim (M/xM) + 1 \leq r \).

By id. hypoth, \(s(M/xM) \leq \dim M/xM \).

So \(s(M) \leq s(M/xM) + 1 \leq \dim M/xM + 1 \leq \dim M = r \), as desired. \(\Box \)

Corollary. \(R \) Noetherian, \(M \) a Noetherian semilocal module, \(x \in \text{rad} (M) \). Then \(\dim (M/xM) \geq \dim M - 1 \), with equality if \(x \notin \mathfrak{p} \) for \(\mathfrak{p} \in \text{Supp} M \) with \(\dim (R/\mathfrak{p}) = \dim M \).

Equality holds if \(x \notin 2 \text{div}(M) \).

Pf. By lemma above, we have \(s(M/xM) \geq s(M) - 1 \). So by this the asserted inequality holds. If the cond is satisfied, lemma above gives the opposite ineq, so equality. Finally, if \(x \notin 2 \text{div}(M) \), then \(x \notin \mathfrak{p} \) for \(\mathfrak{p} \in \text{Supp} M \) with \(\dim (R/\mathfrak{p}) = \dim M \) (as \(\mathfrak{p} \) is an assm. prime).
The height of \mathfrak{p}, $\text{ht}(\mathfrak{p})$, is defined by the formula:

$$\text{ht}(\mathfrak{p}) = \sup \{|\mathfrak{p}| : \exists \text{ a chain of primes } \mathfrak{p}_0 \supsetneq \cdots \supsetneq \mathfrak{p}_r = \mathfrak{p}\}.$$

Thus $$\text{ht}(\mathfrak{p}) = \dim(R_{\mathfrak{p}}).$$

(by bij. correspondence of primes under localization).

If $\text{ht}(\mathfrak{p}) = h$, call \mathfrak{p} a height h prime.

Cor. If \mathfrak{p} is a height h prime.

Then $\text{ht}(\mathfrak{p}) \leq r \iff \mathfrak{p}$ is a minimal (assoc.) prime of some ideal generated by r elements.

(Insight: suppose we have a subvariety X in \mathbb{C}^n of codimension r. Then we may not necessarily describe X by r equations, but we can always describe it as an irreducible component of the set of solutions of r equations.)

If \mathfrak{p} is a minimal cont. ideal of height r, then \mathfrak{p} is of the form $\mathfrak{q}R_{\mathfrak{p}}$, where \mathfrak{q} is prime in R.

with or \(\emptyset \neq \mathfrak{p} \neq \mathfrak{p} \). So \(q = \mathfrak{p} \) as \(\mathfrak{p} \) is min.

Hence \(\sqrt{\mathfrak{p}} = \sqrt{\mathfrak{p}} \mathfrak{p} \). By Steinwellstellem
sat. So \(r \geq s(\mathfrak{p}) \) by above (or \(\mathfrak{p} \) is a parameter ideal). But \(s(\mathfrak{p}) = \dim \mathfrak{p} \mathfrak{p} \) and \(\dim \mathfrak{p} \mathfrak{p} = h(\mathfrak{p}) \). So \(h(\mathfrak{p}) \leq r \).

Conversely, assume \(h(\mathfrak{p}) \leq r \). Then \(\mathfrak{p} \) has a parameter ideal \(\mathfrak{p} \mathfrak{p} \) generated by \(r \) elements. Say, \(y_1, \ldots, y_r \), as \(h(\mathfrak{p}) = \dim \mathfrak{p} \mathfrak{p} = s(\mathfrak{p}) \). Say
\[
y_i = \frac{x_i}{s_i}, \quad s_i \notin \mathfrak{p}. \quad \text{set } \alpha = (x_1, \ldots, x_r).
\]
Supp. there is a prime \(q \) with or \(q \mathfrak{p} \).

Then \(b = \alpha \mathfrak{p} \subset q \mathfrak{p} \mathfrak{p} \subset \mathfrak{p} \mathfrak{p} \) and \(q \mathfrak{p} \mathfrak{p} \) is prime by (11.20) (2). But \(\sqrt{b} = \mathfrak{p} \mathfrak{p} \).

So \(q = \mathfrak{p} \) by (11.20) (2). Then \(\mathfrak{p} \) is min.

cont. \(\alpha \), which is gen. by \(r \) elements. \(\square \).

Thm. (Krull Principal ideal thm).

R Noetherian, \(x \in R \), \(\mathfrak{p} \) a minimal prime of \(\langle x \rangle \).
If \(x \notin 2 \text{div}(R) \) then \(h(\mathfrak{p}) = 1 \).
(All components of \(R \) hypersurface have codim 1).

Pf. By Cor above, \(h(\mathfrak{p}) \leq 1 \). But if \(h(\mathfrak{p}) = 0 \),
then \(\mathfrak{p} \) is min. since \(\mathfrak{p} \) is

cont. \(x \), which is gen. by \(1 \) elements. \(\square \).
Cor. A, B Noetherian, m, n their max. ideals.
\[\psi : A \to B \] local homom. Then
\[\dim B \leq \dim A + \dim B/mB \]
with equality if \(B \) is flat over \(A \). \(\psi^{-1}(n) = m \).
(This can be interpreted as thm on dim of fibers.)

Pf. Let \(s = \dim A \). \(\exists \) a param. ideal of \(A \) generated by \(s \) elements. So \(m/2 \) is nilpotent in \(R/q \). Hence \(mB/qB \) is nilpotent in \(B/qB \Rightarrow \dim B/mB = \dim B/qB \). But \(\dim B/qB \geq \dim B - s \) by cor. above. Thus the inequality holds.

Assume \(B \) is flat over \(A \).
Let \(p \supseteq mB \) be a prime with \(\dim(B/p) = \dim(B/mB) \). Then \(\dim B \geq \dim B/p + \text{ht}(p) \) by containment of chains of primes. Thus it suffices to show that \(\text{ht}(p) \geq \dim A \).
As \(n \supseteq p \supseteq mB \) (as \(\psi \) is local), we have \(\psi^{-1}(p) = m \). Since \(B \) is flat over \(A \), going down for flat algebras gives a chain of primes of \(B \) lying over any given chain in \(A \). So \(\text{ht}(p) \geq \dim A \).
Regular local rings.

A Noetherian local ring $\dim = r$. Say A is regular if its maximal ideal is generated by r elements. Then any r generators are said to form a regular system of parameters. So we have R regular $\iff r = \dim \left(\frac{R}{m} \right)$ (in general, $r \leq \dim \left(\frac{R}{m^2} \right)$).

Ex. A field is a regular local ring if $\dim = 0$, and vice versa.

An ex. of a regular local ring of a given dimension n is $k[x_1, \ldots, x_n]_m$ or $k[[x_1, \ldots, x_n]]$.

Lemma. A a Noetherian semilocal of dimension d, m its parameter ideal. Then
\begin{equation}
\deg h(G^A, n) = r - 1.
\end{equation}

Proof. $\deg h(G^A, n)$ is 1 less than the order of the pole of $H(G^A, t)$. But this order equals $d(A)$. Also $d(A) = r$ by dim them. B

Prop. A Noetherian local of $\dim = r$, m maximal ideal. Then A is regular if and only if G^A is a polynomial ring. If so then the number of variables is r.
Pf. Say GA is a polyh. ring in s variables.

By the above, $\deg h(GA, n) = s - 1$. So $s = r$ by the above lemma. So A is regular by definition ($r = \dim (\mathbb{M}/m^2)$).

Conversely, assume A regular. Let x_1, \ldots, x_r be a regular sop, and $x_i \in \mathbb{M}/m^2$ the residue of x_i. Let $h = \mathbb{M}/m$, $P = k[x_1, \ldots, x_r]$ be the polyh. ring. We have a homomorphism $\varphi: P \to GA$ s.t. $\varphi(x_i) = x_i'$. Then φ is surjective as x_i' generate GA. Let $\sigma = \ker \varphi$.

Let $P = \oplus \sigma_n$ be the grading by total degree. Then φ preserves the grading of P and GA. So σ inherits a grading $\sigma = \oplus \sigma_n$. So $\forall n \geq 0$ have a canonical exact sequence

$$0 \to \sigma_n \to P_n \to \mathbb{M}/m^{n+1} \to 0$$

Suppose $\sigma_0 \neq 0$. Then \exists a nonzero $f \in \sigma_m$ for some m. Take $n \geq m$. Then $P_n - m \sigma_n$.

Since P is a domain, $P_n - m \leq P_n - m F$.

So we get

$$\dim (\mathbb{M}/m^{n+1}) = \dim (P_n) - \dim (\sigma_n)$$

$$\leq \dim P_n - \dim P_{n-m} = \left(\frac{r-1+n}{r-1} \right) - \left(\frac{r-1+n-m}{r-1} \right)$$
The expr. on the right is a poly of degree r-2.

On the other hand, \(\dim \left(\frac{m^n}{m^{n+1}} \right) = \delta(A, \mathfrak{m}) \)
for \(n \gg 0 \), and \(\deg h(\mathfrak{m}A, r) = r-1 \) by above. That so we have a contrad. So \(\mathfrak{m} \mathfrak{z} = 0 \), and \(\mathfrak{p} \) is an isom.

Thm. A regular local ring is a domain.

Pf. Use ind. in \(r = \dim A \). If \(r = 0 \), \(A \) is a field, so a domain. Assume \(r \geq 1 \).

Let \(\mathfrak{x} \) be a member of a local regular sop. Then \(A/\mathfrak{x}A \) is regular of dim \(r-1 \) (exercise). By ind, \(A/\mathfrak{x}A \) is a domain.

So \(\langle \mathfrak{x} \rangle \) is prime. Hence \(A \) is a domain.

Alternatively: let \(f, g = 0 \). Take supp \(f \in \mathfrak{m}^k \) but not in \(\mathfrak{x} \mathfrak{k} \), and \(g \in \mathfrak{m}^s \) but not \(\mathfrak{m}^{s-1} \). Let \(\overline{f}, \overline{g} \) images in \(\mathfrak{m}^k A, \mathfrak{m}^s A \). Then \(\overline{f} \overline{g} \neq 0 \), \(\overline{f}, \overline{g} \neq 0 \) \(\Rightarrow \) (as \(A/\mathfrak{x} \) is a poly, ring).

Lemma A local, \(\mathfrak{m} \) max, \(\mathfrak{p} \) proper ideal.

let \(n = \mathfrak{m}^a \), \(k = A/\mathfrak{m} \). Then we have an exact seq:

\[0 \rightarrow \mathfrak{m}^2 + \mathfrak{p}/\mathfrak{m}^2 \rightarrow \mathfrak{m}/\mathfrak{m}^2 \rightarrow \mathfrak{m}/\mathfrak{m}^2 \rightarrow 0. \]
Prop. Let A be a regular local ring of dim = r, or an ideal. Set $B = A/\alpha$, and assume B regular of dim $r-s$. Then B is generated by s elements, and such s elements form a part of a regular system of parameters.

Rem. This is a version of implicit function theorem in multivariable calc.

Pt. By lemma above, $\dim (\mathfrak{m}^2 + \alpha/\mathfrak{m}^2) = s$. Hence any set of generators of \mathfrak{m} includes a member of a reg. sys. of \mathfrak{m}. Let α be the ideal in A, then generate.

Then A/α is reg of dim $r-s$ by exer. above. By this above, both A/α and B are domains of dim $r-s$. But if we impose an eqn. in a domain, dim drops.