Lecture 19: Length

Let R be a ring, M an R-module.

Def. M is simple if $M \neq 0$ and its only proper submodule is 0.

A chain $M_0 = M, 0 \hookrightarrow M_1, \ldots \hookrightarrow M_n = 0$ is a composition series of length m if M_{i-1}/M_i are simple.

Length of M $l(M) = \inf \{ m \mid M \text{ has a comp. series of length } m \}$.

If M has no comp. series, then $l(M) = \infty$. Also $l(M) = 0 \iff M = 0$.

Ex. If R is a field, then $l(M) = \dim M$.

Thm. (Jordan-Holder). Suppose M has a comp. series $M = M_0 \supset M_1 \supset \cdots \supset M_m = 0$. Then any chain of submodules can be refined to a comp. series and every composition series has the same length $l(M)$.

Also $\text{Supp} M = \{ m \in \text{Spec} R \mid m = \text{Ann} (M_{i-1}/M_i) \}$.

The $m \in \text{Supp} M$ are maximal for some i.

There is a canonical isomorphism

$M \cong \prod_{m \in \text{Supp} M} M_m$

and $l(M_m)$ is the number of i with $m = \text{Ann} (M_{i-1}/M_i)$.
Let M' be a proper submodule. Let us show $e(M') < e(M)$.

To do so, let $M'_i = M_i \cap M'_i$.

Then $M'_i \cap M_i = M'_i$. So $M'_i / M'_i \subseteq M_i / M_i$.

Since M_i / M_i is simple, either $M'_i / M'_i = 0$ or $M'_i / M'_i = M_i / M_i$, so

$M'_i + M_i = M_i$. If this holds and $M_i \subseteq M'$ then $M'_i \subseteq M'$. So this can't hold for all i, otherwise $M = M'$.

So for some i, $M'_i = M_i$, and we can omit one term. So get a chain

for comp. series for M' shorter than that for M. Can choose shortest for M, so get $e(M') < e(M)$.

Now for any chain $N_0 \supseteq N_1 \supseteq \ldots \supseteq N_n = 0$ let us show that $N_i \leq e(M)$ by induction in $e(M)$. If $e(M) = 0$, it's clear. Assume $e(M) > 1$.

If $n = 0$, clear. If $n \geq 1$ then $e(N_1) < e(M)$ so $n - 1 \leq e(N_1)$ by induction. Ass. $e(M) > 1$.

If N_{i-1}/N_i is not simple, then $3 \leq N_{i-1} \supseteq N'_i \supseteq N_i$, and we can make the
chain longer. Repeating, we can refine the chain to a comp. series in at most \(l(M) - n \) steps.

Supp. a given chain is a comp. series, then \(l(M) \leq n \). But also \(l(M) \geq n \), so \(l(M) = n \). The first assertion is proved.

To proceed, fix a prime \(\rho \). Exactness of localization yields a chain

\[
M_0 = (M_0)_{\rho} \supset (M_1)_{\rho} \supset \ldots \supset (M_n)_{\rho} = 0.
\]

Now consider a max ideal \(m \). If \(\rho = m \) then \((R/m)_{\rho} = R/m\). If \(\rho \neq m \), then \(T_S \subseteq B_{\rho} \), so \((R/m)_{\rho} = 0\). Set \(m_i = \text{Ann}(M_{i-1}/M_i)\), so \(M_{i-1}/M_i = R/m_i \), and \(m_i \) is max as \(M_{i-1}/M_i \) is simple.

Thus \(\text{Supp } M = \{m_1, \ldots, m_n\} \) as \((M_{i-1})_{\rho}/(M_i)_{\rho} = S_0\), \(S_0 \neq m_i \).

If we omit duplicates we get comp. series from \((M_i)_{\rho}\) with \(M_{i-1}/M_i = R/s_0 \) \((s_0 \neq m_j \text{ for some } j) \). Thus the number of such \(i \) is \(l(M_{\rho}) \).
Finally, consider the canonical map
\[\varphi: M \to \prod_{m \in \text{Supp}(M)} M_m. \]
To prove that \(\varphi \) is an isomorphism, it suffices to prove that \(\varphi_p \) is an isomorphism for each \(p \). (Check exactness at each maximal ideal.)

Now, localize commutes with finite products. So
\[\varphi_p: M_p \to \left(\prod_{m \in \text{Supp}(M)} M_m \right)_p = \prod_{m \in \text{Supp}(M)} (M_m)_p = M_p. \]
Thus \(\varphi_p = 1 \) \(\Rightarrow \) \(\text{B.} \)

Cor. \(M \) both artinian and noetherian \(\Rightarrow \) \(M \) has finite length.

Pf. Any chain \(M = N_0 \supseteq \cdots \supseteq N_n = 0 \) has length
\[m \leq l(M) \] by the theorem. So if \(l(M) < \infty \)
then \(M \) sat both acc and dcc.

Conversely, assume \(M \) is both noetherian and artinian. Form a chain as follows. Set \(M_0 = M \). For \(i \geq 1 \),
if \(M_{i-1} \neq 0 \), take \(\max M_i = M_i - 1 \)
(exists by maxc). By the dcc, the chain terminates. Then the chain is a complete series.
Thm. (Additivity of Length). \(M \supset M' \Rightarrow \ell(M) = \ell(M') + \ell(M/M') \).

Pf. Suppose any compr. sel. for \(M' \) and \(M/M' \) gives rise to a compr. series of \(M \) through \(M' \). So \(\ell(M') < \infty \), \(\ell(M/M') < \infty \), and \(\ell(M) = \ell(M') + \ell(M/M') \). Conversely, if \(\ell(M) < \infty \) then \(M \supset M' \supset 0 \) can be upgraded to a compr. series, so \(\ell(M') < \infty \), \(\ell(M/M') < \infty \).

Thm. (Akizuki-Kokusan). \(R \) is artinian \(\Rightarrow \) \(R \) is Noetherian and \(\dim R = 0 \).
If so, then \(R \) has fin. many primes.

Pf. If \(\dim R = 0 \), every prime is maximal. If also \(R \) is Noetherian, then \(R \) has finite length (by exercise 19.4). So \(R \) is Artinian.

Conversely, suppose \(R \) Artinian. Let \(M \) be a minimal product of max. ideals of \(R \).
Cor. R Artinian, M f.g. module. Then M has finite length and Ass M and Supp M are equal and finite.

Pf. Every prime is max, so Supp M consists of max ideals. Also R is Noetherian ⇒ Exer 19.4 yields the assertions.

Ex 19.4. R Noetherian, M f.g. TFAE:
(1) M has finite length.
(2) Supp M consists of max ideals.
(3) Ass M consists of max ideals.
If so, \(\text{Ass}(M) = \text{Supp } M \) and they are finite.

Pf. (1) ⇒ (2) follows from TH 19.3. Ass M = \(\text{Supp } M \) & obvious as Ass M ⊆ Supp M.
(2) ⇒ (3) \(\text{Supp } M = U V(q) = U q = \text{Ass } M \) \(q \in \text{Ass}(M) \) q ∈ Ass M
and both are finite. Thus (2) holds.

Cor. R is Artinian \(\iff \text{length } (R) < \infty \).
Pf. Take \(M = R \) \(\iff (R) < \infty \) ⇒ R is an Artinian R-module by prev. proposition, i.e., an Artinian ring. Conversely, if R is Artinian ⇒ R finite length by prev. proposition.
Cor. \(R \) is Artinian \(\iff \) \(R \) a finite product of Artinian local rings; if so then \(R = \prod_{m \in \text{Spec}(R)} R_m \).

Pf. A finite product is Artinian \(\iff \) each ring is Artinian. (proved before: \(M_1, M_2, \ldots, M_r \) Art \(\iff \) \(M_1 \oplus \cdots \oplus M_r \) Art).

If \(R \) Art \(\Rightarrow \) \(l(R) < \infty \), so \(R = \prod R_m \) by JH theorem. \(\Box \).