Def. \(R \) a ring, \(M \) a module. \(\mathfrak{p} \subset R \) prime associated to \(M \) if \(\exists m \in M \) s.t. \(\mathfrak{p} = \text{Ann}(m) \). The set of associated primes to \(M \) is denoted by \(\text{Ass} M \). The primes that are minimal in \(\text{Ass} M \) are called \underline{minimal primes of} \(M \). The others are called \underline{embedded primes}.

Rem. Associated primes of an ideal are, by convention, associated primes of \(R/\mathfrak{p} \).

Lemma. \(\mathfrak{p} \) prime, \(M \) an \(R \)-module. Then \(\mathfrak{p} \in \text{Ass}(M) \iff \exists R \text{-inj} \ R/\mathfrak{p} \to M \).

Proof. \(\Rightarrow \). Obvious.

Proof. \(\text{Ass}(M) \subset \text{Supp} M \).

Proof. Let \(\mathfrak{p} \in \text{Ass} M \). Say \(\mathfrak{p} = \text{Ann}(m) \).

Then \(\frac{m}{1} \in M_\mathfrak{p} \) is nonzero, as no \(x \in R - \mathfrak{p} \) sat \(xm = 0 \). So \(M_\mathfrak{p} \neq 0 \) and \(\mathfrak{p} \in \text{Supp} M \).
Lemma. \(R \) \(\neq 0 \) prime, \(m \in R/\mathfrak{a} \) nonzero element. Then \(\text{Ann}(m) = \mathfrak{a} \) and \(\text{Ass}(R/\mathfrak{a}) = \mathfrak{a} \).

Proof. Clear.

Prop. \(M \supset N \) \(R \)-modules.
Then \(\text{Ass}(N) \subset \text{Ass}(M) \subset \text{Ass}(N) \cup \text{Ass}(M/N) \).

Proof. First inclusion is clear. Let \(\mathfrak{a} \in \text{Ass}(M) \)
\(\mathfrak{a} = \text{Ann}(m) \). Then have \(R/\mathfrak{a} \subset M \).
Let \(E \) be the image. If \(E \cap N = 0 \) then \(R/\mathfrak{a} \cap M/N = 0 \) \(\mathfrak{a} \in \text{Ann}(M/N) \).
If \(E \cap N \neq 0 \) then \(\exists n \neq 0 \), \(n \in E \), \(\mathfrak{a} \in \text{Ann}(n) = \mathfrak{a} \) and \(\mathfrak{a} \in \text{Ass}(N) \).

Prop. \(M \) an \(R \)-module, \(\Psi \subset \text{Ass}(M) \) a subset.
Then \(E \) a submodule \(N \) of \(M \) with \(\text{Ass}(M/N) = \Psi \) and \(\text{Ass} N = \text{Ass } M - \Psi \).

Proof. Given \(N \neq CM \) totally ordered by inclusion, let \(N = \bigcup N_\alpha \). Given \(\mathfrak{a} \in \text{Ass N} \), say \(\mathfrak{a} = \text{Ann}(m) \). Then \(m \in N_\alpha \) for some \(\alpha \), so \(\mathfrak{a} \in \text{Ass } N_\alpha \), so \(\text{Ass } N = \bigcup \text{Ass } N_\alpha \).

So we may obtain using Zorn's lemma
a submodule \(N \subseteq M \) maximal for the property that \(\text{Ass } N \subseteq \text{Ass } M \setminus \gamma. \)

By the above, it suffices to show that \(\text{Ass } (M/N) = \gamma. \) Take \(\gamma \in \text{Ass } (M/N). \)

Then \(M/N \) has a submodule \(N' \) isomorphic to \(R/\gamma. \) So \(\text{Ass } (N') \subseteq \text{Ass } N \cup \{ \gamma \}. \)

By the above. Now, \(N' \nsubseteq N, \) and \(N \) is max for \(\text{Ass } (N) \subseteq \text{Ass } M \setminus \gamma, \) \(\Rightarrow \) \(\text{Ass } N' \nsubseteq \text{Ass } N \setminus \gamma \Rightarrow \gamma \notin \text{Ass } (N \setminus \gamma) \).

\(\Rightarrow \gamma \in \gamma. \)

Prop. \(R = S \) mult. sub. \(M \) an \(R \)-mod., \(\gamma \) CR prime. If \(\gamma \nmid S = \emptyset, \gamma \in \text{Ass } (M) \) then \(\gamma \in \text{Ass } (S'/M); \) the converse holds if \(\gamma \) is f. \(\gamma. \)

Pf. Assume \(\gamma \notin \text{Ass } (M). \) Then have \(R/\gamma \nsubseteq M. \)

This induces an injection \(S'/R/\gamma \simeq S'/M \).

But \(S'(R/\gamma) = S'/R/\gamma \cdot \gamma. \) Assume \(\gamma \notin \text{Ass } (S'). \)

\(\Rightarrow S' \) is a prime. \(\Rightarrow \gamma \in \text{Ass } (S'). \)

Conversely, assume \(\gamma \notin \text{Ass } (S'/M). \) Then \(\exists m \in M, t \in S \) with \(S'/\gamma = \text{Ann } (m/\gamma). \) Say \(\gamma = (\alpha_1, \ldots, \alpha_n) \). Fix \(i. \) Then \(x_i m/\gamma = 0. \) So \(\exists s_i \in S \) s.t. \(S_i x_i m = 0. \) Let \(s = \prod s_i. \) Then \(x_i \in \text{Ann } (s_m). \)

So \(\gamma \notin \text{Ann } (s_m). \)

Let \(b \in \text{Ann } (s_m). \) Then \(b s_m/\gamma = 0. \) So \(b/\gamma \in s_m \gamma. \)

(ce) \(S'/\gamma = \text{Ann } (m/\gamma) \). So \(b \in \gamma. \) Then \(\gamma \notin \text{Ann } (s_m) \Rightarrow \gamma = \text{Ann } (s_m). \)

\(\Rightarrow \) \(\gamma \in \text{Ass } (S). \) Also \(\Rightarrow \gamma \nsubseteq S = \emptyset \) then \(\gamma \notin \text{Ass } (M). \) Since \(S' \) is a prime.
Let R be a ring, M an R-module. Then assume \mathfrak{p} is maximal in the set of annihilators of nonzero elements in M. Then $\text{PEAnn}(M)$.

Proof. Say $\mathfrak{p} = \text{Ann}(m)$, $m \neq 0$. Then $1 \notin \mathfrak{p}$. Take $b, c \in R$, $b \in \mathfrak{p}$, but $c \notin \mathfrak{p}$. Then $bcm = 0$ but $cm \neq 0$. Clearly $\mathfrak{p} \subset \text{Ann}(cm)$. So $\mathfrak{p} = \text{Ann}(cm)$ by maximality. But $b \in \text{Ann}(cm)$, so $b \notin \mathfrak{p}$. Hence \mathfrak{p} is a prime.

Prop. R a Noetherian ring, M a module. Then $M = 0 \iff \text{Ass}(M) = \emptyset$.

Proof. Clearly $M = 0 \implies \text{Ass} M = \emptyset$. Conversely, suppose $M \neq 0$, let S be the set of annihilators of nonzero elements of M. Then S has a maximal element \mathfrak{p} (any collection of ideals has a maximal element). Then by the above $\mathfrak{p} \in \text{Ass} M$. Thus $\text{Ass} M \neq \emptyset$.

Def. R a ring, M a module, $x \in R$. Say x is a zerodivisor on M if \exists a nonzero $m \in M$ with $xm = 0$; otherwise say x is a nonzerodivisor in M. We denote the set of zerodivisors by $\text{2div}(M)$.

Prop. R Noetherian, M a module. Then $\text{2div} M = \bigcup_{\mathfrak{p} \in \text{Ass} M} \mathfrak{p}$.

Pf. \(\forall x \in \ker M, \text{say } x/m = 0, m \in M, m \neq 0. \)
Then \(x \in \text{Ann}(m). \) But \(\text{Ann}(m) \) is maximal among annihilators of nonzero elements. So \(\mathfrak{p} \in \text{Ass } M. \) So \(\ker(M) \subseteq \mathfrak{p}. \) The opposite inclusion is obvious from def.

Lemma. Let \(R \) be a Noetherian ring, \(M \) an \(R \)-module. Then \(\text{Supp } M = \bigcup \mathcal{V}(\mathfrak{p}) \subseteq \text{Ass } M. \)

Pf. Let \(\mathfrak{p} \) be a prime. Then \(R_{\mathfrak{p}} \) is Noetherian. So \(M_{\mathfrak{p}} \neq 0 \) iff \(\text{Ass } R_{\mathfrak{p}}(M_{\mathfrak{p}}) \neq 0. \) But \(R \) is Noetherian, so \(\text{Ass } R_{\mathfrak{p}}(M_{\mathfrak{p}}) \neq 0 \) (i.e., \(q \in \text{Ass } M \) with \(q \cap (R_{\mathfrak{p}}) \neq 0 \)) by the above. Thus \(\mathfrak{p} \in \text{Supp } M \) (\(\Rightarrow q \in \mathcal{V}(\mathfrak{p}) \)) for some \(q \in \text{Ass } M. \)

Thm. \(R \) a Noetherian ring, \(M \) a module, \(\mathfrak{p} \subseteq \text{Supp } M. \) Then \(\mathfrak{p} \) contains some \(q \in \text{Ass } M. \) If \(\mathfrak{p} \) is minimal is \(\text{Supp } M \), then \(\mathfrak{p} \subseteq \text{Ass } M. \)

Pf. By the above, \(q \) exists. Also \(q \subseteq \text{Supp } M \) so \(\mathfrak{p} = q \) if \(\mathfrak{p} \) is minimal.

Thm. \(R \) a Noetherian ring, \(M \) a f.g. module. Then \(\text{nil}(M) = \bigcap_{\mathfrak{p} \in \text{Ass } M} \mathfrak{p}. \)

Pf. \(M \) f.g. \(\Rightarrow \text{nil}(M) = \bigcap \text{Supp } M, \) as we proved before.
Since R is Noetherian, given $P \in \text{Supp} M$, there is $q \in \text{Ass } M$ with $q \subseteq P$ by the above. The assertion follows.

Let R be a Noetherian ring, M f.g. R-mod.

Then there exists a chain of submodules

$$0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_n = M$$

with $M_i / M_{i-1} = R/P_i$ for some prime P_i, $i = 1, \ldots, n$. For any such chain,

$$\text{Ass } (M) \subseteq \{P_1, P_2, \ldots, P_n\} \subseteq \text{Supp } M.$$

Can among $M \neq 0$. Among all submodules having such a chain, there is a max. one N (since such submodules exist, as $\text{Ass } M \neq 0$).

$\text{Supp } M/N \neq 0$. Then M/N and N/N are isomorphic to R/P_i for some prime P_i. Then $N \subseteq N$ contradicting maximality. Hence $M = N$.

Thus such a chain exists.

The first inclusion follows by induction from $\text{Ass } M \subseteq \text{Ass } N \cup \text{Ass } (M/N)$.

But $P_i \in \text{Supp } (R/P_i)$, so get the second inclusion.

Thm. R a Noetherian ring, M f.g. module. Then $\text{Ass } M$ is finite.

Proof. Follows from the above.
Prop. \(M, N \text{ f.g. mod } R \text{ Noetherian.}\)

Then \(\text{Ass } (\text{Hom}(M, N)) = \text{Supp } M \cap \text{Ass } N. \)

Proof. Take \(\mathfrak{p} \in \text{Ass } (\text{Hom}(M, N)). \) Then have \(R/\mathfrak{p} \cong \text{Hom}(M, N). \) Let \(k(\mathfrak{p}) = \text{Frac } (R/\mathfrak{p}). \) Then \(k(\mathfrak{p}) = (R/\mathfrak{p})_0. \) Now, \(M \) is f.p. res.

so \(\text{Hom}(M, N)_{k(\mathfrak{p})} = \text{Hom}_{R_{k(\mathfrak{p})}}(M_{k(\mathfrak{p})}, N_{k(\mathfrak{p})}). \)

so we get \(\psi : k(\mathfrak{p}) \rightarrow \text{Hom}_{R_{k(\mathfrak{p})}}(M_{k(\mathfrak{p})}, N_{k(\mathfrak{p})}). \)

Thus \(M_{k(\mathfrak{p})} \neq 0, \) and \(\mathfrak{p} \in \text{Supp } M. \)

\(\forall \mathfrak{m} \in M_{k(\mathfrak{p})} \text{ with } \mathfrak{p} \mathfrak{m} = 0, \) the map

\(k(\mathfrak{p}) / \mathfrak{m} \rightarrow N_{k(\mathfrak{p})} \)

given by \(x \rightarrow \psi(x)(m). \) is nonzero, so an injection. But \(k(\mathfrak{p}) = R_{k(\mathfrak{p})}/\mathfrak{m} R_{k(\mathfrak{p})}. \)

So \(\mathfrak{p} \in \text{Ass } (N) \) by the above. So \(\mathfrak{p} \in \text{Ass } (M, N) \)

Conversely, take \(\mathfrak{p} \in \text{Supp } M \cap \text{Supp } M \cap \text{Ass } N. \)

Then \(M_{k(\mathfrak{p})} \neq 0. \) So by Nakayama,

\(M_{k(\mathfrak{p})}/\mathfrak{m} M_{k(\mathfrak{p})} \) is a nonzero space over \(k(\mathfrak{p}). \)

Take any nonzero linear map \(M_{k(\mathfrak{p})} \rightarrow k(\mathfrak{p}) \)

precede by can. map \(M_{\mathfrak{p}} \rightarrow M_{k(\mathfrak{p})}/\mathfrak{m} M_{k(\mathfrak{p})}, \)

follow by \(R \)-inj \(k(\mathfrak{p}) \rightarrow N_{k(\mathfrak{p})}. \)

The latter exists since \(\mathfrak{p} \in \text{Ass } N. \)

We obtain a nonzero elt of \(\text{Hom}_{R_{k(\mathfrak{p})}}(M_{k(\mathfrak{p})}, N_{k(\mathfrak{p})}), \) killed by \(\mathfrak{p} R_{k(\mathfrak{p})}. \)
But $\mathfrak{p}\mathfrak{r}$ is maximal, so the whole annihilator. So $\mathfrak{p}\mathfrak{r}\mathcal{C}\mathcal{A}\mathcal{S}\mathcal{S}\mathcal{H}\mathcal{O}\mathcal{M}\mathfrak{r}$ (M, N). Hence $\mathfrak{p}\mathfrak{r}\mathcal{C}\mathcal{A}\mathcal{S}\mathcal{H}\mathcal{O}\mathcal{M} (M, N)$ (as $\text{Hom}_{R_{\mathfrak{p}}} (M, N) = \text{Hom}_{R} (M, N)_{\mathfrak{p}}$ and by the above).

Prop. R Noetherian, \mathfrak{p} a prime, M a f.g. module, $x, y \in \mathfrak{m}$ non-zero divisors on M. Then $\mathfrak{p} \in \mathcal{A}\mathcal{S}\mathcal{S} (M/\mathfrak{m}M) \iff \mathfrak{p} \in \mathcal{A}\mathcal{S}\mathcal{S} (M/\mathfrak{y}M)$.

Proof. Have $0 \to K \to M/\mathfrak{m}M \xrightarrow{\mu_y} M/\mathfrak{m}M$, $\nu = \ker (\mu_y)$. Apply $\text{Hom}_{R} (R/\mathfrak{p}, K)$ to this.

Get $0 \to \text{Hom}_{R} (R/\mathfrak{p}, K) \to \text{Hom}_{R} (R/\mathfrak{p}, M/\mathfrak{m}M) \to \ker (\text{Hom}_{R} (R/\mathfrak{p}, M/\mathfrak{m}M))$.

It's exact but $y \in \mathfrak{m}$, so right map vanishes. Thus, $\text{Hom}_{R} (R/\mathfrak{p}, K) \cong \text{Hom}_{R} (R/\mathfrak{p}, M/\mathfrak{m}M)$.

Now form the pull comm. diagram:

$$
\begin{array}{ccc}
0 & \to & M \\
\downarrow & & \downarrow \\
M & \to & M/\mathfrak{m}M \\
\downarrow & & \downarrow \\
K & \to & M/\mathfrak{y}M
\end{array}
$$

Snake lemma yields an ex seq.

$0 \to K \to M/\mathfrak{y}M \xrightarrow{\mu_x} M/\mathfrak{y}M$ as $\ker (\mu_y) = 0$.

Hence $\text{Hom}_{R} (R/\mathfrak{p}, K) \cong \text{Hom}_{R} (R/\mathfrak{p}, M/\mathfrak{y}M)$. So $\text{Hom}_{R} (R/\mathfrak{p}, M/\mathfrak{y}M) = \text{Hom}_{R} (R/\mathfrak{p}, M/\mathfrak{m}M)$. But $\mathfrak{p} \in \mathcal{S}\mathcal{P}\mathcal{P}\mathcal{M}$ $\iff \mathfrak{p} \in \mathcal{A}\mathcal{S}\mathcal{S} (M, N)$ (we are done).