lecture 2.

Let \(A \) be a filtered algebra such that \(\text{gr} A = \mathbb{C}[y_1, \ldots, y_m] \) (\(\deg y_i = 1 \)). Let \(M \) be an \(A \)-module with a good filtration \(F \). Let \(h_F(M,j) = \dim F_j M \).

Thm. There exists a polynomial \(h_F(M)(t) \). The Hilbert polynomial of \(M \) under \(F \) such that \(h_F(M,j) = h_F(M)(j) \) for \(j \gg 0 \).

It has the form \(h_F(M)(t) = \frac{ct^d}{d!} + \text{lower terms} \)

where \(d \leq m \) and \(c \in \mathbb{Z}_+ \).

Pf. This follows from the Hilbert syzygy theorem in commutative algebra (and normalization lemma). (Lemma 2. \(c \) and \(d \) don't depend on the filtration.

Pf. As we proved in the last lecture, for any two good filtrations are equivalent, which implies that for some \(j_0, j_1 \)

\[h_F(M)(j+j_1) \geq h_F(M)(j) \geq h_F(M)(j-j_0), \]

i.e. \(c \) and \(d \) are the same.

Def. \(d = d(M) \) is called the dimension of \(M \) (sometimes Aldand-Kirillov or functional dimension).
Theorem 3. (Bernstein inequality)

For every finitely generated module $M^0 \in \mathcal{D} = \mathcal{D}(A_n)$ with Bernstein filtration, we have $d(M) \geq n$.

Before proving this theorem, let us derive some important corollaries of this theorem, and show how it implies the results about p^1.

Ex. 1. Suppose $n = 1$. Then to prove theorem 3 we need to show that $\dim M = \infty$. But this is clear since $[D, x] = 1$ (by taking the trace).

2. $M = \mathbb{C}[x_1, \ldots, x_n]$. Then for the obvious filtration

$$h_f(M)(t) = \binom{n + t}{n} = \frac{(t+n)(t+n-1)\cdots(t+1)}{n!}$$

So $d(M) = n$, $c = 1$.

3. $a \in \mathbb{C}$, $\delta^a - \mathcal{D}$-module with basis $\delta^{(0)}_a, \delta^{(1)}_a$, \ldots with action of \mathcal{D} as follows:

$$\frac{d}{dx} \delta^{(k)}_a = \delta^{(k+1)}_a$$

$$\quad (x-a) \delta^{(k)}_a = \delta^{(k)}_a - \delta^{(k-1)}_a$$

$$\quad (x-a)^n \delta^{(0)}_a = 0$$

(also irreducible)
This is the D-module formed by the δ-function at a and its derivatives. It's easy to check that $d(\delta_a) = 1$, $c(\delta_a) = 1$.

Def. If $d(M) = n$, then M is called holonomic.

Ex. θ and δ_a are holonomic.

Remark. For $n \geq 2$, there exist irreducible non-holonomic D-modules (of $d(M) = 2n - 1$).

let $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ be a SES of modules over an algebra A with Noetherian grade. Then any good filtration on M_2 gives rise to a good filtration on M_1 and M_3.

Proposition 4. 1) $d(M_2) = \max\{d(M_1), d(M_3)\}$

2) If $d(M_2) = d(M_1) = d(M_3)$ then $c(M_2) = c(M_1) + c(M_3)$

3) If $d(M_1) > d(M_3)$ then $c(M_2) = c(M_1)$ and if $d(M_3) > d(M_1)$ then $c(M_2) = c(M_3)$

pf. We have $h_F(M_2, j) = h_F(M_1, j) + h_F(M_3, j)$ which implies all the statements.
Cor. 5 Let M be a holonomic D-module and $c = c(M)$. Then the length of M is $\leq c$.

Proof. Let M be holonomic, so $d(M) = n$. Let $0 \to N \to M \to N' \to 0$ be an exact sequence. Then by Bernstein inequality $d(N) = d(N') = n$, so $c(M) = c(N) + c(N')$. So the statement follows by induction in c.

Ex. Length (M) can be smaller than $c(M)$. E.g. Consider $\lambda \notin \mathbb{Z}$, and for $n = 1$ $M = \langle x^{\lambda + m}, m \in \mathbb{Z} \rangle$. Then $d(M) = 1$, $c(M) = 2$ (exercise), but M is irreducible. (If $\lambda \in \mathbb{Z}$, then M is reducible and has length 2.)

Cor. 6 Let M be a D-module on \mathbb{A}^n with a filtration, and $h \in \mathbb{R}[t]$, $h(t) = \frac{c t^n}{n!} + \text{e.o.f.}$, $c > 0$, and

$$\dim \mathbb{F} \cdot M \leq h(j), \ j \gg 0.$$

Then M is holonomic and $\text{length}(M) \leq c$.

Pf. Let N be a f.g. submodule of M. It's prove that N is holonomic.
let F' be a good filtration of N such that $F_i' N \subseteq F_i N$ (such exists, e.g. choose $i_0 \in I$ so $F_{i_0} N$ generates N, and set $F_i' N = F_i N$ for $i \leq i_0$, and $F_i' N = F_{i_0} \cdot F_i N$ for $i > i_0$). Then $\dim F_j' N \leq \dim F_j N$, so $h_{F_i', (N)}(j) \leq \frac{c_i 1^n}{n!} + o_1$. But by Bernstein inequality, $d(N) \leq n$, hence $h_{F_i', (N)}(j) = \frac{c' 1^n}{n!} + o_1$, where $c' \leq c$. So N is holonomic and has length $\leq c!$

Using the same argument as above, we can show that M has finite length, hence f.g. and holonomic with length $\leq c$.

All this theory works if in F' is replaced with any \mathbb{F}-characteristic \mathcal{F}.

Let $\mathbb{F} = \mathbb{C}[x_1, \ldots, x_n]$ and recall that in the last lecture we defined the \mathcal{D}-module $M(\mathbb{F}) = \{ qP^{\lambda} \}$.

Theorem 7. $M(\mathbb{F})$ is holonomic. In particular, it is finitely generated.

We showed that this implies desired results on \mathfrak{p}^λ.

Proof of Theorem 7. By Cor. 6 it's enough to find a filtration on $M(p)$ with $\dim F_i M \leq h(j)$, where h is a polynomial of degree n. Let $F_i M(p) = \{ q p^{1-j}, \deg q \leq j(m+1) \}$ let us show that this is a filtration. Clearly, $F_{j-1} \subset F_j$, $UF_j = M$. It's enough to show that $D_1 F_j \subset F_{j+1}$.

1) \(x \cdot q p^{1-j} = x \cdot q p \cdot p^{2-j-1}, \) and
\[\deg (x \cdot q p) \leq j(m+1) + m + 1 = (j+1)(m+1) \]

2) \(\partial_i (q p^{1-j}) = (\partial_i q) \cdot p^{1-j} + 2 q p^{1-j-1}, \)
\[\deg (\partial_i q) \leq j(m+1) + M - 1 \leq (j+1)(m+1). \] So F_j is a filtration of $M = (j(m+1) + 1)$, so it's a polynomial of degree n in j.

By Cor 6, M is holonomic.

It remains to prove the Bernstein inequality. We begin with the following lemma.

Lemma 8. Let M be a D-module with a good filtration, $F_i M \neq 0$.

Then the natural map
\[F_i D \to \text{Hom}(F_i M, F_{2i} M) \]
is an embedding for any \(i \).

Proof. We will prove the statement by induction in \(i \). For \(i = 0 \) it is clear.
Suppose the statement is true for all \(i' < i \). Let \(a \in F_1 D \) be such that
\[a = \sum_{i_1 \leq \ldots \leq i_k} p_{i_1, \ldots, i_k} d_{i_1} \cdots d_{i_k}. \]

We may assume that \(a \) is not a scalar. Suppose \(\exists d_m \) occurs with a nonzero coefficient. Then \([a, x_m] \neq 0 \).
Similarly, if \(\exists x_m \) occurs with a nonzero coefficient, then \([a, d_m] \neq 0 \).

By property of Bernstein's filtration, \([a, x_m]\) and \([a, d_m]\) are in \(F_{i-1} D \).

Suppose e.g. that \([a, x_m] \neq 0 \). (The other case is treated similarly.) We need to show that \(\exists d \in F_1 M \) s.t. \(a d \neq 0 \). By the induction hypothesis there is \(d' \in F_{i-1} M \) s.t.
\([a, x_m] d' \neq 0\). So \(a(x_m d') - x_m (a d') \neq 0 \).
Thus either \(d(x_m, x') \neq 0 \) or \(d' \neq 0 \), and we can take \(d = x_m, d' \) or \(d = x' \).

Now we deduce Bernstein's inequality from the lemma. We know that
\[
\dim F_i \frac{D}{D} = \frac{i^{2n}}{(2n)!} + \text{lower terms}.
\]
But by the lemma, \(\dim F_i \frac{D}{D} \leq \dim \text{Hom}_{F^i \frac{D}{D}} \).

\[
= h_{F_i}(M, i) h_{F_i}(M, 2i).
\]
So
\[
\frac{i^{2n}}{(2n)!} + \text{lower terms} \leq c^2 \frac{i d(2i)}{d!} + \text{lower terms},
\]

hence
\[
n \leq d.
\]