1. (a) Check that the positive part \mathfrak{n}_{+}of Lie algebra $s l(3)$ is defined by the standard generators e_{i} and the Serre relations.
(b) Do the same for $\operatorname{sp}(4)$.

Hint: Try to write down the basis of the Lie algebra generated by e_{i} and the Serre relations, and compare its cardinality with $\operatorname{dim}\left(\mathfrak{n}_{+}\right)$.
2. Establish Serre relations for the affine Lie algebra which is the 1-dimensional central extension of the loop algebra $L \mathfrak{g}$ of a finite dimensional simple Lie algebra \mathfrak{g}.
3. The vertex operator construction. Let a_{i} be the standard generators of the Heisenberg algebra. Let F_{μ} be the Fock space of this algebra (where a_{0} acts by μ), and $F=\oplus_{m \in Z} F_{\sqrt{2} m}$. Define Vertex operators on F :

$$
X_{ \pm}(u)=\exp \left(\mp \sqrt{2} \sum_{n<0} \frac{a_{n}}{n} u^{-n}\right) \exp \left(\mp \sqrt{2} \sum_{n>0} \frac{a_{n}}{n} u^{-n}\right) S^{ \pm 1} u^{ \pm \sqrt{2} a_{0}}
$$

where S is the operator of shift $m \rightarrow m+1$ (this is really the same as Γ, Γ^{*} in Kac-Raina, except for factors of $\sqrt{2}$).
(a) Show that

$$
X_{a}(u) X_{b}(v)=(u-v)^{2 a b}: X_{a}(u) X_{b}(v):, a, b= \pm 1
$$

(this is again the same as in Kac-Raina, except for the factor of 2). In particular,

$$
X_{a}(u) X_{b}(v)=X_{b}(v) X_{a}(u)
$$

in the sense that matrix elements of both are series which converge (in different regions) to the same rational functions. (note that in the situation of Kac-Raina there was a minus sign; thus while Γ, Γ^{*} were fermions, $X_{ \pm}$are bosons).
(b) Calculate $<1, X_{+}\left(u_{1}\right) \ldots X_{+}\left(u_{n}\right) X_{-}\left(v_{1}\right) \ldots X_{-}\left(v_{n}\right) 1>$, where 1 is the highest weight vector of F_{0}.
(c) Find the commutation relation of $X_{ \pm}$with a_{i}.
4. (a) Define $e(u)=X_{+}(u), f(u)=X_{-}(u), h(u)=\sqrt{2} a(u)=\sqrt{2} \sum a_{i} u^{-i-1}$. Show that the components of these power series are operators on F which define a representation of the affine Lie algebra $\widehat{\operatorname{sl(2)} \text {. Show that this representation is }}$ highest weight, and that it has level one and highest weight 0 (with respect to $s l(2))$.
(b) Show that the representation of the affine algebra in F is irreducible. Compute its character, i.e $\operatorname{Tr}_{F}\left(e^{z h} q^{d}\right)$, where d is the degree operator defined by the condition that it annihilates the highest weight vector, and $\left[d, a t^{n}\right]=n a t^{n}, a \in \operatorname{sl}(2)$.

