18.747: Problem set 8; due Thursday, October 31

1. The Weyl-Kac denominator formula for affine Lie algebras states that

$$
\sum_{w \in W} \epsilon(w) e^{(w \rho-\rho, h)}=\prod_{\gamma}\left(1-e^{-(\gamma, h)}\right)^{m u l t(\gamma)}
$$

where the sum is taken over positive roots (see Remark 11.3 in Kac-Raina). Derive it in the case of affine $\mathrm{sl}(2)$ from the Jacobi triple product identity. 2. Let M_{λ}^{+}be the highest weight Verma module over a finite dimensional simple Lie algebra g, and M_{λ}^{-}be the lowest weight Verma module. Let V be any h diagonalizable module over this Lie algebra. Show that $\operatorname{Hom}\left(M_{\lambda}^{+} \otimes M_{\mu}^{-}, V\right)$ (as representations) is isomorphic to the space $V[\lambda+\mu]$ of vectors in V of weight $\lambda+\mu$.
3. Let $\Theta_{n, m}(z, \tau)$ be the function defined by (11.15) in Kac-Raina (for $u=0$). Fix τ in the upper half of the complex plane.
(a) Show that for fixed τ this is a holomorphic function of z for all z.
(b) Relate $\Theta_{n, m}$ with $\Theta_{0,1}$.
(c) Find the zeros of $\Theta_{n, m}$ and their multiplicities. Hint. Use Jacobi triple product to factorize $\Theta_{0,1}$.

