2. Let $\mathcal{F} = \oplus \mathcal{F}^{(m)}$ be the semiinfinite wedge space.
 (a) Show that \mathcal{F} is an irreducible representation of the Clifford algebra generated by \hat{v}_j, \hat{v}_j^*.
 (b) Compute $\text{Tr}_{\mathcal{F}}(q^d z^m)$, where d is the operator multiplying homogeneous elements by their degree, defined by $\deg(\psi_0) = 0$, $\deg(\hat{v}_j) = j$, $\deg(\hat{v}_j^*) = -j$, and m is the operator which acts by multiplication by the number m on $\mathcal{F}^{(m)}$.
3. Using the fact that $\mathcal{F} = \mathcal{B}$, compute the answer to problem 2 using the bosonic realization. Deduce that
 \[
 \prod_{n \geq 0} (1 - q^n z)(1 - q^{n+1} z^{-1})(1 - q^{n+1}) = \sum_{m \in \mathbb{Z}} (-z)^m q^{m(m-1)/2}
 \]
 (Jacobi triple product identity). Substitute $z = q^{1/3}$ and obtain Euler’s pentagonal identity for $\prod_{n \geq 1} (1 - p^n)$.
4. Let $\hat{\mathfrak{g}}$ be the affine Lie algebra associated to a simple Lie algebra \mathfrak{g}. Let $a \in \mathfrak{g}$ and $a(z) = \sum a[n] z^{-n-1}$, $a[n] = ax^n \in \hat{\mathfrak{g}}$.
 (a) Show that if V is a highest weight representation of $\hat{\mathfrak{g}}$ then $a(z)$ defines a linear map $V \to V((z))$ (here $V((z))$ is the space of formal Laurent series with coefficients in V).
 (b) Let V have a highest weight vector v with $hv = 0$ for h in the Cartan subalgebra of \mathfrak{g}, and $Kv = kv$. Compute $\langle v, a(z_1)b(z_2)v \rangle$ (as a rational function).
 (c) Compute $\langle v, a(z_1)b(z_2)c(z_3)v \rangle$.

1