1. Prove formula 9.14b in Kac-Raina.
2. Let $\mathcal{F}=\oplus \mathcal{F}^{(m)}$ be the semiinfinite wedge space.
(a) Show that \mathcal{F} is an irreducible representation of the Clifford algebra generated by $\hat{v}_{j}, \check{v}_{j}^{*}$.
(b) Compute $\operatorname{Tr}_{\mathcal{F}}\left(q^{\mathbf{d}} z^{\mathbf{m}}\right)$, where \mathbf{d} is the operator multiplying homogeneous elements by their degree, defined by $\operatorname{deg}\left(\psi_{0}\right)=0, \operatorname{deg}\left(\hat{v}_{j}\right)=j, \operatorname{deg}\left(\check{v}_{j}^{*}\right)=-j$, and \mathbf{m} is the operator which acts by multiplication by the number m on $\mathcal{F}^{(m)}$.
3. Using the fact that $\mathcal{F}=\mathcal{B}$, compute the answer to problem 2 using the bosonic realization. Deduce that

$$
\prod_{n \geq 0}\left(1-q^{n} z\right)\left(1-q^{n+1} z^{-1}\right)\left(1-q^{n+1}\right)=\sum_{m \in Z}(-z)^{m} q^{m(m-1) / 2}
$$

(Jacobi triple product identity). Substitute $z=q^{1 / 3}$ and obtain Euler's pentagonal identity for $\prod_{n \geq 1}\left(1-p^{n}\right)$.
4. Let $\hat{\mathfrak{g}}$ be the affine Lie algebra associated to a simple Lie algebra \mathfrak{g}. Let $a \in \mathfrak{g}$ and $a(z)=\sum a[n] z^{-n-1}, a[n]=a t^{n} \in \hat{\mathfrak{g}}$.
(a) Show that if V is a highest weight representation of $\hat{\mathfrak{g}}$ then $a(z)$ defines a linear map $V \rightarrow V((z))$ (here $V((z))$ is the space of formal Laurent series with coefficients in V).
(b) Let V have a highest weight vector v with $h v=0$ for h in the Cartan subalgebra of \mathfrak{g}, and $K v=k v$. Compute $<v, a\left(z_{1}\right) b\left(z_{2}\right) v>$ (as a rational function).
(c) Compute $<v, a\left(z_{1}\right) b\left(z_{2}\right) c\left(z_{3}\right) v>$.

