18.747: Problem set 6; due Thursday, October 17

1. Prove formula 9.14b in Kac-Raina.

2. Let $\mathcal{F} = \oplus \mathcal{F}^{(m)}$ be the semiinfinite wedge space.

(a) Show that \mathcal{F} is an irreducible representation of the Clifford algebra generated by \hat{v}_i, \check{v}_i^* .

(b) Compute $Tr_{\mathcal{F}}(q^{\mathbf{d}}z^{\mathbf{m}})$, where **d** is the operator multiplying homogeneous elements by their degree, defined by $deg(\psi_0) = 0$, $deg(\hat{v}_j) = j$, $deg(\check{v}_j^*) = -j$, and **m** is the operator which acts by multiplication by the number m on $\mathcal{F}^{(m)}$.

3. Using the fact that $\mathcal{F} = \mathcal{B}$, compute the answer to problem 2 using the bosonic realization. Deduce that

$$\prod_{n \ge 0} (1 - q^n z)(1 - q^{n+1} z^{-1})(1 - q^{n+1}) = \sum_{m \in \mathbb{Z}} (-z)^m q^{m(m-1)/2}$$

(Jacobi triple product identity). Substitute $z = q^{1/3}$ and obtain Euler's pentagonal identity for $\prod_{n>1}(1-p^n)$.

4. Let $\hat{\mathfrak{g}}$ be the affine Lie algebra associated to a simple Lie algebra \mathfrak{g} . Let $a \in \mathfrak{g}$ and $a(z) = \sum a[n]z^{-n-1}$, $a[n] = at^n \in \hat{\mathfrak{g}}$.

(a) Show that if V is a highest weight representation of $\hat{\mathfrak{g}}$ then a(z) defines a linear map $V \to V((z))$ (here V((z)) is the space of formal Laurent series with coefficients in V).

(b) Let V have a highest weight vector v with hv = 0 for h in the Cartan subalgebra of \mathfrak{g} , and Kv = kv. Compute $\langle v, a(z_1)b(z_2)v \rangle$ (as a rational function). (c) Compute $\langle v, a(z_1)b(z_2)c(z_3)v \rangle$.