1. (optional; for those who like calculations!) Prove identity (7.18) in KacRaina.
2. Let $\mathcal{B}^{(0)}$ be the Fock space and $a(z)$ be the basic quantum field $(a(z)=$ $\left.\sum a_{n} z^{-n-1}\right)$. Let : $a\left(z_{1}\right) \ldots a\left(z_{n}\right)$: be the usual product in which the annihilation operators $a_{n} n>0$, have been moved to the right (we agree that this is 1 if $n=0$).
(a) Express $a\left(z_{1}\right) \ldots a\left(z_{n}\right)$ as a linear combination of : $a\left(z_{j^{1}}\right) \ldots a\left(z_{j^{r}}\right)$: with coefficients depending on z_{j} (e.g. $\left.a\left(z_{1}\right) a\left(z_{2}\right)=: a\left(z_{1}\right) a\left(z_{2}\right):+1 /\left(z_{1}-z_{2}\right)^{2}\right)$.
(b) Prove the formula for $<1^{*}, a\left(z_{1}\right) \ldots a\left(z_{2 n}\right) 1>$ from a previous homework using (a).
3. Let d be the degree operator in Fock space $\mathcal{B}^{(0)}$ (i.e. it multiplies a homogeneous vector by its degree, where $\left.\operatorname{deg}\left(x_{i}\right)=i\right)$. Let $\Gamma(u, v)$ be the operator on this space introduced in Kac-Raina. Show that

$$
\operatorname{tr}\left(\Gamma(u, v) q^{d}\right)=\prod_{n \geq 1} \frac{1-q^{n}}{\left(1-q^{n} u / v\right)\left(1-q^{n} v / u\right)}
$$

(as formal series).
Hint: Compute the trace of the operator $e^{a x} e^{b \partial} q^{x \partial}$ in the space of polynomials in one variable, then obtain the answer for infinitely many variables by tensoring and algebraic manipulations.

