18.747: Problem set 3; due Thursday, September 26 **Problem 1.** Let $\phi : M_{\lambda} \to M_{\mu}$ be a nonzero homomorphism of Verma

modules over a \mathbb{Z} -graded Lie algebra \mathfrak{g} (with abelian \mathfrak{g}_0). Show that ϕ is injective.

Problem 2. A quantum field is a formal series $A(z) = \sum_{n \in \mathbb{Z}} A_n z^{-n-1}$, where A_n are operators in some vector space, or more generally elements of some noncommutative algebra. Let $A_+(z) = \sum_{n < 0} A_n z^{-n-1}$ be the Taylor part, and $A_-(z) = A(z) - A_+(z)$. For two quantum fields A, B, the normal ordered product : A(z)B(w) : is defined by the formula

$$: A(z)B(w) := A_{+}(z)B(w) + B(w)A_{-}(z).$$

Consider the quantum fields $a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}$ for the Heisenberg algebra \mathcal{A} and $T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$ for the Virasoro algebra Vir.

(i) Compute the difference a(z)a(w) - : a(z)a(w) : on the Fock representation F_{μ} (sum the power series you get and express as a rational function in z, w. In fact, this function should depend only on z - w).

(ii) Regard the Fock representation F_{μ} as a module over Vir $\ltimes \mathcal{A}$. In this mocule, compute T(z)a(w) - : T(z)a(w) : as a linear combination of a(w) and its derivatives with coefficients being rational functions of z, w (in fact, of z - w).

(iii) Let V be a highest weight Virasoro module with central charge c. Compute T(z)T(w) - : T(z)T(w) : on V as a linear combination of T(w) and its derivatives with coefficients being rational functions of z, w plus a rational function of z, w (in fact, these will be functions of z - w).