Problem 1. Let \(\phi : M_{\lambda} \to M_{\mu} \) be a nonzero homomorphism of Verma modules over a \(\mathbb{Z} \)-graded Lie algebra \(g \) (with abelian \(g_0 \)). Show that \(\phi \) is injective.

Problem 2. A quantum field is a formal series \(A(z) = \sum_{n \in \mathbb{Z}} A_n z^{-n-1} \), where \(A_n \) are operators in some vector space, or more generally elements of some noncommutative algebra. Let \(A_+(z) = \sum_{n < 0} A_n z^{-n-1} \) be the Taylor part, and \(A_-(z) = A(z) - A_+(z) \). For two quantum fields \(A, B \), the normal ordered product \(: A(z)B(w) : \) is defined by the formula

\[
: A(z)B(w) := A_+(z)B(w) + B(w)A_-(z).
\]

Consider the quantum fields \(a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1} \) for the Heisenberg algebra \(A \) and \(T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \) for the Virasoro algebra \(Vir \).

(i) Compute the difference \(a(z)a(w) - : a(z)a(w) : \) on the Fock representation \(F_\mu \) (sum the power series you get and express as a rational function in \(z, w \). In fact, this function should depend only on \(z - w \)).

(ii) Regard the Fock representation \(F_\mu \) as a module over \(Vir \ltimes A \). In this module, compute \(T(z)a(w) - : T(z)a(w) : \) as a linear combination of \(a(w) \) and its derivatives with coefficients being rational functions of \(z, w \) (in fact, of \(z - w \)).

(iii) Let \(V \) be a highest weight Virasoro module with central charge \(c \). Compute \(T(z)T(w) - : T(z)T(w) : \) on \(V \) as a linear combination of \(T(w) \) and its derivatives with coefficients being rational functions of \(z, w \) plus a rational function of \(z, w \) (in fact, these will be functions of \(z - w \)).