18.747: Problem set 12; due Thursday, December 5

1. Let $M = M_{\lambda,k}$ be the Verma module over \widehat{sl}_2 , of level $k \neq -2$, and V the irreducible representation of sl_2 of dimension 2m+1. Regard V as a representation of \widehat{sl}_2 by $(at^n)v = av$, $a \in sl_2$, and Kv = 0.

(a) Show that for generic λ, k there exists a unique, up to scaling, intertwining operator $\Phi: M \to M \hat{\otimes} V$ (here $\hat{\otimes}$ is the completed tensor product). (b) Define the function of two variables

$$F(x,t) := \operatorname{Tr}_M(\Phi e^{tL_0 + xh}),$$

where $h \in sl_2$ is the Cartan element, and L_0 is given by the Sugawara construction. This function takes values in V[0], the zero weight subspace of V, which is 1dimensional, so we may regard it as a scalar function. Show that F(x,t) satisfies a linear parabolic PDE of the form

$$F_t = \gamma F_{xx} + \text{lower terms},$$

whose coefficients are elliptic functions. Compute the exact form of this equation.