18.747: Problem set 12; due Thursday, December 5

1. Let $M=M_{\lambda, k}$ be the Verma module over $\widehat{s l}_{2}$, of level $k \neq-2$, and V the irreducible representation of $s l_{2}$ of dimension $2 m+1$. Regard V as a representation of $\widehat{s l_{2}}$ by $\left(a t^{n}\right) v=a v, a \in s l_{2}$, and $K v=0$.
(a) Show that for generic λ, k there exists a unique, up to scaling, intertwining operator $\Phi: M \rightarrow M \hat{\otimes} V$ (here $\hat{\otimes}$ is the completed tensor product).
(b) Define the function of two variables

$$
F(x, t):=\operatorname{Tr}_{M}\left(\Phi e^{t L_{0}+x h}\right),
$$

where $h \in s l_{2}$ is the Cartan element, and L_{0} is given by the Sugawara construction. This function takes values in $V[0]$, the zero weight subspace of V, which is 1dimensional, so we may regard it as a scalar function. Show that $F(x, t)$ satisfies a linear parabolic PDE of the form

$$
F_{t}=\gamma F_{x x}+\text { lower terms },
$$

whose coefficients are elliptic functions. Compute the exact form of this equation.

