1. Show that every integrable module M of finite length in category O over a Kac-Moody algebra is a direct sum of irreducible modules.

Hint. It suffices to show that for every irreducible integrable modules V, W from O, one has $\operatorname{Ext}^1(V, W) = 0$ (where Ext is taken in category O). To show this, argue that for an exact sequence $0 \to L_a \to X \to L_b \to 0$ to be non-split, it is necessary that a - b be a nonnegative integer combination of simple roots. Deduce from this that for $a \neq b$ the eigenvalue of the Casimir on L_a is larger than that for L_b , and deduce triviality of the extension. The case a = b should be considered separately.

2. (a) Using the Casimir, show that for generic λ , the Verma module M_{λ} over an extended Kac-Moody algebra is irreducible. Specify a countable collection of hyperplanes outside of which it is true.

(b) Let N be a module over an extended Kac-Moody algebra from category O. Show that for a Weil generic λ (more precisely, for λ outside of a countable collection of hyperplanes), the module $M_{\lambda} \otimes N$ is semisimple, and describe its decomposition into irreducibles.