18.747: Problem set 1; due Thursday, September 12

1. Let $\alpha, \beta \in \mathbf{C}$ and $V_{\alpha, \beta}$ be the space of formal expressions $g(z) z^{\alpha}(d z)^{\beta}$, where g is a Laurent polynomial ("tensor fields" of rank β and branching α on the punctured complex plane).
(a) Show that the formula

$$
f \partial \circ g z^{\alpha}(d z)^{\beta}=\left(f g^{\prime}+\alpha z^{-1} f g+\beta f^{\prime} g\right) z^{\alpha}(d z)^{\beta}
$$

defines an action of W on $V_{\alpha, \beta}$.
(b) Recall that the Lie algebra W has a basis $L_{n}, n \in \mathbf{Z}$ with $\left[L_{n}, L_{m}\right]=$ $(n-m) L_{m+n}$. Let $v_{k}=z^{k+\alpha}(d z)^{\beta}$ (this is a basis of $\left.V_{\alpha, \beta}\right)$. Check that

$$
L_{n} \circ v_{k}=-(k+\alpha+(n+1) \beta) v_{n+k} .
$$

Deduce that this formula defines a representation of W.
2. Find the necessary an sufficient conditions on $\left(\alpha, \beta, \alpha^{\prime}, \beta^{\prime}\right)$ under which $V_{\alpha, \beta}$ is isomorphic to $V_{\alpha^{\prime}, \beta^{\prime}}$. When is $V_{\alpha, \beta}$ irreducible?
3. Show that W is a simple Lie algebra (i.e. it has no two-sided ideals other than $0, W)$. Deduce from this that W has no nontrivial finite dimensional modules (i.e. the action of W in any such module is zero).
4. Check that the formula $\omega\left(L_{n}, L_{m}\right)=n^{3} \delta_{n,-m}$ defines a 2-cocycle on W.
5. Show that the Virasoro algebra Vir is perfect (coincides with its commutator subalgebra). Derive that Vir is not isomorphic to $W \oplus \mathbf{C}$ as a Lie algebra.

