Now I want to discuss the relationship of all this with integrable systems. One of the most important integrable PDEs is the KdV equation

$$u_t = \frac{3}{2} uu_x - \frac{1}{4} u_{xxx} \quad (\text{cosh}^2 \frac{3}{2}, \frac{1}{4} \text{ can be normalized to } 1)$$

This was studied in 1895 by Korteweg and de Vries as an equation describing notion of waves in shallow water. One of the solutions is the traveling wave solution:

$$f(t) = \frac{2u^2}{\cosh^2 (x + vt)}$$

Such solution is called a Soliton (solitary wave). It was first observed by J.S. Russell in 1834. Generalization: Kadomtsev-Petviashvili equation

$$u_{yy} = (u_t - \frac{3}{2} uu_x - \frac{1}{4} u_{xxx})_x$$

This describes 2-dimensional waves.
We'll construct many solutions of these equations using rep. theory of \(\infty \)-dimensional Lie algebras. For this purpose we'll need infinite Grassmannians, so let us first recall about finite dimensional Grassmannians.

Let \(V \) be a finite dimensional vector space, with basis \(v_1, \ldots, v_n \). Then \(GL(V) \) acts on \(\Lambda^k V \), and the highest weight vector is \(v_1 \wedge \ldots \wedge v_k \). Denote by \(\mathcal{S}_k \) the orbit of action of \(GL(V) \) on \(v_1 \wedge \ldots \wedge v_k \). So \(\mathcal{S}_k \) is the set of decomposable wedges:

\[
\mathcal{S}_k = \{ x \in \Lambda^k V, \exists x_1, \ldots, x_k \in V, x = x_1 \wedge \ldots \wedge x_k \}.
\]

Prop. \(\mathcal{S}_k \) is clear. (Note that \(x \neq 0 \) implies that \(x_1, \ldots, x_k \) are linearly independent.)

Def. The Grassmannian \(Gr(k, V) \) is the set of all \(k \)-dim. subspaces of \(V \).

Plücker embedding: \(Pl: Gr(k, V) \to \mathbb{P} \Lambda^k V \)

\(E \in V, x_1, \ldots, x_k \) basis \(\Rightarrow Pl(E) = x_1 \wedge \ldots \wedge x_k \).
Exer. Show that \(PE \) is injective.

Clearly, \(\text{Im}(PE) = \mathcal{S}/\mathcal{E}^* \)

So \(\mathcal{S}/\mathcal{E}^* \cong \text{Gr}(k, V) \).

\(\mathcal{S} \) is the total space of the determinant bundle on \(\text{Gr}(k, V) \), which is the top exterior power of \(E \) at every point \(E \in \text{Gr}(k, V) \).

Theorem. (Plucker relations) Let \(\tau \in \Lambda^k V \)

Then \(\tau \in \mathcal{S} \iff \sum \hat{\upsilon}_i \tau \otimes \hat{\upsilon}_i^* \tau = 0. \)

\[\Lambda^{k+1} V \otimes \Lambda^{k-1} V \]

Proof. Let us first show that if \(\Sigma \hat{\upsilon}_i \tau \otimes \hat{\upsilon}_i^* \tau = 0 \). since the operator \(\Sigma \hat{\upsilon}_i \otimes \hat{\upsilon}_i^* \) is invariant under \(\text{GL}(V) \) action, it's enough to check this for \(\tau = \upsilon_1 \wedge \ldots \wedge \upsilon_k \). But this is easy: for any \(i \), either \(\hat{\upsilon}_i \) or \(\hat{\upsilon}_i^* \) kills \(\tau \).

Now let us prove the converse. let \(E(\tau) \) be the space of all \(\upsilon \in V \) such \(\hat{\upsilon}_i \tau = \upsilon \wedge \tau = 0 \) and \(E' \) be
the space of all \(f \in V^* \) such that \(f \circ \tau = i \circ \tau = 0 \). I claim that \(E \) and \(E' \) are orthogonal. Indeed, \(\hat{f} \circ \nu + \hat{\epsilon} \circ \hat{f} = f(\nu) \), so if \(\nu \in E \), \(\epsilon \in E' \) then \(f(\nu) = 0 \).

Thus \(E \subset E' \). Pick a basis \(\epsilon_i \) of \(V \) compatible with these subspaces. Let \(\dim E = m \), \(\dim E' = r \). So we have:

for \(S = \sum \epsilon_i \otimes \epsilon_i^* \):

\[
S(\tau \otimes \tau) = \sum_{i=1}^{m} \epsilon_i \tau \otimes \epsilon_i^* \tau + \sum_{i=m+1}^{n} \epsilon_i \tau \otimes \epsilon_i^* \tau + \sum_{i=r+1}^{n} \epsilon_i \tau \otimes \epsilon_i^* \tau.
\]

The first and the last sum are zero, as \(\epsilon_i \in E \), \(i \leq m \) and \(\epsilon_i^* \in E' \), \(i \geq r+1 \).

So \(\sum_{i=m+1}^{n} \epsilon_i \tau \otimes \epsilon_i^* \tau = 0 \).

But \(\epsilon_i \tau \) are linear independent for \(m+1 \leq i \leq n \), so \(\epsilon_i^* \tau = 0 \) for these \(i \).

But for these \(i \), \(\epsilon_i^* \in E' \), so we get that \(m = r \) and our sum is empty. The result is proved.
In coordinates: \(E \subset V = \mathbb{C}^n \) \(\dim E = m \)

\[\begin{pmatrix}
 a_{11} & \cdots & a_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nm}
\end{pmatrix} \]

\(P_0(E) \in P \left(\binom{n}{k} \right) \) - minors of maximal size \((m) \). For \(I \subseteq \{1, \ldots, n\} \), \(|I| = m \), have Plücker coordinate

\[y_I = \det_{m \leq j \leq I} a_{ij} \]

\[1 \leq i \leq m \]

Prop. \[S(\tau \otimes \tau) = 0 \iff \]

\(\forall I, J \subseteq \{1, \ldots, n\}, \ |I| = k-1, \ |J| = k+1 \)

\[\sum_{j \in J \cup \{g\}} \prod_{j \notin I} P \left(\binom{n}{k} \right) \left(-1 \right) \]

where \(v_j \) is the number of \(j \) in \(J \) written in increasing order.

Pf. Exercise; this is just a rewriting of \(S(\tau \otimes \tau) = 0 \) in coordinates.
Now let's generalize to the infinite dimensional setting.

\[F^{(0)} = \mathbb{V} = \mathbf{v}_0 \times \mathbf{v}_1 \times \ldots \]

Definition. \(\mathbb{V} = L_2(\mathbb{R}) \times \mathbb{R} \).

Proposition. \(\mathbf{v}_0 \times \mathbf{v}_1 \times \ldots \) for \(i_k + k = 0, k \geq 0 \) belongs to \(\mathbb{V} \).

Proof. We have a permutation

\[\sigma : \mathbb{V} \rightarrow \mathbb{V}, \quad \sigma \in GL(\mathbb{R}), \]

which moves only finitely many elements \(s + \sigma(m) = \sigma(m), m \leq 0 \).

Prop. \(\tau \in \mathbb{V} \Longleftrightarrow \sum_{i \in \mathbb{Z}} \mathbf{v}_i \times \tau \otimes \mathbf{v}_i = 0 \).

(note that this sum is in fact finite).

Proof. Analogous to the finite dimensional case.

Remark. \(\mathbb{V} / \mathbb{V}_x = 16r \) is the infinite Grassmannian. It can be interpreted as the set of subspaces \(E \in C(l(t)) \) which contain \(x_k \mathbb{V} \) for \(k > 0 \), and...
dim $E/t^N \mathbb{C}[[t]] = N$.

Note that also $E \subseteq t^{-M} \mathbb{C}[[t]]$ for large enough M. So Gr can be viewed as $U(Gr(N,N+M))$ or $U Gr(N,2N)_{n \geq 0}$ (exercise).

Now we would like to rewrite these infinite Plücker relations in terms of polynomials, using the Boson–Fermion Correspondence.