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Abstract. Let κ be the condition number of an m-by-n matrix with independent standard
Gaussian entries, either real (β = 1) or complex (β = 2). The major result is the existence of a
constant C (depending on m, n, β) such that P [κ > x] < C x−β for all x. As x→∞, the bound is
asymptotically tight. An analytic expression is given for the constant C, and simple estimates are
given, one involving a Tracy-Widom largest eigenvalue distribution. All of the results extend beyond
real and complex entries to general β.
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1. Introduction. Take an m-by-n matrix G with iid standard Gaussian entries.
What is the distribution of its condition number? The condition number κ is defined
as the ratio of the largest to smallest singular values,

κ =
σm(G)
σ1(G)

=

√
λm(W )
λ1(W )

,

or equivalently as the square root of the ratio of the extreme eigenvalues of the Wishart
matrix W = GG∗. This paper derives an upper bound on the tail P [κ > x] for all x.
As x →∞, the bound is tight. The results apply to the following cases.

• Square or rectangular,
• Finite or infinite,
• Real or complex, as well as extensions to “general β.”

Wishart matrices arise commonly in the statistics literature, for example in prin-
cipal component analysis. The standard reference is [8]. Traditionally, a Wishart
matrix of parameters m, n, β, is defined as GG∗, in which G is a matrix of iid stan-
dard Gaussian entries. G is m-by-n and has either real or complex Gaussian entries,
depending on the value of β, either 1 or 2. (This paper assumes an identity covari-
ance matrix.) The distributions of the largest and smallest eigenvalues of a Wishart
matrix, expressed in terms of zonal polynomials and hypergeometric functions, can
be found in [8].

The class of Wishart matrices has been expanded beyond real and complex entries
[3, 4]. The generalized Wishart matrix W β

m,n is defined for non-integral n and any
β > 0. The generalized Wishart matrices are not always expressible as W = GG∗, so
the condition number is defined in the general case to be

κ =
√

λm/λ1.

Interest in random condition numbers first arose in the numerical linear algebra
community, for their use in measuring the sensitivity of problems to perturbations.
References include [1, 2, 11, 13]. The limiting distribution of the condition number,
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(a) The cdf P [κ > x] and an asymptotically
tight upper bound.
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(b) The same cdf and upper bound, after
rescaling (multiplying by x).

Fig. 1.1. The condition number of a 6-by-6 matrix of independent real Gaussians.

as the size of the matrix m approaches infinity, can be found in [5]. The present paper
considers finite m as well as large m limits.

The large m asymptotics take advantage of the recent observation that the largest
eigenvalue of a Wishart matrix approaches a Tracy-Widom distribution as m → ∞
[6]. This is another example of the convergence of the approaches to Wishart matrices
and Gaussian ensembles.

Figure 1.1 plots the cdf of κ, taken from W 1
6,6, before and after rescaling. By

cdf, we mean P [κ > x], rather than the more common P [κ < x]. In this particular
case, the tail of the cdf is asymptotic to x−1, so multiplying by x produces a nonzero
limiting value at infinity, shown in the second plot. The dashed curve is an upper
bound that is asymptotically tight, the main focus of this paper.

In the special case W 1
m,m, the main theorem is

Theorem 1.1. Let κ be the condition number of an m-by-m matrix of iid real
standard Gaussian entries. Then

P [κ > x] ∼
√

2Γ( 1
2 (m + 1))

Γ( 1
2m)

µx−1 (x →∞),

and the right hand side is an upper bound for all values of x. The constant µ is

µ = E[σmax(Gm−1,m+1)] = E[λmax(W 1
m−1,m+1)

1/2],

the mean of the largest singular value of an (m− 1)-by-(m+1) matrix of independent
real standard Gaussian entries.

The constant

lim
x→∞

xP [κ > x] =

√
2Γ( 1

2 (m + 1))
Γ( 1

2m)
µ

is expressed analytically in terms of a multivariate hypergeometric function. Because
multivariate hypergeometrics are difficult to compute, we provide estimates based
on large m asymptotics. As can be seen in Figure 1.2(a), a combination of exact
computation and large m asymptotics produces an estimate for every value of m that
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(a) Real case (β = 1, m = n).
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(b) Complex case (β = 2, m = n).
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(c) Neither real nor complex (β = 2.3, m = n).

Fig. 1.2. Dependence on the size of the matrix m. The large x limiting value of ( x
m

)βP [κ > x]
is plotted against m. The asymptotics are developed in Section 4.

agrees well with simulations in the real square case. Figures 1.2(b) and 1.2(c) show
similar estimates for β = 2 and β = 2.3, respectively. The asymptotic analysis, based
on the Tracy-Widom largest eigenvalue distributions, is heuristic and is supported
numerically by Figure 1.2.

Our results can be compared with the literature, specifically [1]. First, the present
article enjoys greater generality; the cited paper restricts itself to real square matrices.
In this restricted case, the reference shows that x

mP [κ > x] < 5.60. As evident from
Figure 1.2(a), the value 5.60 can likely be replaced by 2, and even smaller numbers
for finite m. The present article provides, for each m, n, and β, an exact expression
for the constant, not just a universal upper bound.

Section 2 describes generalized Wishart matrices in more detail. Section 3 presents
the main theorem in full generality, for all values of β. Section 4 provides estimates
on the constant in the asymptotic relation. Section 5 considers asymptotics of κ near
1. Section 6 derives the exact cdf for the condition number of 2-by-2 matrices.

2. Generalized Wishart matrices. Traditionally, a real Wishart matrix is
defined as the symmetrization GGT of an m-by-n matrix G of independent Gaussian
entries (mean 0, variance 1). The m-by-m Wishart matrix is said to have n degrees
of freedom, n > m− 1. Letting λ1 ≤ · · · ≤ λm be the eigenvalues of GGT , it follows
that the condition number of G is κ =

√
λm/λ1.
3



The traditional complex Wishart matrix is defined as GG∗. Here, G has complex
Gaussian entries with real and imaginary parts having mean 0 and variance 1.

To overcome the limitations of integral n and β = 1, 2, a tridiagonal Wishart
matrix has been developed [3, 4], in the spriit of [10]. The tridiagonal model has
three parameters—m, n, β—and is denoted by W β

m,n. It is a real, m-by-m matrix
distributed as follows.

W β
m,n = BBT ,

B ∼


χβn

χβ(m−1) χβ(n−1)

. . . . . .
χβ χβ(n−m+1)

 ,

m ∈ N, n ∈ R, β ∈ R, n > m− 1, β > 0.

The entries of B are independent, and χr denotes a χ-distributed random variable
with r degrees of freedom. Remember that n need not be an integer. However, a
special case occurs when n is an integer and β = 1 (resp. β = 2). Then W β

m,n has the
same eigenvalue distribution as the traditional real (complex) Wishart matrix GGT

(GG∗), in which G is m-by-n.
The joint density of the eigenvalues of a Wishart matrix is well known and can

be found in [4, 8]. The constant term involves the multivariate Gamma function

Γβ
m(z) = πβm(m−1)/4

m∏
i=1

Γ(z + β
2 (i− 1)).

Proposition 2.1. Let λ1 ≤ · · · ≤ λm be the eigenvalues of the m-by-m Wishart
matrix with parameters n, β. The joint density for these eigenvalues is

m! cβ
m,n

∏
j<i

|λi − λj |β
∏

i

λp−1
i e−

P
i λi/2, (2.1)

with p = β
2 (n−m + 1) and

cβ
m,n =

πβm(m−1)/2

2βmn/2

Γ(1 + β
2 )m

Γβ
m(1 + β

2 )Γβ
m(p)

. (2.2)

Because the quantity β
2 (n − m + 1) arises so often, the symbol p will be used

throughout,

p =
β

2
(n−m + 1).

It is important to remember that p depends on m, n, and β.

3. Asymptotics at κ = ∞. We begin by bounding the joint density of the
extreme eigenvalues of a Wishart matrix. Loosely speaking, when λm/λ1 is known to
be large, the smallest eigenvalue is essentially independent from the other eigenvalues,
following a gamma distribution. The remaining eigenvalues appear to be taken from
a smaller Wishart matrix.

More precisely,
4



Lemma 3.1. Let f(λ1, λm) be the joint density of the extreme eigenvalues of
W β

m,n. The density is bounded above by

f(λ1, λm) ≤ pCλp−1
1 e−λ1/2gβ

m−1,n+1(λm),

in which gβ
m−1,n+1 is the density of the largest eigenvalue of W β

m−1,n+1.
Also, for fixed λm,

f(λ1, λm) ∼ pCλp−1
1 gβ

m−1,n+1(λm) (λ1 → 0).

The constant C is

C =
m

p

cβ
m,n

cβ
m−1,n+1

,

in which cβ
m,n is defined in (2.2).

Proof. The factors of f(λ1, λm) may be grouped conveniently,

f(λ1, λm) = pC
[
λp−1

1 e−λ1/2
]
· (m− 1)! cβ

m−1,n+1

·
∫

. . .

∫ ∏
2≤j<i≤m

|λi − λj |β
m∏

i=2

[
|λi − λ1|βλp−1

i

]
e−

Pm
i=2 λi/2dλ2 · · · dλm−1,

where the integration is taken over the region λ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ λm.
To obtain the upper bound, use the estimate |λi − λ1|β ≤ λβ

i and expand the
region of integration. Compare with (2.1).

For the asymptotic result, we need to show that

(m− 1)! cβ
m−1,n+1

·
∫

. . .

∫ ∏
2≤j<i≤m

|λi − λj |β
m∏

i=2

[
|λi − λ1|βλp−1

i

]
e−

Pm
i=2 λi/2dλ2 · · · dλm−1

approaches gβ
m−1,n+1(λm), since this quantity is a nonzero constant. To see this, use

the dominated convergence theorem. As λ1 → 0, the integrand converges upwards
to the joint density of the eigenvalues of W β

m−1,n+1. All eigenvalues except for the
largest are integrated out, leaving the marginal density of the largest eigenvalue.

Now we can present our main theorem. One of the constants involved will be a
moment of the largest eigenvalue of a Wishart matrix. Specifically, µ will denote the
expected value of λp

max, in which λmax is the largest eigenvalue of a Wishart matrix
of parameters m− 1, n + 1, β:

µ = E[λmax(W
β
m−1,n+1)

p]. (3.1)

(To clarify this expression, p = β
2 (n −m + 1), not β

2 ((n + 1) − (m − 1) + 1).) µ can
be expressed as an integral involving a hypergeometric function; see Section 4.

Theorem 3.2. Let κ be the condition number associated with a Wishart matrix
of parameters m, n, β. Then for x ≥ 1,

P [κ > x] ≤ Cµx−2p.

5



As x tends to infinity, the right hand side gives the first order asymptotics for the tail
of the condition number,

P [κ > x] ∼ Cµx−2p (x →∞).

C is the same constant from Lemma 3.1, and depends on m, n, β. µ is defined
in (3.1).

Proof. Denoting the joint density of λ1, λm by f(λ1, λm) as in the lemma, we
have ∫ x−2λm

0

f(λ1, λm)dλ1 ≤ pCgβ
m−1,n+1(λm)

∫ x−2λm

0

λp−1
1 dλ1

= Cλp
mgβ

m−1,n+1(λm)x−2p.

Therefore, the upper bound is immediate,

P [κ > x] =
∫ ∞

0

∫ x−2λm

0

f(λ1, λm)dλ1dλm

≤ C x−2p

∫ ∞
0

λp
mgβ

m−1,n+1(λm)dλm

= Cµx−2p.

For the asymptotics, we need to compute the limit of

1
C

1
µ

x2pP [κ > x] =
1
µ

∫ ∞
0

[
1
C

x2p

∫ x−2λm

0

f(λ1, λm)dλ1

]
dλm

as x →∞. By the second part of the lemma, the integrand w.r.t. dλm is dominated
by and converges pointwise to

λp
mgβ

m−1,n+1(λm)

as x → ∞. By the dominated convergence theorem, the entire integral converges to
µ, so that

1
C

1
µ

x2pP [κ > x] → 1,

as desired.
The following corollary applies to square matrices of real or complex Gaussians,

in particular.
Corollary 3.3. If m = n, then

P [κ > x] ∼ 1
2β/2−1Γ(1 + β)

Γ(β
2 (m + 1))

Γ(β
2 m)

µx−β (x →∞).

From numerical evidence, e.g., Figure 1.1(b), the rescaled tail appears to be mono-
tonic, but a proof remains an open question.

Conjecture 3.4. For any m,n, β, the rescaled tail x2p P [κ > x] is an increasing
function of x.
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The following theroem provides a lower bound on the tail for some values of m,
n, and β. A lower bound of a different flavor which applies to the real square case
(β = 1, m = n) is given in [1].

Theorem 3.5. When p ≥ 1, the condition number is bounded below, for all
x ≥ 1, by

P [κ > x] ≥ Cµx−2p − m

2
pC

p + 1
ν x−2p−2,

where C, p, and µ are defined as before, and

ν = E[λmax(W
β
m−1,n+1)

p+2].

Proof. Perform the change of variables ρi = λi+1 − λ1, i = 1, . . . ,m− 1, and use
the estimate (ρi + λ1)p−1 ≥ ρp−1

i to find the following bound on the joint density of
the extreme eigenvalues:

f(λ1, λm) = pC
[
λp−1

1 e−mλ1/2
]
· (m− 1)!cβ

m−1,n+1

·
∫

. . .

∫ ∏
1≤j<i≤m−1

|ρi − ρj |β
m−1∏
i=1

[
ρβ

i (ρi + λ1)p−1
]
e−

Pm−1
i=1 ρi/2dρ1 · · · dρm−2

≥ pC
[
λp−1

1 e−mλ1/2
]
gβ

m−1,n+1(ρm−1)

= pC
[
λp−1

1 e−mλ1/2
]
gβ

m−1,n+1(λm − λ1),

in which the integral is taken over the region 0 ≤ ρ1 ≤ · · · ≤ ρ2 ≤ ρm−1 = λm − λ1.
Then, the tail is bounded by

P [κ > x] =
∫ ∞

0

∫ x−2λm

0

f(λ1, λm)dλ1dλm

≥ pC

∫ ∞
0

(∫ x−2λm

0

λp−1
1 e−mλ1/2dλ1

)
gβ

m−1,n+1(λm − λ1)dλm.

Applying the change of variables s = λ1, t = λm − λ1, and estimating e−mλ1/2 ≥
1− m

2 λ1, the lower bound becomes

P [κ > x] ≥ pC

∫ ∞
0

[∫ x−2(1−x−2)−1t

0

sp−1
(
1− m

2
s
)

ds

]
gβ

m−1,n+1(t)dt

≥ pC

∫ ∞
0

[∫ x−2t

0

sp−1
(
1− m

2
s
)

ds

]
gβ

m−1,n+1(t)dt

= Cµx−2p − m

2
pC

p + 1
ν x−2p−2.

4. Estimates for the constant. Recall the main theorem,

P [κ > x] ∼ Cµx−2p (x →∞).
7



In this section, we give an exact formula and heuristic estimates for the constant Cµ.
Then we compare the estimates with numerical data in the cases β = 1, 2, 2.3. The
value 2.3 was chosen arbitrarily, in order to illustrate the approach when β 6= 1, 2.

The estimates are based on large m asymptotics. They will be restricted to the
“square” case, m = n, for ease of presentation. The arguments work just as well for
m 6= n.

4.1. Exact value. The constant C was specified earlier, and

µ = E[λmax(W
β
m−1,n+1)

p].

The cdf for λmax(W
β
m−1,n+1) is

Γβ
m−1(

β
2 (m− 2) + 1)

Γβ
m−1(

β
2 (n + m− 1) + 1)

·
(x

2

)(m−1)(n+1)β/2

1F
β
1

(
β

2
(n + 1),

β

2
(n + m− 1),−x

2
Im−1

)
,

in which Γβ
m−1 is a multivariate gamma function and 1F

β
1 is a multivariate hypergeo-

metric function [3]. Therefore, the pth moment is an integral over the corresponding
measure.

4.2. First order asymptotics. First, we will develop a crude estimate, which
will motivate a more refined estimate. Start by applying Stirling’s formula to Corollary
3.3. If m = n, then

C =
1

2β/2−1Γ(1 + β)
Γ(β

2 (m + 1))

Γ(β
2 m)

∼ ββ/2−1

2β−1Γ(β)
mβ/2 (m →∞).

We shall argue heuristically in a moment that the mean of the largest eigenvalue
of W β

m−1,m+1 is asymptotic to 4βm, and the standard deviation is dominated by the
mean. Hence, an immediate estimate for µ is

µ = E[λmax(W
β
m−1,m+1)

β/2]

∼ 2βββ/2mβ/2 (m →∞),

giving

lim
x→∞

xβP [κ > x] = Cµ ∼ 2ββ−1

Γ(β)
mβ (m →∞). (4.1)

The estimate (4.1) is plotted for β = 1, 2, 2.3 in Figure 1.2. For β = 1, the
estimate is the horizontal line at 2. For β = 2, it is the horizontal line at 4. For
β = 2.3, it is the horizontal line at ≈ 5.1. It is clear that this asymptotic estimate is
only valid for very large matrices.

As an extra sanity check, this estimate can be compared with the large m limiting
distribution of the condition number, when β = 1, 2.
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Proposition 4.1 ([5]). Let κ be the condition number associated with W 1
m,m.

Then

lim
m→∞

P [κ/m > x] = 1− e−2/x−2/x2
.

Let κ̃ be the condition number associated with W 2
m,m. Then

lim
m→∞

P [κ̃/m > x] = 1− e−4/x2
.

Taking series expansions,

lim
m→∞

1
m

P [κ > x] ∼ 2/x (x →∞),

and

lim
m→∞

1
m2

P [κ̃ > x] ∼ 4/x2 (x →∞).

In these two cases, at least, the limits x →∞, m →∞ can be interchanged.

4.3. The Tracy-Widom distributions. For a more refined estimate, the result
of Johnstone on the largest eigenvalue of a Wishart matrix will be key. It states that
as m →∞, the largest eigenvalue of an m-by-m Wishart matrix, appropriately scaled,
converges in distribution to a Tracy-Widom largest eigenvalue distribution.

The Tracy-Widom distributions were originally discovered as the limiting distri-
butions of the largest eigenvalues of Gaussian ensembles. Their cdf’s are expressed in
terms of a Painlevé transcendent and can be found in [6, 12]. For our purposes, just
the means of the distributions will suffice:

E[TW1] ≈ −1.21, E[TW2] ≈ −1.77, E[TW2.3] ≈ −1.8,

in which TWβ is a random variable following the Tracy-Widom distribution of param-
eter β. (The means for β = 1 and β = 2 were computed using a numerical ode solver
and the Tracy-Widom densities. The mean for β = 2.3 was computed by Monte Carlo
simulation.)

Although Johnstone’s theorem handles “rectangular” cases (m 6= n), we present
only the “square” case. Note that Johnstone’s complex Wishart matrix differs from
ours by a factor of 1

2 .
Theorem 4.2 ([6]). Fix β = 1 or β = 2. Let lm be the largest eigenvalue of

W β
m−1,m+1, and scale each random variable in the sequence by

l̃m =
lm − 4βm

24/3βm1/3
. (4.2)

Then the sequence l̃m converges in distribution to the Tracy-Widom largest eigenvalue
distribution for β.

Conjecture 4.3. The theorem also holds for general β. Although the gener-
alized Tracy-Widom distributions (β 6= 1, 2, 4) have no known closed form solutions,
the distributions can be sampled quite efficiently when β ≥ 1 [4, 9].
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Table 4.1
Large m asymptotic approximation to limx→∞ xβP [κ > x] when m = n. These estimates are

based on Conjecture 4.3.

β Large m = n asymptotics for Cµ = limx→∞ xβP [κ > x]

1
“√

m− 1
4
√

m

” “√
m +

√
m− 1 + 1

22/3 E[TW1]m−1/6
”

general 2ββ

Γ(1+β)
mβ

“
1 + β−2

4
m−1

” `
1 + 2−5/3βE[TWβ ]m−2/3

´

4.4. Second order asymptotics. Now, we can compute a second order ap-
proximation to the constant Cµ. Stirling’s second order approximation gives

C =
1

2β/2−1Γ(1 + β)
Γ(β

2 (m + 1))

Γ(β
2 m)

∼ ββ/2

2β−1Γ(1 + β)
mβ/2

(
1 +

β − 2
4

m−1

)
(m →∞),

and Johnstone’s result suggests

µ = E[λmax(W
β
m−1,m+1)

β/2]

∼ E[(4βm + 24/3βm1/3TWβ)β/2]

∼ E

[
(4βm)β/2 +

β

2
(4βm)β/2−124/3βm1/3TWβ

]
∼ 2βββ/2mβ/2

(
1 + 2−5/3βE[TWβ ]m−2/3

)
(m →∞).

To avoid questions of convergence, we simply label this estimate as heuristic. When
β = 1 and m is small, the moment is better approximated by

µ ∼ ββ/2(
√

m +
√

m− 1)β + 2β−5/3ββ/2+1E[TWβ ]mβ/2−2/3

∼
√

m +
√

m− 1 + 2−2/3E[TW1]m−1/6 (m →∞),

as suggested by [6]. (Of course, this estimate agrees with the previous one asymp-
totically. There may be a generalization of this formula to general β, providing a
reasonably accurate estimate for small m without modifying the large m asymptotics,
but we are not aware of one.)

Multiplying the estimates gives Table 4.1.

4.5. Small m. For small values of m, the constant Cµ can be computed directly.
In the cases β = 1, 2, the constant can be computed symbolically in Mathematica; see
Tables 4.2(a) and 4.2(b). For other values of β, the moment can be evaluated numer-
ically using equation (4.1); see Table 4.2(c). The numerical entries in this table were
computed with the help of Plamen Koev’s software for multivariate hypergeometric
functions [7].

5. Asymptotics at κ = 1. Asymptotics can also be derived near κ = 1. The
proofs are broken into two cases, p ≤ 1 and p ≥ 1.

Throughout this section,

D = m! cβ
m,n

I

β
(
m
2

)
+ m− 1

(
2
m

)β(m
2 )+mp

Γ
(

β

(
m

2

)
+ mp

)
,
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Table 4.2
Preferred approximation to limx→∞ xβP [κ > x] when m = n.

(a) Real case.

m = n β = 1: Preferred approximation to Cµ = limx→∞ xP [κ > x]
2 2

3 11/(2
√

2)

4 2−13/2(2510
√

2/9 + 105π − 210 tan−1(
√

2))

≥ 5
“√

m− 1
4
√

m

” “√
m +

√
m− 1 + 1

22/3 E[TW1]m−1/6
”

(b) Complex case.

m = n β = 2: Preferred approximation to Cµ = limx→∞ x2P [κ > x]
2 6
3 297/16
4 1332815/34992
5 4512225660125/69657034752

≥ 6 4m2
`
1 + 2−2/3E[TW2]m−2/3

´
(c) Neither real nor complex.

m = n β = 2.3: Preferred approximation to Cµ = limx→∞ x2.3P [κ > x]
2 8.54
3 30.44
4 68.81
5 126.03

≥ 6 4m2
`
1 + 2−2/3E[TW2.3]m−2/3

´

where

I =
∫

. . .

∫ ∏
1≤j<i≤m

|ti − tj |βdt2 . . . dtm−1,

the integral taken over the region 0 = t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ tm = 1.
Lemma 5.1. Let κ be the condition number associated with a Wishart matrix of

parameters m, n, β, and suppose that p ≤ 1. Then for all x ≥ 1, the following upper
and lower bounds hold:

P [κ ≤ x] ≤ D(x2 − 1)β(m
2 )+m−1,

P [κ ≤ x] ≥ D

(
x2 − 1

x2

)β(m
2 )+m−1

.

Proof. Begin by changing to variables λ1, t2, . . . , tm−1,∆:

λ1 = λ1

ti =
λi − λ1

λm − λ1
, i = 2, . . . ,m− 1

∆ = λm − λ1.

The associated Jacobian matrix is lower triangular, and the Jacobian is ∆m−2. In-
troducing the shorthand t1 = 0, tm = 1, the joint density of λ1, t2, . . . , tm−1,∆ is

f(λ1, t2, . . . , tm−1,∆) =

m! cβ
m,n∆β(m

2 )+m−2e−mλ1/2
∏

1≤j<i≤m

|ti − tj |β
m∏

i=1

(λ1 + ti∆)p−1e−(∆/2)
Pm

i=1 ti .
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Because

P [κ ≤ x] =
∫ ∞

0

∫ λ1(x
2−1)

0

[∫
. . .

∫
f(λ1, t2, . . . , tm−1,∆)dt2 · · · dtm−1

]
d∆dλ1,

with the inner integral taken over the region 0 = t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ tm = 1, we
have

P [κ ≤ x] = m! cβ
m,n

∫ ∞
0

∫ λ1(x
2−1)

0

∆β(m
2 )+m−2g(λ1,∆)d∆dλ1, (5.1)

in which

g(λ1,∆) =
∫
· · ·
∫

f(λ1, t2, . . . , tm−1,∆)dt2 · · · dtm−1

m! cβ
m,n∆β(m

2 )+m−2
. (5.2)

The asymptotic decay rate (x2 − 1)β(m
2 )+m−1 seems inevitable.

To obtain the bounds, observe

g(λ1,∆) ≤ λ
m(p−1)
1 e−mλ1/2I,

g(λ1,∆) ≥ (λ1 + ∆)m(p−1)e−m(λ1+∆)/2I.

Therefore,

P [κ ≤ x] ≤ m! cβ
m,nI

∫ ∞
0

λ
m(p−1)
1 e−mλ1/2

(∫ λ1(x
2−1)

0

∆β(m
2 )+m−2d∆

)
dλ1

= D(x2 − 1)β(m
2 )+m−1,

P [κ ≤ x] ≥ m! cβ
m,nI

∫ ∞
0

∫ λ1(x
2−1)

0

∆β(m
2 )+m−2(λ1 + ∆)m(p−1)e−m(λ1+∆)/2d∆dλ1

= m! cβ
m,nI

∫ ∞
0

λm(p−1)
m e−mλm/2

(∫ λm(x2−1)/x2

0

∆β(m
2 )+m−2d∆

)
dλm

= D

(
x2 − 1

x2

)β(m
2 )+m−1

.

Lemma 5.2. Let κ be the condition number associated with a Wishart matrix of
parameters m, n, β, and suppose that p ≥ 1. Then for all x ≥ 1, the following upper
and lower bounds hold:

P [κ ≤ x] ≤ Dx2(x2 − 1)β(m
2 )+m−1

P [κ ≤ x] ≥ Dx−2(β(m
2 )+mp)(x2 − 1)β(m

2 )+m−1.

Proof. Equations (5.1) and (5.2) from the proof of the previous lemma are still
true. Now that p ≥ 1, we have the bounds

g(λ1,∆) ≤ (λ1 + ∆)m(p−1)e−mλ1/2I,

g(λ1,∆) ≥ λ
m(p−1)
1 e−m(λ1+∆)/2I.
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Therefore,

P [κ ≤ x] ≤ m! cβ
m,nI

∫ ∞
0

∫ λ1(x
2−1)

0

∆β(m
2 )+m−2(λ1 + ∆)m(p−1)e−mλ1/2d∆dλ1

≤ m! cβ
m,nI

∫ ∞
0

λm(p−1)
m e−m(λm/x2)/2

(∫ λm(x2−1)/x2

0

∆β(m
2 )+m−2d∆

)
dλm

= Dx2(x2 − 1)β(m
2 )+m−1,

P [κ ≤ x] ≥ m! cβ
m,nI

∫ ∞
0

∫ λ1(x
2−1)

0

∆β(m
2 )+m−2λ

m(p−1)
1 e−m(λ1+∆)/2d∆dλ1

≥ m! cβ
m,nI

∫ ∞
0

λ
m(p−1)
1 e−m(λ1x2)/2

(∫ λ1(x
2−1)

0

∆β(m
2 )+m−2d∆

)
dλ1,

= Dx−2(β(m
2 )+mp)(x2 − 1)β(m

2 )+m−1.

Theorem 5.3. Let κ be the condition number associated with a Wishart matrix
of parameters m, n, β. Then

P [κ ≤ x] ∼ D(x2 − 1)β(m
2 )+m−1 (x → 1).

6. Two-by-two matrices. Performing the change of variables κ =
√

λ2/λ1 and
integrating out λ1 in the joint density (2.1), one arrives at the density of the condition
number of a 2-by-2 Wishart matrix,

f(x) =
4Γ(1 + β

2 )Γ(βn)

Γ(1 + β)Γ(p)Γ(β
2 n)

x2p−1(x2 − 1)β

(x2 + 1)βn
.

Near κ = ∞, the density is asymptotic to

f(x) ∼
4Γ(1 + β

2 )Γ(βn)

Γ(p)Γ(1 + β)Γ(β
2 n)

x−2p−1 (x →∞).

Integrating,

P [κ > x] ∼
2Γ(1 + β

2 )Γ(βn)

Γ(1 + p)Γ(1 + β)Γ(β
2 n)

x−2p (x →∞).

If n = 2 = m, this simplifies to

P [κ > x] ∼ 2Γ(2β)
Γ(1 + β)Γ(β)

x−β (x →∞).

The prediction from Corollary 3.3 is

P [κ > x] ∼
Γ( 3β

2 )
2β/2−1Γ(1 + β)Γ(β)

µx−β (x →∞),
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with

µ = E[λmax(W
β
1,3)

β/2] = E[χβ
3β ] =

2β/2Γ(2β)
Γ(3β/2)

,

so that

P [κ > x] ∼ 2Γ(2β)
Γ(1 + β)Γ(β)

x−β (x →∞).

The main theorem is verified in this case.
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