
chapter 7

The Kunita–Watanabe Extension

A careful examination of the results in Section 5.1 and 5.3 reveals that they
depend very little on detailed properties of Brownian motion and, in fact,
that analogous results can be derived about any square-integrable martingale(
M(t),Ft,P

)
with the properties that

(1) The t M(t) is P-almost surely continuous.
(2) There is an {Ft : t ≥ 0}-progressively measurable A : [0,∞) × Ω
−→ [0,∞) such that t  A(t) is P-almost surely continuous and
non-decreasing, A(0) = 0, and

(
M(t)2 −A(t),Ft,P

)
is a martingale.

In the case of an R-valued Brownian motion
(
β(t),Ft,P

)
, A(t) = t. In the

case when t  β(t) is Rn-valued and X(t) =
(
ξ, β(t)

)
Rn for some ξ ∈ Rn,

A(t) = t|ξ|2. More generally, if θ ∈ Θ2(P; Rn) and M = Iθ, then A(t) =∫ t

0
|θ(τ)|2 dτ .
Although J.L. Doob (cf. Chapter 6 of [6]) was the first to recognize that

these are the only ingredients which are essential for Itô’s theory, it was
Kunita and Watanabe [21] who first accomplished the elegant extension of
Itô’s theory which will we present here. However, before we can do so, we
need to have a special, and particularly simple, case of the renowned Doob–
Meyer Decomposition Theorem for submartingales.1

Throughout, (Ω,F ,P) is a complete probability space and {Ft : t ≥ 0}
is a non-decreasing family of P-complete sub σ-algebras of F . Also, when I
say that a stochastic process X on [0,∞) × Ω with values in a topological
space is P-almost surely right-continuous or continuous, I will mean that
t X(t, ω) is right-continuous or continuous for P-almost every ω.

7.1 Doob–Meyer for Continuous Martingales

Recall (cf. Lemma 5.2.18 in [36]) Doob’s Decomposition Lemma for dis-
crete parameter, integrable submartingales

(
X(m),Fm,P

)
: if A0 ≡ 0 and

A(m) − A(m − 1) ≡ EP[X(m) − X(m − 1) | Fm−1] ∨ 0 for m ≥ 1, then

1 It should be recognized that A.V. Skorohod demonstrated in [30] and [31] that he already
understood most of the ideas discussed below. What makes his treatment less palatable

than Kunita and Watanabe’s is his ignorance of the Doob–Meyer Theorem.
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190 7 The Kunita–Watanabe Extension

{A(m) : m ≥ 0} is the P-almost surely uniquely determined by the facts
that A(0) ≡ 0, A(m− 1) is Fm−1-measurable for each m ≥ 1, and

(
M(m)−

A(m),Fm,P
)

is a martingale. Although, aside from recognizing its poten-
tial importance, this lemma requires no effort in the discrete setting, even
formulating its generalization to the continuous parameter setting was a ma-
jor achievement of P.A. Meyer and can be seen as the cornerstone of what
became the Strasbourg School of Probability.

Fortunately for us, most of the difficulties Meyer had to overcome dis-
appear when the submartingale is the square of a continuous martingale.
Indeed, in this case the program is really an application of the Itô’s ideas. In
fact, it was Itô who gave me the outline for the existence proof given below.
7.1.1. Uniqueness. Even without delving into the details, it is easy to
appreciate the major difficulty confronting Meyer. Namely, when the time
parameter is continuous, what plays the role of Fm−1? That is, what is the
measurability property which one has to impose on the process A? Loosely
speaking, Meyer’s answer was that t A(t) must be amenable to the reason-
ing contained in the corollary to the following theorem. What this corollary
shows is that continuity is sufficient. One of the key observations made by
Meyer is that continuity is not necessary. However, its replacement is subtle.
(Cf. Exercise 7.1.4 below.)

7.1.1 Theorem. Suppose that V : [0,∞) × Ω −→ R is a progressively
function with the properties that, P-almost every ω, t  V (t, ω) is a right-
continuous function of locally bounded variation; and use |V |(t, ω) to denote
the variation of V ( · , ω) � [0, t]. Then |V | is again progressively measurable.
Next, suppose that

(
M(t),Ft,P

)
is a right-continuous martingale with the

property that, for every t ≥ 0,

EP
[∥∥M( · )

∥∥
[0,t]

(
|V (0)|+ |V |(t)

)]
<∞,

Then
(
M(t)V (t)−B(t),Ft,P

)
is a martingale when

B(t, ω) ≡

{ ∫
(0,t]

M(τ, ω)V (dτ, ω) if
∥∥M( · , ω)

∥∥
[0,t]
|V |(t, ω) <∞

0 otherwise,

where the V (dτ, ω) is meant to be Lebesgue integration with respect to the
(signed) measure on [0,∞) determined by V ( · , ω).

Proof: To see that |V | is progressively measurable, simply observe that,
because of right-continuity,

|V |(t, ω) = sup
N∈N

∞∑
m=0

∣∣∣V (t ∧ (m+ 1)2−N
)
− V

(
t ∧m2−N

)∣∣∣.
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Knowing this, it is easy to see that B is progressively measurable and (cf.
Exercise 1.2.29 in [34]) P-almost surely right-continuous. Finally, using the
assumed integrability properties, one can easily justify the computation:

EP[B(t2)−B(t1), A
]

= lim
N→∞

[2N t2]∑
m=[2N t1]

EP
[
M
(
t2 ∧ (m+ 1)2−N

)
×
(
V
(
t2 ∧ (m+ 1)2−N

)
− V

(
t1 ∨m2−N

))
, A
]

= lim
N→∞

[2N t2]∑
m=[2N t1]

EP
[
M
(
t2 + 1

)(
V
(
t2 ∧ (m+ 1)2−N

)
− V

(
t1 ∨m2−N

))
, A
]

= EP[M(t2 + 1)
(
V (t2)− V (t1)

)
, A
]

= EP[M(t2)V (t2)−M(t1)V (t1), A
]

for all 0 ≤ t1 < t2 and A ∈ Ft1 . �

7.1.2 Corollary. Suppose
(
M(t),Ft,P

)
is a continuous local martingale,

and let |M |(t, ω) denote the variation of M( · , ω) � [0, t]. Then

P
(
∃ ∈ [0,∞) 0 < |M |(t) <∞

)
= 0.

In particular, if X : [0,∞)×Ω −→ R is progressively measurable, then there
is, up to a P-null set, at most one progressively measurable A : [0,∞)×Ω −→
R with the properties that t  A(t) is P-almost surely continuous and of
locally bounded variation, A(0) ≡ 0, and

(
X(t) − A(t),Ft,P

)
is a local

martingale.

Proof: Without loss in generality, assume that M(0) = 0. Next, given
R > 0, set ζR(ω) = sup

{
t ≥ 0 : |M |(t, ω) ≤ R

}
, observe2 that ζR is a

stopping time, and set MR(t) = M(t ∧ ζR). By Doob’s Stopping Time
Theorem,

(
MR(t),Ft,P

)
is a continuous martingale. At the same time,

|MR|(t, ω) ≤ R. Hence, by the preceding theorem,(
MR(t)2 −

∫ t

0

MR(τ)MR(dτ),Ft,P
)

is a continuous martingale. In particular, this means that

EP[M(t ∧ ζR)2
]

= EP
[∫ t

0

MR(τ)MR(dτ)
]
.

2 Remember that we have adopted {ζ < t} ∈ Ft as the condition which determines

whether ζ a stopping time.



192 7 The Kunita–Watanabe Extension

On the other hand, because MR( · , ω) is continuous, as well as of bounded
variation, integration by parts leads to the pathwise identity

MR(t, ω)2 = 2
∫ t

0

MR(τ, ω)MR(dτ, ω) for P-almost every ω.

Hence, after combining this with the above, we conclude that EP[MR(t)2
]

=
0. Finally, suppose that P

(
∃ t ≥ 0 0 < |M |(t) <∞

)
> 0. Then there would

exist an R > 0 and t ∈ (0,∞) such that P(ζR ≤ t) > 0, which would lead to
the contradiction EP[MR(t)2

]
≥ 1

4EP[‖M‖2[0,T ]

]
> 0.

To complete the proof, suppose that A and A′ are two functions with
the described properties. Then

(
A(t) − A′(t),Ft,P

)
is a continuous local

martingales whose paths are of locally bounded variation. Hence, by what
we have just proved, this means that A = A′ P-almost surely. �
7.1.2. Existence. In this subsection, we will show that if

(
M(t),Ft,P

)
is

a continuous, R-valued local martingale, then there exists a P-almost surely
unique progressively measurable A : [0,∞)×Ω −→ [0,∞) such that A(0) =
0, t A(t) is P-almost surely continuous and non-decreasing, and

(
M(t)2−

A(t),Ft,P
)

is a local martingale.
To begin, notice that Corollary 7.1.2 provides us with the required unique-

ness. Next, observe that it suffices to prove existence in the case when(
M(t),Ft,P

)
is a bounded martingale with M(0) ≡ 0. Indeed, if this is

not already the case, we can take ζm(ω) = inf
{
t ≥ 0 :

∣∣M(t, ω)
∣∣ ≥ m

}
and set Mm(t) = M(t ∧ ζm). Assuming that Am exists for each m ∈ Z+,
we would know, by Doob’s Stopping Time Theorem and uniqueness, that
Am+1 � [0, ζm) = Am � [0, ζm) P-almost surely for all m ≥ 1. Hence, we
could construct A by taking A(t) = sup

{
Am(t) : m with ζm ≥ t

}
.

Now assume that
(
M(t),Ft,P

)
is a bounded, continuous martingale with

M(0) = 0. For convenience, we will assume that M( · , ω) is continuous for
every ω ∈ Ω. The idea behind Itô’s construction of A is to realization that,
if A exists, then Itô’s formula would hold when t is systematically replaced
by A(t). In particular, one would have M(t)2 = 2

∫ t

0
M(τ) dM(τ) + A(t).

Thus, it is reasonable to see what happens when we take A(t) ≡ M(t)2 −
2
∫ t

0
M(τ)M(dτ). Of course, this line of reasoning might seem circular since

we want A in order to construct stochastic integrals with respect to M , but
entry into the circle turns out to be easy.

Set ζm,0(ω) = m for m ∈ N. Next, proceeding by induction, define
{ζm,N}∞m=0 for N ∈ Z+ so that ζ0,N ≡ 0 and, for m ∈ Z+, ζm,N (ω) is
equal to

ζ`,N−1(ω) ∧ inf
{
t ≥ ζm−1,N (ω) :

∣∣M(t, ω)−M
(
ζm−1,N (ω), ω

)∣∣ ≥ 1
N

}
for the ` ∈ Z+ with ζ`−1,N−1(ω) ≤ ζm−1,N (ω) < ζ`,N−1(ω).
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For each N ∈ N, {ζm,N : m ≥ 0} is a non-decreasing sequence of bounded
stopping times which tend to ∞ as m → ∞. Further, these sequences are
nested in the sense that {ζm,N−1 : m ≥ 0} ⊆ {ζm,N : m ≥ 0} for every
N ∈ Z+.

Now set

Mm,N (ω) = M
(
ζm,N (ω), ω

)
and

∆m,N (t, ω) = M
(
t ∧ ζm,N (ω), ω

)
−M

(
t ∧ ζm−1,N (ω), ω

)
,

and observe that

M(t, ω)2 −M(0, ω)2 = 2YN (t, ω) +AN (t, ω),

where

YN (t, ω) ≡
∞∑

m=1

Mm−1,N (ω)∆m,N (t, ω) and AN (t, ω) ≡
∞∑

m=1

∆m,N (t, ω)2.

Furthermore,
(
YN (t),Ft, P

)
is a continuous martingale, and AN : [0,∞) ×

Ω −→ [0,∞) is a progressively measurable function with the properties that,
for each ω ∈ Ω: AN (0, ω) = 0, AN ( · , ω) is a continuous, and AN (t, ω)+ 1

N2 ≥
AN (s, ω) whenever 0 ≤ s < t. Thus, we will be done if we can prove that,
for each T ∈ [0,∞), {AN : N ≥ 0} converges in L2

(
P;C([0, T ]; R

)
, which is

equivalent to showing that {YN : N ≥ 0} converges there.
With this in mind, for each 0 ≤ N < N ′ and m ∈ Z+, define

M
(N)
m,N ′(ω) = M`,N (ω) when ζ`−1;N (ω) ≤ ζm,N ′(ω) < ζ`,N (ω),

and note that

YN ′(t, ω)− YN (t, ω) =
∞∑

m=1

(
Mm,N ′(ω)−M (N)

m,N ′(ω)
)
∆m,N ′(t, ω).

Because
∣∣Mm,N ′(ω) −M (N)

m,N ′(ω)
∣∣ ≤ 1

N and the terms in the series are or-
thogonal,

EP
[(
YN ′(t)− YN (t)

)2]
≤ N−2EP

[
M(t)2

]
.

In particular, as an application of Doob’s Inequality, we see first that, for
each T ≥ 0,

lim
N→∞

sup
N ′>N

EP
[∥∥YN ′ − YN

∥∥2

[0,T ]

]
= 0,
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and then that there exists a continuous martingale
(
Y (t),Ft,P

)
with the

property that

lim
N→∞

EP
[∥∥YN − Y

∥∥2

[0,T ]

]
= 0 for each T ∈ [0,∞).

To complete the proof at this point, define the function A : [0,∞)×Ω 7−→
[0,∞) so that

A(t, ω) = 0 ∨ sup
{
M(s, ω)2 − 2Y (s, ω) : s ∈ [0, t]

}
,

and check that A has the required properties. Hence, we have now proved
the following version of the Doob–Meyer Decomposition Theorem.

7.1.3 Theorem. If
(
M(t),Ft,P

)
is a continuous, R-valued local mar-

tingale, then there exists a P-almost surely unique progressively measurable
function A : [0,∞) × Ω −→ [0,∞) with the properties that A(0) ≡ 0,
t  A(t) is P-almost surely continuous and non-decreasing, and

(
M(t)2 −

A(t),Ft,P
)

is a local martingale.

From now on, we will use the notation 〈M〉 to denote the process A de-
scribed in Theorem 7.1.3.

7.1.3. Exercises.

Exercise 7.1.4. Because we have not considered martingales with discon-
tinuities, the most subtle aspects of Meyer’s Theorem are not apparent in
our treatment. To get a feeling for what these subtleties are, consider a
simple Poisson process (cf. § 1.4.2) N(t) on some probability space (Ω,F ,P),
let Ft be the P-completion of σ(N(τ) : τ ∈ [0, t]), set M(t) = N(t)− t, and
check that

(
M(t),Ft,P

)
is a non-constant martingale. At the same time,

t  M(t) P-almost surely has locally bounded variation. Hence, the first
part of Corollary 7.1.2 is, in general, false unless one imposes some condition
on the paths t  M(t). The condition which we imposed was continuity.
However, a look at the proof reveals that the only place where we used conti-
nuity was when we integrated by parts to get MR(t) = 2

∫ t

0
MR(τ)MR(dτ).

This is the point alluded to in the rather cryptic remark preceding Theorem
7.1.1.

Exercise 7.1.5. Let
(
M(t),Ft,P

)
be a continuous local martingale, ζ a

stopping time, and set Mζ(t) = M(t ∧ ζ).
(i) Show that 〈Mζ〉(t) = 〈M〉(t ∧ ζ).
(ii) If 〈M〉(ζ) ∈ L1(P; R), show that(
Mζ(t)−M(0),Ft,P

)
and

((
Mζ(t)−M(0)

)2 − 〈Mζ〉(t),Ft,P
)

are martingales.
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(iii) Suppose α : Ω −→ R is an Fζ-measurable function, and set M ′(t) =
α
(
M(t)−M(t∧ ζ)

)
. After checking that

(
M ′(t),Ft,P

)
is a continuous local

martingale, show that

〈M ′〉(t) = α2
(
〈M〉(t)− 〈M〉(t ∧ ζ)

)
.

Exercise 7.1.6. Let
(
M(t),Ft,P

)
be a continuous, R-valued local martin-

gale.

(i) Show that M(∞) ≡ limt→∞M(t) exists P-almost surely on the set
{〈M〉(∞) <∞}.
Hint: Let ζR = inf{t ≥ 0 : 〈M〉 ≥ R}, show that

(
M(t∧ ζR)−M(0),Ft,P

)
is a continuous martingale whose second moment is bounded by R, and
apply the Martingale Convergence Theorem (cf. Theorem 7.1.16 in [36]) to
conclude that limt→∞M(t ∧ ζR) exists P-almost surely.

(ii) Let ζ be a stopping time with the property that 〈M〉(ζ) <∞ P-almost
surely, and, using part (i), define M(ζ) on {ζ = ∞} equal to be P-almost
surely equal to limt↗∞M(t). Show that 〈M〉(ζ) ∈ L1(P; R) if and only if
M(ζ) ∈ L2(P; R), in which case EP[(M(ζ)−M90)

)2] = EP[〈M〉(ζ)].
Exercise 7.1.7. Suppose that {Mk}∞1 ⊆ Mloc(P; R) and that ζ is a stop-
ping time. If 〈Mk〉(ζ) −→ 0 in P-probability, show that ‖Mk−Mk(0)‖[0,ζ) −→
0 in P-probability.

Exercise 7.1.8. Let a continuous, R-valued, local martingale
(
M(t),Ft,P

)
be given, and, for each ω, use G(ω) to denote the set of all t ∈ (0,∞) for
which there exist 0 ≤ a < t < b < ∞ with 〈M〉(b, ω) = 〈M〉(a, ω). Clearly,
G(ω) is an open subset of R, and as such its connected components are open
intervals. The goal of this exercise is to show that, for P-almost every ω,
M( · , ω) is constant on each connected component of G(ω).

(i) For each t ∈ [0,∞), define σ(t, ω) = sup
{
τ ≥ t : 〈M〉(τ, ω) =

〈M〉(t, ω)
}
. Show that M( · , ω) is constant on each connected component

of G(ω) if and only if M(t, ω) = M
(
σ(t, ω), ω

)
for each rational number

t ∈ [0,∞).

(ii) In view of (i) and the P-almost sure continuity of M( · , ω), we will
have reached our goal once we show that, for each 0 ≤ t < τ < ∞, M

(
τ ∧

σ(t, ω), ω
)

= M(t, ω) P-almost surely. Prove this first in the case when M is
a square-integrable martingale, and then reduce to this case by a stopping
time argument.

7.2 Kunita–Watanabe Stochastic Integration

Recall (cf. § 5.1.3) the notation Mloc(P; R) for the space of all R-valued,
continuous local martingales on the complete probability space (Ω,F ,P)
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relative to the non-decreasing family {Ft : t ≥ 0} of P-complete sub σ-
algebras. Given an M ∈Mloc(P; R), let Θ2

loc(〈M〉,P; R) denote the space of
progressively measurable θ : [0,∞) −→ R with the property that∫ T

0

∣∣θ(τ)∣∣2 〈M〉(dτ) <∞ P-almost surely for all T ∈ [0,∞).

Following Kunita and Watanabe, we will define in this section the stochas-
tic integral IM

θ ∈ Mloc(P; R) of θ ∈ Θ2
loc(〈M〉,P; R) with respect to M ∈

Mloc(P; R).
7.2.1. The Hilbert Structure of Mloc(P; R). Clearly Mloc(P; R) is a
vector space and M  〈M〉 is some sort of non-negative, quadratic func-
tional on this vector space. In particular, these trivial observations, in con-
juction with Corollary 7.1.2, lead immediately to the conclusion that for
each pair (M1,M2) ∈ Mloc(P; R)2 there is a P-almost surely unique pro-
gressively measurable 〈M1,M2〉 : [0,∞)× Ω −→ R with the properties that
〈M1,M2〉(0) = 0, t  〈M1,M2〉(t) is P-almost surely continuous and of
locally bounded variation, and(

M1(t)M2(t)− 〈M1,M2〉(t),Ft,P
)

is a local martingale.

Indeed, the uniqueness is immediate from Corollary 7.1.2 and the existence
is an application of polarization:3

〈M1,M2〉 =
〈M1 +M2〉 − 〈M1 −M2〉

4
.

7.2.1 Theorem. The map (M1,M2) 〈M1,M2〉 is, symmetric, bilinear,
and non-negative in the sense that, P-almost surely: 〈M1,M2〉 = 〈M2,M1〉,
〈α1M1 + α2M2,M3〉 = α1〈M1,M3〉+ α2〈M2,M3〉, and 〈M,M〉 ≥ 0. More-
over,

(7.2.2)

∣∣〈M1,M2〉(t2)− 〈M1,M2〉(t1)
∣∣

≤
√
〈M1〉(t2)− 〈M1〉(t1)

√
〈M2〉(t2)− 〈M2〉(t1)

for all 0 ≤ t1 < t2 P-almost surely.

Equivalently, 〈M1,M2〉 is P-almost surely absolutely continuous with re-
spect to µω ≡ 〈M1〉( · , ω)+ 〈M2〉( · , ω), and if fi,j( · , ω) denotes the Radon–
Nikodym derivative of 〈Mi,Mj〉( · , ω) with respect to µω, then, for P-almost
every ω ∈ Ω,

|f1,2( · , ω)| ≤
√
f1,1( · , ω)f2,2( · , ω) µω-almost everywhere.

3 It must be admitted that the notation here is a little confusing. Namely, we now have

two closely related notations for one object: 〈M〉 = 〈M, M〉.
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In particular, P-almost surely,∥∥〈M2〉
1
2 − 〈M1〉

1
2
∥∥

[0,T ]
≤ 〈M2 −M1〉(T ) for all T ≥ 0.

Proof: The first assertion requiring comment is the inequality in (7.2.2).
To prove it, first note that is suffices to show that for each 0 ≤ t1 < t2 and
α > 0,

(*)
2
∣∣〈M1,M2〉(t2)− 〈M1,M2〉(t1)

∣∣
≤ α

(
〈M1〉(t2)− 〈M1〉(t1)

)
+

1
α

(
〈M2〉(t2)− 〈M2〉(t1)

)
P-almost surely. Indeed, given (*), one can easily argue that, P-almost surely,
the same inequality holds simultaneously for all α > 0 and 0 ≤ t1 < t2; and
once this is known, (7.2.2) follows by the usual minimization procedure with
which one proves Schwartz’s inequality. But (*) is a trivial consequence of
non-negative bilinearity. Namely, for any α > 0,

0 ≤ 〈α 1
2M1 ± α−

1
2M2, α

1
2M1 ± α−

1
2M2〉(t2)

− 〈α 1
2M1 ± α−

1
2M2, α

1
2M1 ± α−

1
2M2〉(t1)

= α
(
〈M1〉(t2)− 〈M1〉(t1)

)
± 2
(
〈M1,M2〉(t2)− 〈M1,M2〉(t2)

)
+ α−1

(
〈M2〉(t2)− 〈M2〉(t1)

)
P-almost surely.

Knowing the Schwarz inequality for 〈M1,M2〉, the triangle inequality∣∣√〈M2〉(t)−
√
〈M1〉(t)

∣∣ ≤ 〈M2 −M1〉(t) ≤ 〈M2 −M1〉(T ) , 0 ≤ t ≤ T,

P-almost surely follows immediately. Hence, completing the proof from here
comes down to showing that if µ1 and µ2 are finite, non-negative, non-atomic
Borel measures on [0, T ] and ν is a signed Borel measure on [0, T ] satisfying
|ν(I)| ≤

√
µ1(I)µ2(I) for all half-open intervals I = [a, b) ⊆ [0, T ], then

ν � µ ≡ µ1 + µ2 and |g| ≤
√
f1f2 µ-almost everywhere, where g = dν

dµ and
fi = dµi

dµ . Because, for all α > 0, 2
√
µ1(I)µ2(I) ≤ αµ1(I) + α−1µ2(I), the

absolute continuity statement is clear. In addition, we have

2

∣∣∣∣∣
∫ T

0

ϕg dµ

∣∣∣∣∣ ≤ α
∫ T

0

|ϕ|f1 dµ+ α−1

∫ T

0

|ϕ|f2 dµ

first for ϕ’s which are indicator functions of intervals [a, b), next for linear
combinations of such functions, then for continuous ϕ’s, and finally for all
Borel bounded measurable ϕ’s. But this means that, µ-almost everywhere,
2|g| ≤ αf1 + α−1f2 for all α > 0, and therefore that |g| ≤

√
f1f2. �

In the following, and throughout, we will say that a sequence {Mk}∞1 in
Mloc(P; R) converges in Mloc(P; R) to M ∈ Mloc(P; R) if, for each T ≥ 0,
〈Mk −M〉(T ) −→ 0 in P-probability.
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7.2.3 Corollary. If Mk −→M inMloc(P; R), then∥∥(Mk −Mk(0)
)
−
(
M −M(0)

)
‖[0,T ] ∨ ‖〈Mk〉 − 〈M〉‖[0,T ] −→ 0

in P-probability for each T ≥ 0.

Moreover, if {Mk}∞1 ⊆Mloc(P; R) and

lim
k→∞

sup
`≥k
〈M` −Mk〉(T ) = 0 in P-probability for each T ≥ 0,

then there exists a M ∈ Mloc(P; R) to which {Mk −M(0)}∞1 converges to
M inMloc(P; R).

Proof: Without loss in generality, we will assume that Mk(0) = 0 = M(0)
for k ≥ 1.

In view of the triangle inequality proved in Theorem 7.2.1, the only part
of the first assertion which requires comment is the proof that

∥∥Mk −
M
∥∥

[0,T ]
−→ 0 in P-probability for all T ≥ 0. However, if

ζR ≡ inf
{
t ≥ 0 : sup

k≥1
〈Mk〉(t) ≥ R

}
,

then ζR ↗∞ P-almost surely as R→∞ and, by Exercise 7.1.5 and Doob’s
Inequality,

EP
[∥∥Mk −M

∥∥2

[0,T∧ζR]

]
≤ 4EP

[
〈Mk −M〉(T ∧ ζR)

]
−→ 0

as k →∞ for each R > 0.
Turning to the Cauchy criterion in the second assertion, define ζR as in

the preceding paragraph, and observe that the argument given there also
shows that

lim
k→∞

sup
`≥k

EP
[∥∥M` −Mk

∥∥2

[0,T∧ζR]

]
= 0

for each R > 0. Hence, there exists an M ∈ Mloc(P; R) such that ‖Mk −
M‖[0,T ] −→ 0 in P-probability for all T > 0. At the same time, we know
that, for each R > 0 and T > 0,

EP[〈Mk −M〉(T ∧ ζR)
]

= EP
[∣∣(Mk −M)(T ∧ ζR)

∣∣2] −→ 0

as k →∞. Hence, for each T > 0, 〈Mk −M〉(T ) −→ 0 in P-probability. �
7.2.2. The Kunita–Watanabe Stochastic Integral. The idea of Ku-
nita and Watanabe is to base the definition of stochastic integration on
the Hilbert structure described in the preceding subsection. Namely, given
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θ ∈ Θ2
loc(〈M〉,P; R), they say that IM

θ should be the element of Mloc(P; R)
with the properties that

(7.2.4)
IM
θ (0) = 0 and 〈IM

θ ,M ′〉(t) =
∫ t

0

θ(τ)〈M,M ′〉(dτ)

for all M ′ ∈Mloc(P; R).

Before adopting this definition, one must check that (7.2.4) makes sense
and that, up to a P-null set, it determines a unique element of Mloc(P; R).
To handle the first of these, observe that, by Theorem 7.2.1,∫ T

0

|θ(τ)| |〈M,M ′〉|(dτ) ≤

√∫ T

0

|θ(τ)|2 〈M〉(dτ) 〈M ′〉(T ).

Hence, θ ∈ Θ2
loc(〈M〉,P; R) implies that, P-almost surely, θ is locally inte-

grable with respect to the signed measure 〈M,M ′〉. As for the uniqueness
question, suppose that I and J both satisfy (7.2.4), and set ∆ = I−J . Then
〈∆〉 ≡ 0, and so there exists a non-decreasing sequence {ζm}∞1 of stopping
times such that ζm ↗ ∞ and

(
∆( · ∧ ζm)2,Ft,P

)
is a bounded martingale

for each m, which, since ∆(0) ≡ 0, means that EP[∆(t ∧ ζm)2
]

= 0 for all
m ≥ 1 and t ≥ 0.

Having verified that (7.2.4) makes sense and uniquely determines IM
θ ,

what remains is for us to prove that IM
θ always exists, and, as should come

as no surprise, this requires us to return (cf. § 5.1.2) to Itô ’s technique for
constructing his integral. Namely, given M ∈ Mloc(P; R) and a bounded,
progressively measurable θ : Ω −→ R with the property that θ(t) = θ([t]N )
for some N ∈ N, set

IM
θ (t) =

∞∑
m=0

θ(m2−N )
(
M(t ∧ (m+ 1)2−N )−M(t ∧m2−N )

)
.

Clearly (cf. part (ii) of Exercise 7.1.5), if ζ is a stopping time for which
〈M〉(ζ) ∈ L1(P; R), then IM

θ (t ∧ ζ) is P-square integrable for all t ≥ 0 and,
for all m ∈ N and m2−N ≤ t1 < t2 ≤ (m+ 1)2−N ,

EP[IM
θ (t2 ∧ ζ)− IM

θ (t1 ∧ ζ)
∣∣Ft1

]
= θ(m2−N )EP[M(t2 ∧ ζ)−M(t1 ∧ ζ)

∣∣Ft1

]
= 0.

Thus IM
θ ∈Mloc(P; R). In addition, if M ′ ∈Mloc(P; R) and 〈M ′〉(ζ) is also

P-integrable, then

EP[IM
θ (t2 ∧ ζ)M ′(t2 ∧ ζ)− IM

θ (t1 ∧ ζ)M ′(t1 ∧ ζ)
∣∣Ft1

]
= θ(m2−N )EP[M(t2 ∧ ζ)M ′(t2 ∧ ζ)−M(t1 ∧ ζ)M ′(t1 ∧ ζ)

∣∣Ft1

]
= θ(m2−N )EP[〈M,M ′〉(t2 ∧ ζ)− 〈M,M ′〉(t1 ∧ ζ)

∣∣Ft1

]
= EP

[∫ t2∧ζ

t1∧ζ

θ(τ)〈M,M ′〉(dτ)
∣∣∣∣Ft1

]
,
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which proves that 〈IM
θ ,M ′〉(dt) = θ(t)〈M,M ′〉(dt). Hence, we now know

that IM
θ exists for all bounded, progressively measurable θ : [0,∞)×Ω −→ R

with the property that θ(t) = θ([t]N ) for some N ∈ N. Furthermore, by
Corollary 7.2.3, we know that if {θN}∞1 ∪ {θ} ⊆ Θ2

loc(〈M〉,P; R) and

(7.2.5)
∫ T

0

∣∣θN (τ)− θ(τ)
∣∣2 〈M〉(dτ) −→ 0 in P-probability for all T > 0,

then IM
θ exists. Hence, we will be done once we prove the following lemma.

7.2.6 Lemma. For each θ ∈ Θ2
loc(〈M〉,P; R) there exists a sequence {θN}∞1

of bounded, R-valued, progressively measurable functions such that θN (t) =
θN ([t]N ) and (7.2.5) holds.

Proof: Clearly, it suffices to handle θ’s which are bounded and vanish off
of [0, T ] for some T > 0. In addition, we may assume that t  〈M〉(t, ω)
is bounded, continuous and non-decreasing for each ω. Thus, we will make
these assumptions.

There is no problem if t  θ(t, ω) is continuous for all ω ∈ Ω, since we
can then take θN (t) = θ([t]N ). Hence, what must be shown is that for
each bounded, progressively measurable θ there exists a sequence {θN}∞1
of bounded, progressively, R-valued functions with the properties that t  
θ(t, ω) is continuous for each ω and (7.2.5) holds. To this end, set A(t, ω) =
t + 〈M〉(t, ω), and, for each s ∈ [0,∞), determine ω ∈ Ω 7−→ ζ(s, ω) ∈
[0,∞) so that A

(
ζ(s, ω), ω) = s. Clearly, for each ω, t  A(t, ω) is a

homeomorphism from [0,∞) onto itself, and so, an elementary change of
variables yields

(*)
∫

[0,∞)

f(t)A(dt, ω) =
∫

[0,∞)

f ◦ ζ(s, ω) ds

for any non-negative, Borel measurable f on [0,∞)..
To take the next step, notice that, for each s, ω  ζ(s, ω) is a stopping

time, and set F ′s equal to the P-completion of Fζ(s). Thus, if θ′(s, ω) ≡
θ
(
ζ(s, ω), ω), then θ′ : [0,∞) × Ω −→ R is a bounded function which van-

ishes off of [0, A(T )]×Ω and is progressively measurable with respect to the
filtration {F ′s : s ≥ 0}. Hence, by the argument given to prove the density
statement in Lemma 5.1.8, we can find a sequence {θ′N}∞1 of {F ′s : s ≥ 0}-
progressively measurable such that t θ′N (t, ω) is bounded, continuous, and
supported on [0, A(1 + T, ω)] for each ω, and

lim
N→∞

EP

[∫ A(1+T )

0

∣∣θ′N (s)− θ′(s)
∣∣2 ds] = 0.
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Finally, set θN (t, ω) = θ′N
(
A(t, ω), ω

)
, note that each θN is a bounded,

{Ft : t ≥ 0}-progressively measurable function with the properties that
t θN (t, ω) is continuous and vanishes off [0, 1+T ]×Ω for each ω. Further,
by (*)

lim
N→∞

EP

[∫ 1+T

0

∣∣θN (t)− θ(t)
∣∣2A(dt)

]
= 0.

Hence, (7.2.5) holds. �

Summarizing the results proved in this subsection, we state the following
theorem.

7.2.7 Theorem. For each M ∈ Mloc(P; R) there is a linear map θ ∈
Θ2

loc(〈M〉,P; R) 7−→ IM
θ ∈Mloc(P; R) such that (7.2.4) holds.

Just as we did in the case treated in Chapter 5, we will use the notation∫ t

0
θ(τ) dM(τ) interchangeably with IM

θ (t). More generally, given stopping
times ζ1 ≤ ζ2, we define

∫ t∧ζ2

t∧ζ1

θ(τ) dM(τ) = IM
θ (t ∧ ζ2)− IM

θ (t ∧ ζ1).

Starting from Exercise 7.1.5, it is an easy matter to check that

(7.2.8)
∫ t∧ζ2

t∧ζ1

θ(τ) dM(τ) =
∫ t

0

1[ζ1,ζ2)(τ)θ(τ) dM(τ).

7.2.3. General Itô ’s Formula. Because our proof of Itô ’s formula in
§ 5.3 was modeled on the argument given by Kunita and Watanabe, its adap-
tation to their stochastic integral defined in § 7.2.3 requires no substantive
changes. Indeed, because, by part (i) of Exercise 7.1.5, we already know
that, for bounded stopping times ζ1 ≤ ζ2∫ ζ2

ζ1

θ(τ) dM(τ) =
∫ ∞

0

1[0,ζ)(τ)θ(τ) dM(τ),

the same argument as we used to prove Theorem 5.3.1 allows us to prove
the following extension.

7.2.9 Theorem. Let X =
(
X1, . . . , Xk

)
: [0,∞) × Ω −→ Rk and Y =(

Y1, . . . , Y`

)
: [0,∞)× Ω −→ R` be progressively measurable maps with the

properties that, for each 1 ≤ i ≤ k and ω, t Xi(t, ω) is continuous and of
locally bounded variation and, for each 1 ≤ j ≤ `, Yj ∈ Mloc(P; R); and set
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Z = (X,Y ). Then, for each F ∈ C1,2
(
Rk × R`; R

)
,

F
(
Z(t)

)
− F

(
Z(0)

)
=

k∑
i=1

∫ t

0

∂xi
F
(
Z(τ)

)
dXi(τ) +

∑̀
j=1

∫ t

0

∂yj
F
(
Z(τ)

)
dYj(τ)

+
1
2

∑̀
j,j′=1

∫ t

0

∂yj∂yj′F
(
Z(τ)

)
〈Yj , Yj′〉(dτ), t ≥ 0,

P-almost surely. Here, the dXi-integrals are taken in the sense of Riemann-
Stieltjes and the dYj-integrals are taken in the sense of Itô , as described in
Theorem 7.2.7.

We will again refer to this extension as Itô’s formula, and, not surprisingly,
there are myriad applications of it. For example, as Kunita and Watanabe
pointed out, it gives an elegant proof of the following famous theorem of
Paul Lévy.

7.2.10 Corollary. Suppose that {Mj : 1 ≤ j ≤ n} ⊆ Mloc(P; R) and
that Mj(0) = 0 for each 1 ≤ j ≤ n. If β = (M1, . . . ,Mn), then

(
β(t),Ft,P

)
is an Rn-valued Brownian motion if and only if 〈Mj ,Mj′〉(t) = tδj,j′ .

Proof: We need only discuss the sufficiency. Given ξ ∈ Rn, set

Fξ(t, y) = exp
(√
−1
(
ξ, y
)

Rn + t
2 |ξ|

2
)
,

apply Itô ’s formula to see that

Fξ

(
t,M(t)

)
= 1 +

√
−1

n∑
j=1

∫ t

0

ξjFξ

(
τ,M(τ)

)
dMj(τ),

and conclude that if Eξ(t) ≡ Fξ

(
t,M(t)

)
then

(
Eξ,Ft,P

)
is a continuous,

C-valued, local martingale. Thus, because Eξ � [0, T ] × Ω is bounded for
each T > 0,

(
Eξ,Ft,P

)
is a continuous martingale. In particular,

EP
[
exp
(√
−1
(
ξ,M(s+ t)−M(s)

)
Rn

) ∣∣∣Fs

]
= e−

t
2 |ξ|

2
,

which, together with M(0) = 0, is enough to see that
(
M(t),Ft,P

)
is a

Brownian motion. �

7.2.4. Exercises.
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Exercise 7.2.11. Suppose that M1, M2 ∈ Mloc(P; R), and assume that
σ
(
{M1(τ) : τ ≥ 0}

)
is P-independent of σ

(
{M2(τ) : τ ≥ 0}

)
. Show that

the product M1M2 is again an element of Mloc(P; R), and conclude that
〈M1,M2〉 ≡ 0 P-almost everywhere.

Exercise 7.2.12. Given M ∈ Mloc(P; R), θ ∈ Θ2
loc(〈M〉,P; R), and η ∈

Θ2
loc

(
〈IM

θ 〉,P; R
)
, check that ηθ ∈ Θ2

loc(〈M〉,P; R) and that

IM
ηθ (t) =

∫ t

0

η(τ) dIM
θ (τ) P-almost surely.

Exercise 7.2.13. When M ∈Mloc(P; R) is a Brownian motion, and there-
fore 〈M〉(t) = t, it is an elementary exercise to check that 〈M〉(t) is P-almost
everywhere equal to the square variation

lim
N→∞

∞∑
m=0

(
M
(
t ∧ (m+ 1)2−N , ω

)
−M(t ∧m2−N , ω)

)2

of M( · , ω) � [0, t]. The purpose to this exercise is to show if P-almost
everywhere convergence is replaced by convergence in P-probability, then
the analogous result is easy to derive in general. In fact, show that, for each
pair M1,M2 ∈Mloc(P; R) and all T ∈ [0,∞),

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣ ∞∑
m=0

((
M1(t ∧ (m+ 1)2−N )−M1(t ∧m2−N )

)
×
(
M2(t ∧ (m+ 1)2−N )−M2(t ∧m2−N )

))
− 〈M1,M2〉(t)

∣∣∣∣ = 0

in P-probability.
Hint: First, use polarization to reduce to the case when M1 = M = M2.
Next, do a little algebraic manipulation, and apply Itô ’s formula to see that

∞∑
m=0

(
M
(
t ∧ (m+ 1)2−N , ω

)
−M(t ∧m2−N , ω)

)2

− 〈M〉(t)

= 2
∫ t

0

(
M(τ)−M([τ ]N )

)
dM(τ).

Finally, check that∫ T

0

(
M(τ)−M([τ ]N )

)2 〈M〉(dτ) −→ 0

P-almost surely, and use this, together with Exercise 7.1.7, to get the desired
conclusion.
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Exercise 7.2.14. The following should be comforting to those who worry
about such niceties. Namely, given M ∈ Mloc(P; R), set At equal to the
P-completion of σ

(
{M(τ) : τ ∈ [0, t]}

)
, and use the preceding exercise to

see that 〈M〉 is progressively measurable with respect to {At : t ≥ 0}.
Conclude, in particular, that no matter which filtration {Ft : t ≥ 0} is the
one with respect to which M was introduced, the 〈M〉 relative {Ft : t ≥ 0}
is the same as it is relative to {At : t ≥ 0}.

Exercise 7.2.15. In Exercise 5.1.27, we gave a rather clumsy, and incom-
plete, derivation of Burkholder’s Inequality. The full statement, including
the extensions due to Burkholder and Gundy, is that, for each q ∈ (0,∞),
there exist 0 < cq < Cq < ∞ such that, for any M ∈ Mloc(P; R) with
M(0) = 0 and any stopping time ζ,

(7.2.16) cqEP[〈M〉(ζ) q
2
] 1

q ≤ EP[‖M‖q[0,ζ)

] 1
q ≤ CqEP[〈M〉(ζ) q

2
] 1

q .

Here, following A. Garsia (as recorded by Getoor and Sharpe), we will outline
steps which lead to a proof (7.2.16) for q ∈ [2,∞). As explained in Theorem
3.1 of [16], Garsia’s line of reasoning can be applied to handle the general
case, but trickier arguments are required.

(i) The first step is to show that it suffices to treat the case in which both
M and 〈M〉 are uniformly bounded and ζ is equal to some constant T .

(ii) Let q ∈ [2,∞) be given, and set Cq =
√

qq+1

(q−1)q−1 . Prove that the right
hand side of (7.2.16) holds with this choice of Cq.
Hint: Begin by making the reductions in (i). Given ε > 0, set Fε(x) =(
x2 + ε2

) q
2 , and apply Doob’s Inequality plus Itô ’s formula to see that

EP[‖M‖q[0,T ]

]
≤ (q′)qEP[Fε

(
M(T )

)]
=

(q′)qq(q − 1)
2

EP

[∫ T

0

F ′′ε
(
M(τ)

)
〈M〉(dτ)

]

≤ (q′)qq(q − 1)
2

EP
[(
‖M‖2[0,T ] + ε2

) q
2−1〈M〉(T )

]
.

Now let ε↘ 0, and apply Hölder’s inequality.

(iii) Assume that M and 〈M〉 are bounded, set θ(t) = 〈M〉(t)
q
4−

1
2 , and

take M ′ = IM
θ . After noting that

〈M ′〉(T ) =
∫ T

0

〈M〉
q
2−1(τ) 〈M〉(dτ) =

2
q
〈M〉(T )

q
2 ,

conclude that EP[〈M〉(T )
q
2
]

= q
2EP[M ′(T )2

]
.
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(iv) Continuing part (iii), apply Itô’s formula to see that

M(T )〈M〉(T )
q
4−

1
2 = M ′(T ) +

∫ T

0

M(τ) d〈M〉(τ)
q
4−

1
2 ,

and conclude that ‖M ′‖[0,T ] ≤ 2‖M‖[0,T ]〈M〉(T )
q
4−

1
2 . Now combine this

with the result in (iii) to get the left hand side of (7.2.16) with cq = (2q)−
1
2 .

Exercise 7.2.17. Suppose that M = (M1, . . . ,Mn) ∈Mloc(P; R)n and set

〈〈M〉〉(t) =
((
〈Mi,Mj〉(t)

))
1≤i,j≤n

.

(i) Show that, P-almost surely, 〈〈M〉〉(t) − 〈〈M〉〉(s) is symmetric and
non-negative definite for all 0 ≤ s < t. Next, set A(t) equal to the trace of
〈〈M〉〉(t), and show that there exists a progressively measurable, symmetric,
non-negative definite-valued function a : [0,∞)× Ω←→ Hom(Rn; Rn) such
that

〈〈M〉〉(t) =
∫ t

0

a(τ)A(dτ) P-almost surely for all t ∈ [0,∞).

(ii) Referring to part (i), let Θ2
loc

(
〈〈M〉〉,P; Rn

)
be the set of progressively

measurable θ : [0,∞)× Ω −→ Rn such that∫ T

0

(
θ(t), a(t)θ(t)

)
Rn A(dt) <∞ P-almost surely for all T ∈ [0,∞).

Show that there is a unique linear map

θ ∈ Θ2
loc

(
〈〈M〉〉,P; Rn

)
7−→ IM

θ =
∫ ·

0

(
θ(τ), dM(τ)

)
Rn ∈Mloc(P; R)

such that

〈IM
θ ,M ′〉(dt) =

n∑
j=1

θj(t)〈Mj ,M
′〉(dt)

for all M ′ ∈Mloc(P; R).

7.3 Representations of Continuous Martingales

The considerations in this chapter lead to various representations of con-
tinuous local martingales in terms of Brownian motion, and this section
contains some samples of these. In one way or another, all these results
lend credence to the notion that there really is only one continuous local
martingale: Brownian motion.
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7.3.1. Representation via Random Time Change. This section is
devoted to showing that if M ∈Mloc(P; R), then M −M(0) is a Brownian
motion run with clock 〈M〉.

In the case when, P-almost surely, t  〈M〉(t) is strictly increasing and
〈M〉(∞) =∞, this assertion is easy to verify. Namely, one takes

(7.3.1) ζ(s, ω) = sup
{
t ≥ 0 : 〈M〉(t, ω) ≤ s

}
,

notes that, for each s, ζ(s) is a stopping time (in the sense described at the
beginning of § 4.1.2), and sets F ′s equal to the P-completion of Fζ(s). Further,
observe that, for P-almost every ω, s  ζ(s, ω) is a strictly increasing,
continuous [0,∞)-valued function which satisfies

ζ
(
〈M〉(t, ω), ω

)
= t and 〈M〉

(
ζ(s, ω), ω)

)
= s.

In particular, if

β(s, ω) =
{
M
(
ζ(s, ω)

)
−M(0) when 〈M〉(∞, ω) > s

0 otherwise,

then β : [0,∞) × Ω −→ R is a P-almost surely continuous, {F ′s : s ≥ 0}-
progressively measurable function, and M( · , ω) −M(0) = β

(
〈M〉( · , ω), ω

)
P-almost surely. Thus, all that remains is to check that

(
β(s),F ′s,P

)
is a

Brownian motion. But (cf. part (iii) of Exercise 7.1.5) for each s ∈ [0,∞),(
M(t∧ζ(s))−M(0),Ft,P

)
is a martingale whose second moment is uniformly

bounded. Hence, by Hunt’s Theorem (cf. Theorem 7.1.14 in [36]), for 0 ≤
s1 < s2 and A ∈ F ′s1

,

EP
[
M
(
t ∧ ζ(s2)

)
−M

(
ζ(s1)

)
, A ∩ {ζ(s1) ≤ t}

]
= 0

and

EP
[
M
(
t ∧ ζ(s2)

)2 −M(ζ(s1))2, A ∩ {ζ(s1) ≤ t}]
= EP

[(
〈M〉

(
t ∧ ζ(s2)

)
− s1

)
, A ∩ {ζ(s1) ≤ t}

]
Furthermore,

∥∥M(t∧ζ(s2))−M(ζ(s2))∥∥L2(P;R)
−→ 0 and 〈M〉

(
t∧ζ(s2)

)
↗

s2 P-almost surely as t ↗ ∞, which, together with the preceding, shows
that

(
β(s),F ′s,P

)
is a continuous local martingale and that 〈β〉(s) = s. Now

apply Lévy’s Theorem (Theorem 7.2.10).
The preceding already contains the essential idea. However, there are

technical difficulties which arise when 〈M〉 fails to be either strictly increas-
ing or 〈M〉(∞) < ∞ with positive probability. Actually, the first of these,
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which brings into question the continuity of β( · , ω), causes no real problem
because, by Exercise 7.1.8, for P-almost every ω, M( · , ω) is constant on each
interval

[
ζ−(s, ω), ζ(s, ω)

)
, where ζ−(s, ω) ≡ inf

{
t ≥ 0 : 〈M〉(t, ω) ≥ s

}
. A

more serious issue is the one which arises when 〈M〉(∞) < ∞. In this case
the probability space may be just too anæmic to support an entire Brownian
motion. For example, if Ω = {ω} and F = Ft = {∅,Ω}, then there is pre-
cisely one probability measure on (Ω,F) and the only martingales there are
constant. Thus, in general, 〈M〉(∞) <∞ will necessitate our supplementing
the original probability space in order to obtain the desired representation
in terms of a Brownian motion.

7.3.2 Theorem. Given a continuous, local martingale
(
M(t),Ft,P

)
on

the probability space (Ω,F ,P), there exists a Brownian motion
(
β(t), F̂t, P̂

)
on a probability space (Ω̂, F̂ , P̂) and a progressively measurable function

A : [0,∞)× Ω̂ −→ [0,∞) such that

(1) A(0, ω̂) = 0 and t  A(t, ω̂) is continuous and non-decreasing for

each ω̂ ∈ Ω̂,
(2) ω̂  A(t, ω̂) is a stopping time relative to {F̂s : s ≥ 0} for each t ≥ 0,

(3) the P̂-distribution of

ω̂ ∈ Ω̂ 7−→
(
β
(
A( · , ω̂), ω̂

)
, A( · , ω̂)

)
∈ C

(
[0,∞); R2

)
is the same as the P-distribution of

ω ∈ Ω 7−→
(
M( · , ω)−M(0, ω), 〈M〉( · , ω)

)
∈ C

(
[0,∞); R2

)
.

Proof: Without loss in generality, we will assume that M(0) ≡ 0.
Choose (cf. Exercise 7.1.6) a σ

(
{M(t) : t ≥ 0}

)
-random variable M(∞)

so that M(∞, ω) = limt↗∞M(t, ω) for P-almost every ω ∈ {〈M〉(∞) <∞}.
Next, define M ′ : [0,∞)× Ω −→ R so that

M ′(s, ω) =
{
M
(
ζ(s, ω), ω

)
if 0 ≤ s < 〈M〉(∞, ω)

M(∞, ω) if 〈M〉(∞, ω) ≤ s <∞.

Then, by Hunt’s Theorem,
(
M ′(s),F ′s,P

)
and

(
M ′(s)2− s∧〈M〉(∞),F ′s,P

)
are martingales. In addition, by the reasoning given in the discussion above,
s  M ′(s) is P-almost surely continuous. Similarly, because, for each
(t, ω), the interval

[
t, ζ
(
〈M〉(t, ω), ω

))
is contained in the closure of a con-

nected component of (cf. Exercise 7.1.8) G(ω), we know that M( · , ω) =
M ′(〈M〉( · , ω), ω

)
for P-almost all ω. Finally, observe that, for each (s, t) ∈

[0,∞)2, {〈M〉(t) ≤ s} = {ζ(s) ≥ t} ∈ F ′s, and conclude that 〈M〉(t) is a
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{F ′s : s ≥ 0}-stopping time for each t ≥ 0. Hence, when 〈M〉(∞) = ∞
P-almost surely, we can take Ω̂ = Ω, F̂ = F , P̂ = P, F̂s = F ′s, β( · , ω) =
M ′(ζ(s, ω), ω

)
, and A(t, ω) = 〈M〉(t, ω).

To handle the case when 〈M〉(∞) <∞ with positive probability, we take
Ω̂ = Ω×C

(
[0,∞); R

)
, F̂ equal the P×P0-completion of F ×B, P̂ = P×P0,

and F̂s equal to the P̂-completion of F ′s × Bs. Then, if B(s, ω̂) = p(s) and
M̂(s, ω̂) = M ′(s, ω) for s ≥ 0 and ω̂ = (ω, p),

(
B(s), F̂s, P̂) is a Brownian

motion,
(
M̂(s), F̂s, P̂

)
is a continuous, local martingale, 〈M̂〉(s, ω̂) = s ∧

〈M〉(∞, ω), and, by Exercise 7.2.11, 〈B, M̂〉 ≡ 0. Finally, for ω̂ = (ω, p), we
take A(t, ω̂) = 〈M〉(t, ω) for t ≥ 0 and

β(s, ω̂) =
{
M̂(s, ω̂) when 0 ≤ s < 〈M〉(∞, ω)
B(s, ω̂)−B

(
〈M〉(∞, ω), ω̂

)
when 〈M〉(∞, ω) ≤ s <∞.

By the reasoning in the first paragraph, we know that A(t) is an {F̂s : s ≥
0}-stopping time for each t. Furthermore, because an equivalent description
of β(s, ω̂) is to say

β(s, ω̂) = M̂(s, ω̂) +
∫ s

0

1[A(∞),∞)(σ) dB(σ),

we see that
(
β(s), F̂s, P̂

)
is a continuous, local martingale with

〈β〉(s) = 〈M̂〉(s) + 2
∫ s

0

1[A(∞),∞)(σ) 〈M̂,B〉(dσ)

+
∫ s

0

1[A(∞),∞)(σ) 〈B〉(dσ) = s ∧A(∞) +
(
s− s ∧A(∞)

)
.

Hence,
(
β(s), F̂s, P̂

)
is a Brownian motion. Finally, by the result in the first

paragraph,

β
(
A( · , ω̂), ω̂

)
= M ′(〈M〉( · , ω), ω

)
= M( · , ω)

for P̂-almost every ω̂ = (ω, p), and so we have completed the proof. �
One of the most important implications of Theorem 7.3.2 is the content

of the following corollary.

7.3.3 Corollary. If M ∈Mloc(P; R), then4

lim
t→∞

M(t)√
2〈M〉(t) log(2)〈M〉(t)

= 1 = − lim
t→∞

M(t)√
2〈M〉(t) log(2)〈M〉(t)

P-almost surely on the set {〈M〉(∞) =∞}. In particular, the sets {〈M〉(∞)
< ∞} is P-almost surely equal to the set of ω such that limt→∞M(t, ω)
exists in R.

4 Here we use log(2) τ to denote log(log τ) for τ > e.
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Proof: Using the notation in Theorem 7.3.2, what we have to do to prove
the first assertion is show that

lim
t→∞

β
(
A(t)

)√
2A(t) log(2)A(t)

= 1 = − lim
t→∞

β
(
A(t)

)√
2A(t) log(2)A(t)

P̂-almost surely on the set {A(∞) = ∞}. But, by the law of the iterated
logarithm for Brownian motion (cf. Theorem 4.1.6 in [36]), this is obvious.

Given the first assertion, the second assertion follows immediately from
either Exercise 7.1.8 or by another application of the representation given
by Theorem 7.3.2. �
7.3.2. Representation via Stochastic Integration. Except for spe-
cial cases (cf. F. Knight’s Theorem in Chapter V of [27]), representation
via random time change does not work when dealing with more than one
M ∈Mloc(P; R) at a time. By contrast, Brownian stochastic integral repre-
sentations have no dimension restriction, although they do require that the
〈M〉’s be absolutely conditions. To make all of this precise, we will prove
the following statement.

7.3.4 Theorem. Suppose that M =
(
M1, . . . ,Mn

)
∈
(
Mloc(P; R)

)n
and that, for each 1 ≤ i ≤ n, t  〈Mi〉(t) is P-almost surely absolutely
continuous. Then there exists progressively measurable map α : [0,∞) ×
Ω −→ Hom(Rn; Rn) with the properties that: α(t, ω) is symmetric and non-
negative definite for each (t, ω), and

〈Mi,Mj〉(t) =
∫ t

0

aij(τ) dτ, t ≥ 0, where a(τ) ≡ α(τ)2.

Furthermore, there exist an Rn-valued Brownian motion
(
β(t), F̂t, P̂

)
on

some probability space (Ω̂, F̂ , P̂) and an α̂ ∈ Θ2
loc

(
P̂; Hom(Rn; Rn)

)
such

that the P̂-distribution of

ω̂  
(
α̂( · , ω̂), Iα̂( · , ω̂)

)
is the same as the P-distribution of

ω  
(
α( · , ω),M( · , ω)−M(0, ω)

)
when

Iα̂(t) ≡
∫ t

0

α̂(τ) dβ(τ).

Proof: The first step is to notice that, by Theorem 7.2.1, t 〈Mi,Mj〉(t) is
P-almost surely absolutely continuous for all 1 ≤ i, j ≤ n. Hence, we can find
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(cf. Theorem 5.2.26 in [36]) a progressively measurable a : [0,∞) × Ω −→
Hom(Rn; Rn) such that 〈Mi,Mj〉(dt) = aij(t) dt. Obviously, there is no
reason to not take a(t, ω) to be symmetric. In addition, because

n∑
i,j=1

ξiξj〈Mi,Mj〉(dt) =

〈
n∑
1

ξiMi

〉
(dt) ≥ 0,

a(t, ω) is non-negative definite for λ[0,∞) × P-almost every (t, ω) ∈ [0,∞).
Hence, without loss in generality, we will take a(t, ω) to be symmetric and
non-negative definite for all (t, ω).

The next step is to take α(t, ω) to be the non-negative definite, symmetric
square root of a(t, ω). To see that α is progressively measurable, we need
only apply Lemma 3.2.1 to see that the non-negative, symmetric square root
αε(t, ω) of a(t, ω) + εI is progressively measurable for all ε > 0 and then use
α(t, ω) = limε↘0 α

ε(t, ω).
Obviously, α(t, ω) will not, in general, be invertible. Thus, we take π(t, ω)

to denote orthogonal projection onto the null space N(t, ω) of a(t, ω) and
α−1(t, ω) : Rn −→ N(t, ω)⊥ to be the symmetric, linear map for which
N(t, ω) is the null space and α−1(t, ω) � N(t, ω)⊥ is the inverse of α(t, ω) �
N(t, ω)⊥. Again, both these maps are progressively measurable:

π(t, ω) = lim
ε↘0

a(t, ω)
(
a(t, ω)+εI

)−1 & α−1(t, ω) = lim
ε↘0

α(t, ω)
(
a(t, ω)+εI

)−1
.

Because (cf. Exercise 7.2.17) α−1(t, ω)α(t, ω) = π(t, ω)⊥, and therefore

max
1≤i≤n

n∑
j,j′=1

∫ T

0

(α−1)ij(τ)(α−1)ij′(τ) 〈Mj ,Mj′〉(dτ) ≤ T,

we can take B(t) =
∫ t

0
α−1(τ) dM(τ), in which case

(
B(t),Ft,P

)
is an Rn-

valued, continuous local martingale and, if Bξ(t) ≡
(
ξ,B(t)

)
Rn , then

〈Bξ, Bη〉(t) =
∫ t

0

(
η, π(τ)⊥ξ

)
Rn dτ.

Furthermore, if X(t) =
∫ t

0
α(τ) dB(τ), then, by Exercise 7.2.12,

Xξ(t) ≡
(
ξ,X(t)

)
Rn =

∫ t

0

(
α(τ, ω)ξ, dB(τ)

)
Rn =

∫ t

0

(
π(τ)⊥ξ, dM(τ)

)
Rn ,

and so, if Mξ(t) ≡
(
ξ,M(t)

)
Rn , then

〈Xξ −Mξ〉(t) =
∫ t

0

(
ξ, π(τ)a(τ)π(τ)ξ

)
Rn dτ = 0.
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Clearly, in the case when a(t, ω) > 0 for λ[0,∞)×P-almost every (t, ω), we
are done. Indeed, in this case

(
B(t),Ft,P

)
is an Rn-valued Brownian motion,

and so we can take (Ω̂, F̂ , P̂) = (Ω,F ,P), F̂t = Ft, α̂ = α, and β = B. To
handle the general case, take Ω̂ = Ω × C

(
[0,∞); Rn)

)
, F̂ and F̂t to be the

P× P0-completions of F × B of Ft × Bt, P̂ = P× P0, α̂(t, ω̂) = α(t, ω), and

β(t, ω̂) = B(t, ω) +
∫ t

0

π(τ, ω) dp(τ)

for t ≥ 0 and ω̂ = (ω, p). Because 〈Bξ〉(dt) = π
∣∣(t)⊥ξ∣∣2 dt and (cf. Exercise

7.2.11) 〈Bξ, pξ〉(dt) = 0 dt when pξ ≡
(
ξ, p( · )

)
Rn , it is easy to check that

these choices work. �

By combining the ideas in this section with those in the preceding, we
arrive at the following structure theorem, which, in a somewhat different
form, was anticipated by A.V. Skorohod in [31].

7.3.5 Corollary. Let M =
(
M1, . . . ,Mn

)
∈
(
Mloc(P; R)

)n
be given,

and set A(t) =
∑n

1 〈Mi〉(t). Then there is a probability space (Ω̂, F̂ , P̂)
on which there exists a Brownian motion

(
β(t), F̂t, P̂

)
and {F̂t : t ≥ 0}-

progressively measurable maps α̂ : [0,∞) × Ω̂ −→ Hom(Rn; Rn) and Â :
[0,∞)× Ω̂ −→ [0,∞) such that: α̂(t, ω̂) is symmetric, 0IRn ≤ α̂(t, ω̂) ≤ IRn
for all (t, ω̂), Â(t) is stopping time for each t ≥ 0, and, the P̂ -distribution of

ω̂  

(
Â(t),

∫ Â(t)

0

α̂(τ, ω̂) dβ(τ, ω̂)

)
,

is the same as the P-distribution of ω  
(
A( · , ω),M( · , ω)−M(0, ω)

)
.

There are essentially no new ideas here. Namely, define ζ(s, ω) = inf{t ≥
0 : A(t, ω) ≥ s}. By the techniques used in the preceding section, we can
define M ′ : [0,∞) × Ω −→ Rn so that M ′( · , ω) = M

(
ζ( · , ω), ω

)
P-almost

surely and can show that
(
M ′(s),F ′s,P

)
is an Rn-valued continuous mar-

tingale when F ′s is the P-completion of Fζ(s) and that
∑n

1 〈M ′
i〉(dt, ω) ≤ dt

P-almost surely. In addition, those same techniques show that, for each
t ≥ 0, A(t) is an {F ′s : s ≥ 0}-stopping time and M(t, ω) = M ′(A(t, ω), ω

)
P-almost surely. Hence, all that remains is to apply Theorem 7.3.4 to(
M ′(s),F ′s,P

)
.

A more practical reason for wanting Theorem 7.3.4 is that it enables us
to prove the following sort of uniqueness theorem.

7.3.6 Corollary. Let σ : [0,∞) × Rn −→ Hom(Rn; Rn) and b :
[0,∞)×Rn −→ Rn be measurable functions with the properties that σ(t, x) is



212 7 The Kunita–Watanabe Extension

symmetric and non-negative definite for each (t, x), t ‖σ(t, 0)‖H.S.∨|b(t, 0)|
is locally bounded, and

sup
t∈[0,T ]
x2 6=x1

‖σ(t, x2)− σ(t, x1)‖H.S. ∨ |b(t, x2)− b(t, x1)|
|x2 − x1|

<∞

for each T > 0. Set a(t, x) = σ2(t, x), and define the time-dependent opera-
tor t Lt on C2(Rn; R) so that

Ltϕ(x) =
1
2

n∑
i,j=1

aij(t, x)∂i∂jϕ(x) +
n∑

i=1

bi(t, x)∂iϕ(x).

Then, for each (s, x) ∈ [0,∞)×Rn, there is precisely one solution PL ·
s,x to the

martingale problem for t Lt on C∞c (Rn; R) starting from x at time s. In
fact, PL ·

s,x is the P0-distribution of p  X
(
· , (s, x), p

)
, where (cf. Theorem

5.2.2) X
(
· , (s, x)

)
is the P0-almost surely unique, progressively measurable

solution to

X
(
t, (s, x), p

)
= x+

∫ t

0

σ
(
s+ τ,X

(
τ, (s, x), p

))
dp(τ)

+
∫ t

0

b
(
s+ τ,X

(
τ, (s, x), p

))
dτ.

Proof: Without loss in generality, we will assume that s = 0.
All that we have to do is show that if P solves the martingale problem

for t  Lt starting from x at time 0, then P is the P0-distribution of p  
X( · , x, p) ≡ X

(
· , (s, x), p

)
. Thus, suppose that P is a solution.

Set

M(t, p) ≡ p(t)− x−
∫ t

0

b
(
τ, p(τ)

)
dτ,

and observe that
(
M(t),Bt,P

)
is a continuous, local Rn-valued martin-

gale for which 〈M〉(t, p) =
∫ t

0
a
(
τ, p(τ)

)
dτ , in the sense that 〈Mξ〉(t, p) =∫ t

0

(
ξ, a(τ, p(τ))ξ

)
dτ when Mξ(t) ≡

(
ξ,M(t)

)
Rn .

Next, determine the map Ψ : [0,∞)× C
(
[0,∞); Rn)

)
−→ Rn so that

Ψ(t, p) = x+ p(t) +
∫ t

0

b
(
τ,Ψ(τ, p)

)
dτ, t ≥ 0.

Clearly Ψ is a progressively measurable. Furthermore, p(t) = Ψ
(
t,M( · , p)

)
and (t, p) α(t, p) ≡ σ

(
t,Ψ(t,M( · , p)

)
is a progressively measurable, sym-

metric, non-negative definite Hom(Rn; Rn)-valued map for which 〈Mi,Mj〉(dt)
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= (α2)ij(t) dt. Hence, by Theorem 7.3.4, we can find a probability space
(Ω̂, F̂ , P̂) on which there exists an Rn-valued Brownian motion

(
β(t), F̂t, P̂

)
and a symmetric, non-negative definite valued progressively measurable func-
tion α̂ : [0,∞) × Ω̂ −→ Hom(Rn; Rn) such that ω̂  

(
α̂( · , ω̂), Iα̂( · , ω̂)

)
has the same distribution under P̂ as p  

(
α( · , p),M( · , p)

)
has under P.

In particular, if X(t, ω̂) ≡ Ψ
(
t, Iα̂( · , ω̂)

)
, then P is the P̂-distribution of

ω̂  X( · , ω̂) and, for each t ≥ 0, α̂(t) = σ
(
t,X(t)

)
P̂-almost surely. Finally,

the second of these tells us that

X(t) = x+ Iα̂(t) +
∫ t

0

b
(
τ,X(τ)

)
dτ

= x+
∫ t

0

σ
(
τ,X(τ)

)
dβ(τ) +

∫ t

0

b
(
τ,X(τ)

)
dτ,

and, as we showed in Theorem 5.2.2, the solution to this equation can be
written as the limit of the sequence {XN}∞0 , where X0 ≡ x and

XN+1(t) = x+
∫ t

0

σ
(
τ,XN (τ)

)
dβ(τ) +

∫ t

0

b
(
τ,XN (τ)

)
dτ.

Since the P̂-distribution of each XN is uniquely determined by the distribu-
tion of β, the proof is complete. �
7.3.3. Skorohod’s Representation Theorem. Our final example of a
representation is a particularly clever one due to A.V. Skorohod. Namely,
Skorohod proved that, for any centered, square-integrable, R-valued random
variable X with mean value 0, there exists an R-valued Brownian motion(
β(t),Ft,P

)
and a finite stopping time ζ such that the P-distribution of ω  

β
(
ζ(ω), ω

)
is equal to the distribution of X.

Skorohod’s own treatment (cf. Chapter 7 in [29] and Theorem 12.4.2 in
[7])) is more beautiful and direct than the one presented here. On the
other hand, given the contents of the preceding subsections, our approach is
more elementary. Indeed, we will use Itô’s formula, in much the same way
as we did in Exercise 6.3.19, to prove that there is a continuous function
u′X : [0, 1)× R −→ R such that the P0-distribution of

p ∈ C
(
[0,∞); R

)
7−→

∫ 1

0

u′X(τ, p(τ)
)
dp(τ)

equals the distribution of X. We will then apply Theorem 7.3.2 to find
a Brownian motion

(
β(s),Fs,P

)
and a finite {Fs : s ≥ 0}-stopping time

ζ such that the P-distribution of ω  
(
ζ(ω), β

(
ζ(ω), ω

))
is equal to the

P0-distribution of

p 

(∫ 1

0

u′X
(
τ, p(τ)

)2
dτ,

∫ 1

0

u′X
(
τ, p(τ)

)
dp(τ)

)
.
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7.3.7 Lemma. If X is an R-valued random variable with distribution
function FX and if

ψX(x) ≡ inf
{
t ∈ R : FX(t) ≥ Γ1

(
−∞, x]

)}
,

where Γ1 is the centered Gaussian measure with variance 1, then ψX is a non-
decreasing, left-continuous map from R into itself, and the P0-distribution of
p ψX

(
p(1)

)
is that of X. Next, assume that X is square-integrable. Then

‖ψX‖L2(Γ1;R) =
√

E[X2] <∞. Furthermore, if γt(y) ≡ (2πt)−
1
2 exp

(
−y2

2t

)
is

the density for the centered Gaussian measure Γt with variance t, then∫
|y−x|≥ε

|ψX(y)|γt(y − x) dy ≤ ‖ψX‖L2(Γ1;R)

(
2
t

) 1
3 ex2− ε2

2t

for all ε ≥ 0 and (t, x) ∈ (0, 1]× Rn. In particular,

uX(t, x) ≡
∫

R
ψX(y)γ1−t(y − x) dy for (t, x) ∈ [0, 1)× R

is well-defined. In fact, uX ∈ C
(
[0, 1)×R; R

)
∩C∞

(
(0, 1)×R; R

)
, uX solves

the backward heat equation
(
∂t + 1

2∂
2
x

)
uX = 0 in (0, 1)× R, and

uX

(
t, p(t)

)
−→ ψX

(
p(1)

)
in L2(P0; R) as t↗ 1.

Proof: The initial assertions about ψX are clear. Furthermore,

P0
(
ψX

(
p(1)

)
≤ x

)
= P0

(
Γ1

(
(−∞, p(1)]

)
≤ FX(x)

)
= FX(x),

since Γ1 is the P0-distribution of p p(1).
Next, assume that X is square-integrable. Then, by the preceding, we

know that ‖ψX‖2L2(Γ1;R) = E[X2] <∞, and, for any t ∈ (0, 1] and k ≥ 0,∫
R
|y − x|k|ψX(y)|γt(y − x) dy ≤ t−

1
2 e−

x2
2

∫
R
|y − x|k|ψX(y)|exyγ1(y) dy

≤ t− 1
2 e−

x2
2 ‖ψX‖L2(Γ1;R)

(∫
R
|y − x|2ke2xyγ1(y) dy

) 1
2

.

When k = 0, this proves that uX is well-defined as a continuous function
in [0, 1) × R. In addition, by using it for 0 ≤ k ≤ 2`, it is easy to justify
differentiation under the integral defining uX and thereby prove that uX on
(0, 1) × R is 2`-times differentiable with respect to x, ` times differentiable
with respect to t, and satisfies the backward heat equation there.
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Turning to the asserted estimate, first observe that∫
|y−x|≥ε

|ψX(y)|γt(y − x) dy ≤
(∫

R
|ψX(y)| 32 γt(y − x) dy

) 2
3

Γt

(
[−ε, ε]{

) 1
3 .

Proceeding as above, one sees that(∫
R
|ψX(y)| 32 γt(y − x) dy

) 2
3

≤ t− 1
3 ex2
‖ψ‖L2(Γ1;R).

At the same time, Γt

(
[−ε, ε]{

)
≤ 2 exp

(
− ε2

2t

)
, which, when combined with

the preceding, gives the asserted estimate. In particular, for ε > 0 and
R ∈ [0,∞),

lim
t↘0

sup
|x|≤R

∫
|y−x|≥ε

|ψX(y)|γt(y − x) dy = 0,

from which it is an easy step to see that limt↗1 limy→x uX(t, y) = ψX(x)
for each x ∈ R at which ψX is continuous. Thus, because ψX has at most
countably many points of discontinuity, this means that limt↗1 u

(
t, p(t)

)
=

ψX

(
p(1)

)
P0-almost surely.

Since ψX is locally bounded, our estimates tell us that supt∈[0,1) |uX(t, · )|
is also locally bounded. Hence, because we already know that the conver-
gence takes place P0-almost everywhere, we will know that uX

(
t, p(t)

)
−→

ψX

(
p(1)

)
in L2(P0; R) as t↗ 1 once we show that

lim
R→∞

sup
t∈[0,1)

EP0
[
uϕ

(
t, p(t)

)2
, |p(t)| ≥ R

]
= 0.

But

EP0
[
uϕ

(
t, p(t)

)2
, |p(t)| ≥ R

]
=
∫
|x|≥R

(∫
R
ψX(y)γ1−t(y − x) dy

)2

Γt(dx)

≤
∫

R
ψX(y)2fR(t, y) Γ1(dy),

where

fR(t, y) ≡ e
y2

2√
2πt(1− t)

∫
|x|≥R

e−
(y−x)2

2(1−t) e−
x2
2t dx =

∫
S(t,R)

γ1(ξ) dξ

and S(t, R) ≡
{
ξ :
∣∣∣ξ +

√
t

1−ty
∣∣∣ ≥ R√

t(1−t)

}
.

Since 0 ≤ fR(t, y) ≤ 1 and, for each y, supt∈[0,1) fR(t, y) −→ 0 as R ↗ ∞,
we are done. �
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Now suppose that X is a centered, square-integrable random variable.
Then,

uX(0, 0) =
∫

R
ψX(y) Γ1(dy) = EP0

[
ψX

(
p(1)

)]
= E[X] = 0,

and so, because uX satisfies the backward heat equation in (0, 1)× R, Itô’s
formula says that

uX

(
t, p(t)

)
=
∫ t

0

u′X
(
τ, p(τ)

)
dp(τ) P0-almost surely for t ∈ [0, 1).

Hence, since uX

(
t, p(t)

)
−→ ψX

(
p(1)

)
in L2

(
P0; R) as t ↗ 1, we conclude

that

ψX

(
p(1)

)
=
∫ 1

0

u′X
(
τ, p(τ)

)
dp(τ) P0-almost surely.

In particular, this means that if

MX(t, p) ≡
∫ t∧1

0

u′X
(
τ, p(τ)

)
dp(τ),

then
(
MX(t),Bt,P0

)
is a square-integrable martingale for which

EP0[
〈MX〉(1)

]
= EP0[

MX(1)2
]

= E[X2].

In conjunction with Theorem 7.3.2, the preceding already leads to a Skoro-
hod’s representation ofX. However, for applications, it is better to carry this
line of reasoning another step before formulating it as a theorem. Namely,
set

θX(t, p) =
{
u′X
(
t− [t], p(t)− p([t])

)
for t ∈ [0,∞) \ N

0 for t ∈ N.

Then, because p  p( · + s) − p(s) is P0-independent of Bs and again has
the same P0-distribution as p itself, we see that the P0-distribution of{∫ m

0

θX(τ, p) dp(τ) : m ∈ Z+

}
is the same as the distribution of the partial sums of independent copies ofX.
Thus, we have now proved the following form of Skorohod’s Representation
Theorem.
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7.3.8 Theorem. LetX be a centered, square-integrable, R-valued random
variable. Then there exists an R-valued Brownian motion

(
β(t),Ft,P

)
and

a non-decreasing sequence {ζm}∞0 of finite stopping times such that:

(1) ζ0 ≡ 0, the random variables {ζm − ζm−1 : m ≥ 1} are mutually
P-independent and identically distributed, and EP[ζ1] = E[X2].

(2) The random variables
{
β(ζm) − β(ζm−1) : m ≥ 1

}
are mutually P-

independent and the P-distribution of each equals the distribution of
X.

In fact, for each q ∈ [2,∞), (cf. (7.2.16))

cqEP[ζ q
2
1

] 1
q ≤ E

[
|X|q

] 1
q ≤ CqEP[ζ q

2
1

] 1
q .

Proof: There is essentially nothing left to do. Indeed, by Theorem 7.3.2,
we know that there is a Brownian motion

(
β(s),Fs,P

)
on some probability

space (Ω,F ,P) and a map A : [0,∞) × Ω −→ [0,∞) such that A(t) is an
{Fs : s ≥ 0}-stopping time for each t ≥ 0, the P-distribution of

ω  
(
β
(
A( · , ω)

)
, A( · , ω)

)
is the same as the P0-distribution of

p 

(∫ t

0

θX(τ, p) dp(τ),
∫ t

0

θX(τ, p)2 dτ
)
.

Hence, all that remains is to set ζm = A(m). �
7.3.4. Exercises.

Exercise 7.3.9. Let M ∈Mloc(P; R) be given.
(i) Show that the conclusion in Exercise 7.1.6 can be strengthened to say

that, for any stopping time ζ,

lim
t→∞

M(t ∧ ζ) exists in R P-almost surely on {〈M〉(ζ) <∞}

and

lim
t→∞

M(t ∧ ζ) =∞ = − lim
t→∞

M(t ∧ ζ) P-almost surely on {〈M〉(ζ) =∞}.

(ii) If M is non-negative, show that 〈M〉(∞) <∞ P-almost surely.
(iii) Refer to part (i) of Exercise 6.3.12, and show that there exists a

θ ∈ Θ2
loc(P; Rn) such that

M(t) = M(0) +
∫ t

0

(
θ(τ), dp(τ)

)
Rn , P-almost surely for each t ∈ [0,∞).

Further, show that
∫∞
0
|θ(τ)|2 dτ <∞ P-almost surely.
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Exercise 7.3.10. The purpose of this exercise is to see how the considera-
tions in this section can contribute to an understanding of the relationship
between dimension and explosion.

(i) Suppose that σ : R −→ R is a locally Lipschitz continuous func-
tion, and let

(
β(t),Ft,P

)
be a 1-dimensional Brownian motion. Show that,

without any further conditions, the solution to the 1-dimensional stochastic
differential equation

dX(t) = σ
(
X(τ)

)
dβ(τ)

exists for all time whenever P
(
|X(0)| < ∞

)
= 1. That is, no matter what

the distribution of X(0) is or how fast σ grows, X( · ) will P-almost surely
not explode.
Hint: The key observation is that, because its unparameterized trajectories
follow those of a 1-dimensional Brownian motion,

〈X〉(∞) =
∫ ∞

0

σ2
(
X(τ)

)
dτ =∞ =⇒ X( · ) returns to 0 infinitely often.

Thus, if ζ0 ≡ 0 and if, for m ≥ 1,

ζm =
{ ∞

inf{t ≥ ζm−1 : ∃τ ∈ [ζm−1, t] |X(τ, x)| = 1 & X(t, x) = 0},

depending on whether ζm−1 =∞ or ζm−1 <∞, then, by the Markov prop-
erty, {ζm+1−ζm : m ≥ 1} is a family of P-mutually independent, identically
distributed, strictly positive random variables. Hence, P-almost surely, ei-
ther 〈X〉(∞) < ∞ or for all s ≥ 0 there exists a t ≥ s such that X(t) = 0.
In either case, 〈X〉(T ) <∞ P-almost surely for all T ≥ 0.

(ii) The analogous result holds for a diffusion in R2 associated with
L = 1

2α
2(x)∆, where α : R2 −→ R is a continuously differentiable func-

tion. Namely, such a diffusion never explodes. The reason is that such a
diffusion is obtained from a 2-dimensional Brownian motion by a random-
time change and that 2-dimensional Brownian motion is recurrent. Only
the fact that 2-dimensional Brownian motion never actually returns to the
origin complicates the argument a little. To see that recurrence is the es-
sential property here, show that, for any ε > 0, the 3-dimensional diffusion
corresponding to L = 1

2 (1 + |x|2)1+ε∆ does explode.
Hint: Take

u(x) =
1
π

∫
R3

1
|x− y|

1
(1 + |y|2)1+ε

dy,

show that Lu = −1, and conclude that, for R > |x|, u(x) ≥ EPL
x [ζR], where

ζR is the first exit time of BR3(0, R).
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Exercise 7.3.11. V. Strassen made one of the most remarkable applications
of Skorohod’s Representation Theorem when he used it in [33] to prove a
function space version of the Law of the Iterated Logarithm. Here we will
aim for much less. Namely, assume the Law of the Iterated Logarithm for
Brownian motion, as stated in the proof of Corollary 7.3.3,5 and prove that
for any sequence {Xm}∞0 of mutually independent, identically distributed
R-valued random variables with variance 1,

lim
n→∞

Sm√
2m log(2)m

= 1 = − lim
n→∞

Sm√
2m log(2)m

,

where Sm ≡
∑m

1 Xk.

Exercise 7.3.12. Another direction in which Skorohod’s Representation
Theorem can be useful is in applications to Central Limit Theory. Indeed,
it can be seen as providing an ingenious coupling procedure for such results.
The purpose of this exercise is to give examples of this sort of application.
Throughout, {Xm}∞1 will denote a sequence of mutually independent, cen-
tered R-valued random variables with variance 1, S0 = 0, and Sm =

∑m
`=1X`

for m ≥ 1. In addition,
(
β(t),Ft,P

)
will be the Brownian motion and

{ζm : m ≥ 0} will be the stopping times described in Theorem 7.3.8.

(i) Set βm(t) = m−
1
2β(mt), and note that

(
βm(t),Fmt,P

)
is again a

Brownian motion and that the P-distribution of βm
(

ζm

m

)
is the same as the

distribution of m−
1
2Sm. As an application of the weak laws of large numbers

and the continuity of Brownian paths, conclude that

lim
m→∞

P
(∣∣∣βm

(ζm
m

)
− βm(1)

∣∣∣ ≥ ε) = 0 for all ε > 0,

and use this to derive the Central Limit Theorem, which is that statement
of the distribution of m−

1
2Sm tends to the standard normal distribution.

(ii) The preceding line of reasoning can improved to give Donsker’s In-
variance Principal. That is, define t Sm(t) so that Sm(0) = 0, Sm

(
`
m

)
=

m−
1
2Sm and Sm �

[
`−1
m , `

m

]
is linear for each ` ∈ Z+. Donsker’s Invariance

Principal is the statement that the distribution on C
(
[0,∞); Rn

)
of Sm( · )

tends to Wiener measure. That is, E
[
Φ◦Sm( · )

]
−→ EP0

[Φ] for all bounded,
continuous Φ : C

(
[0,∞); R

)
−→ R.

5 It should be recognized that the Law of the Iterated Logarithm for Brownian motion is

essentially the same as the Law of the Iterated Logarithm for centered Gaussian random
variables with variance 1 and, as such, is much easier than the statement for general

centered random variables with variance 1.
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To prove this, define Y m(t) so that Y m
(

`
m

)
= βm

(
ζ`

m

)
and Y m �

[
`
m ,

`+1
m

]
is linear for ` ∈ Z+. Note that the distribution of Y m( · ) is the same as the
distribution of Sm( · ), and show that, for any L ∈ Z+, δ > 0, and m ≥ 1

δ ,∥∥Y m − βm
∥∥

[0,L]
≤ 2 sup

0≤s<t≤L
t−s≤δ

∣∣βm(t)− βm(s)
∣∣

on the set where max1≤`≤mL

∣∣∣ ζ`

m −
`
m

∣∣∣ ≤ δ. Conclude that Donsker’s result
will follow once one shows that

lim
m→∞

P
(

max
1≤`≤mL

∣∣∣∣ ζ`m − `

m

∣∣∣∣ ≥ δ) = 0

for each δ > 0.
(iii) To complete the program begun in (ii), note that it suffices to show

that if {Zm : m ≥ 1} is a sequence of independent, identically distributed,
centered, integrable random variables, then

(*) lim
m→∞

P

(
sup

0≤`≤mL

∣∣∣∣∣ 1
m

∑̀
k=1

Zk

∣∣∣∣∣ ≥ ε
)

= 0

for each ε > 0. When Z1 is square integrable, (*) follows from Kolmogorov’s
Inequality (cf. (1.4.4) in [36]):

P

(
sup

0≤`≤mL

∣∣∣∣∣ 1
m

∑̀
k=1

Zk

∣∣∣∣∣ ≥ ε
)
≤ Lvar(Z1)

mε2
.

To get the general case, first apply Doob’s Inequality (cf. Theorem 5.2.4 in
[36]) to the martingale formed by the partial sums of the Zk’s to see that

P

(
sup

0≤`≤mL

∣∣∣∣∣ 1
m

∑̀
k=1

Zk

∣∣∣∣∣ ≥ ε
)
≤ LE[|Z1|]

ε
,

and then use this together with an approximation procedure to reduce to
the case when the Zk’s are square integrable.


