
CHEBYCHEV POLYNOMIALS

D. Stroock

§0: An Extremal Problem

Consider the collection Pn of all nth order polynomials P : R −→ R. The starting point
for what follows is the problem of finding the least upper bound on the numbers |P ′(0)| as P
runs through P ∈ Pn which satisfy |P (ξ)| ≤ 1 for ξ ∈ [0, 1].

After a little thought, it becomes clear that what one should do is look for the P ∈ Pn

whose values on the interval [0, 1] oscillate as much as possible subject to the constraint that
they remain between −1 and 1. More precisely, because a non-trivial nth order polynomial
can have at most n roots, what we should be looking for is a Bn ∈ Pn which oscillates
between 1 and −1 n times during the interval [0, 1]. In the next section, we will show that
such polynomials exists.

§1: The Chebychev Polynomials

Perhaps the most appealing way to introduce the family {Cn(ξ) : n ≥ 0} of Chebychev
polynomials is to consider the problem of writing cos nt as a polynomial in cos t. That is, for
each n ≥ 0, we seek a polynomial Cn such that

(1.1) cos nt = Cn

(
cos t

)
for all t ∈ R.

Clearly, C0(ξ) ≡ 1 and C1(ξ) = ξ. In addition, because

cos 2t = cos2 t− sin2 t = 2 cos2 t− 1,

we see that C2(ξ) = 2ξ2 − 1. To go further, notice that, for general n ≥ 1,

cos(n + 1)t + cos(n− 1)t = cos nt cos t− sinnt sin t + cos nt cos t + sinnt sin t = 2 cos t cos nt,

and so we should expect that, for any ξ ∈ R,

(1.2) Cn+1(ξ) = −Cn−1(ξ) + 2ξCn(ξ) for all n ≥ 1.

Lemma 1.3. For each ξ ∈ R there is a unique sequence {Cn(ξ) : n ≥ 1} ⊆ R such that
C0(ξ) = 1, C1(ξ) = 1, and (1.2) holds for all n ≥ 1. Moreover, for each n ≥ 0, Cn(ξ) is an
nth order polynomial in ξ, Cn(−ξ) = (−1)nCn(ξ), and (1.1) holds.

Proof. Working by induction on n ≥ 1, one sees that if Cm(ξ) are known for 0 ≤ m ≤ n, then
Cn+1(ξ) is uniquely determined by (1.2). Hence, by induction, the existence and uniqueness
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of {Cn(ξ) : n ≥ 0} present no problems. At the same time, (1.2) and induction show that
Cn(ξ) is an nth order polynomial and that Cn(−ξ) = (−1)nCn(ξ). Finally, because, for any
t, cos 0t = 1, cos 1t = cos t, and cos(n+1)t = − cos(n−1)t+2 cos nt, the uniqueness assertion
about the Cn(ξ)’s with ξ = cos t leads to (1.1). �

Lemma 1.3 gives us the tool with which to construct the polynomials described at the end
of §0. Namely, because C2n(−ξ) = C2n(ξ), we know that C2n(ξ) = 1

2

(
C2n(ξ) + C2n(−ξ)

)
.

Hence, all the terms corresponding to odd powers of ξ are missing when C2n(ξ) is expressed
as a polynomial in ξ, and so we can find a Bn ∈ Pn so that C2n(ξ) = (−1)nBn(ξ2). Moreover,
by (1.1),

Bn

(
sin2 t

)
= Bn

(
cos2

(
t− π

2

))
= (−1)n cos

(
2nt− nπ

)
= cos 2nt.

Hence,

(1.4)
|Bn(ξ)| ≤ 1 for all ξ ∈ [0, 1], Bn

(
sin2 mπ

2n

)
= (−1)m for 0 ≤ m ≤ n,

and Bn

(
sin2 (2m−1)π

4n

)
= 0 for 1 ≤ m ≤ n.

§2: Back to the Extremal Problem

Having shown that they exist, we now want to show that the Bn’s solve the extremal
problem stated in §0; and a key role will be played by the following observation about poly-
nomials.

Lemma 2.1. If all the roots of P ∈ Pn are non-negative and if P (0) > 0, then P (ξ) =∑n
m=0 ξmpm where (−1)mpm > 0 for each 0 ≤ m ≤ n.

Proof. Remember that, by the fundamental theorem of algebra,

P (ξ) = α
n∏

j=1

(ρj − ξ)

where (ρ1, . . . , ρn) are all (including multiple and complex) the roots of P.

In particular, if all the ρj are non-negative and P (0) > 0, then it is clear that α and all
the ρj ’s must be positive. Hence, when we write P (ξ) =

∑n
m=0 ξmpm, we see that pm =

(−1)mα
∑

|J|=n−m ρJ where the sum is over n − m element subsets J ⊆ {1, . . . , n} and
ρJ = ρj1 · · · ρjn−m

when J = {j1, . . . , jn−m}. �

We1 can now deliver the coup de grâce.

Theorem 2.2. Suppose that P ∈ Pn satisfies |P (ξ)| ≤ 1 for all ξ ∈ [0, 1]. Then, for each
0 ≤ m ≤ n,

(2.3)
∣∣P (m)(0)

∣∣ ≤ (−1)mB(m)
n (0),

1In truth, it was Markov who invented the beautiful line a reasoning on which we are relying here.
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where P (m) is used to denote the mth derivative of P . In particular, |P ′(0)| ≤ −B′
n(0) = 2n2.

Proof. Let λ ∈ (−1, 1) be given, and consider R = Bn − λP . Clearly R is an element of
Pn. In addition, if ξm ≡ sin2 mπ

2n , then R(ξm) > 0 if 0 ≤ m ≤ n is even and R(ξm) < 0 if
0 ≤ m ≤ n is odd. Hence R must have all its roots in the interval [0, 1], which, by Lemma
2.1, means that

Bn(ξ)− λP (ξ) =
n∑

m=0

tmrm where (−1)mrm > 0.

But m!rm = B
(m)
n (0)−λP (m)(0), and so we now know that (−1)mB

(m)
n (0) > (−1)mλP (m)(0)

for all 0 ≤ m ≤ n and λ ∈ (−1, 1). After letting λ ↗ 1 if (−1)mP (m)(0) ≥ 0 or λ ↘ −1
otherwise, we arrive at (−1)mB

(m)
n (0) ≥ |P (m)(0))|.

Finally, to evaluate B′
n(0), we use the relation cos 2nt = Bn

(
sin2 t

)
to see that

−2n sin 2nt = 2 sin t cos tB′
n

(
sin2 t

)
= sin 2tBn

(
sin2 t

)
,

which means that
B′

n(0) = − lim
t↘0

2n sin 2nt

sin 2t
= −2n2. �

Notice that the only property of Bn which we used in the first part of the preceding proof
is the existence of 0 = ξ0 < · · · < ξn ≤ 1 such that Bn(ξm) = (−1)m. That is, if Q is any
element of Pn for which such ξm exist, then (−1)mQ(m)(0) ≥ |P (m)(0)| for all 0 ≤ m ≤ n and
P ∈ Pn with |P | ≤ 1 on [0, 1]. In particular, this shows that Bn is the one and only Q ∈ Pn

with the properties that |Q| ≤ 1 on [0, 1] and Q(ξm) = (−1)m for some 0 = ξ0 < · · · < ξn ≤ 1.
Actually, as the following shows, we can do slightly better.

Theorem 2.4. Bn is the one only Q ∈ Pn with the properties that |Q| ≤ 1 on [0, 1] and
Q(ξm) = (−1)m for some 0 ≤ ξ0 < · · · < ξn ≤ 1.

Proof. In view of the preceding remark, all that we have to do is check that Q(0) = 1 whenever
Q has the stated properties. Thus, suppose not. That is, suppose that Q(0) < 1. Clearly
this would mean that ξ0 > 0 and that λ ≡ 1

2

(
1 + Q(0)

)
∈ (−1, 1). But this would imply that

R ≡ Q − λBn is an nth order polynomial which vanishes somewhere on each of the n + 1
intervals (0, ξ0) and (ξm−1, ξm), 1 ≤ m ≤ n, which is possible only if R ≡ 0. On the other
hand, 1 = Q(ξ0) > λBn(ξ0), and so it cannot be true that Q(0) < 1. �

Exercises:
1) Show that

2Bn(ξ)2 = Bn

(
4ξ(1− ξ)

)
+ 1,

first for all 0 ≤ ξ ≤ 1 and then for all real ξ.
2) Compute the second derivative B′′

n(0) of Bn at 0, and conclude that |P ′′(0)| ≤ 4
3n2(n2−1)

for any P ∈ Pn satisfying |P (ξ)| ≤ 1 when ξ ∈ [0, 1].


