CHEBYCHEV POLYNOMIALS

D. Stroock

§0: An Extremal Problem

Consider the collection \mathfrak{P}_n of all *n*th order polynomials $P : \mathbb{R} \longrightarrow \mathbb{R}$. The starting point for what follows is the problem of finding the least upper bound on the numbers |P'(0)| as Pruns through $P \in \mathfrak{P}_n$ which satisfy $|P(\xi)| \leq 1$ for $\xi \in [0, 1]$.

After a little thought, it becomes clear that what one should do is look for the $P \in \mathfrak{P}_n$ whose values on the interval [0, 1] oscillate as much as possible subject to the constraint that they remain between -1 and 1. More precisely, because a non-trivial *n*th order polynomial can have at most *n* roots, what we should be looking for is a $B_n \in \mathfrak{P}_n$ which oscillates between 1 and -1 *n* times during the interval [0, 1]. In the next section, we will show that such polynomials exists.

§1: THE CHEBYCHEV POLYNOMIALS

Perhaps the most appealing way to introduce the family $\{C_n(\xi) : n \ge 0\}$ of *Chebychev* polynomials is to consider the problem of writing $\cos nt$ as a polynomial in $\cos t$. That is, for each $n \ge 0$, we seek a polynomial C_n such that

(1.1) $\cos nt = C_n(\cos t) \text{ for all } t \in \mathbb{R}.$

Clearly, $C_0(\xi) \equiv 1$ and $C_1(\xi) = \xi$. In addition, because

$$\cos 2t = \cos^2 t - \sin^2 t = 2\cos^2 t - 1,$$

we see that $C_2(\xi) = 2\xi^2 - 1$. To go further, notice that, for general $n \ge 1$,

 $\cos(n+1)t + \cos(n-1)t = \cos nt \cos t - \sin nt \sin t + \cos nt \cos t + \sin nt \sin t = 2\cos t \cos nt,$

and so we should expect that, for any $\xi \in \mathbb{R}$,

(1.2)
$$C_{n+1}(\xi) = -C_{n-1}(\xi) + 2\xi C_n(\xi) \text{ for all } n \ge 1.$$

Lemma 1.3. For each $\xi \in \mathbb{R}$ there is a unique sequence $\{C_n(\xi) : n \geq 1\} \subseteq \mathbb{R}$ such that $C_0(\xi) = 1$, $C_1(\xi) = 1$, and (1.2) holds for all $n \geq 1$. Moreover, for each $n \geq 0$, $C_n(\xi)$ is an *n*th order polynomial in ξ , $C_n(-\xi) = (-1)^n C_n(\xi)$, and (1.1) holds.

Proof. Working by induction on $n \ge 1$, one sees that if $C_m(\xi)$ are known for $0 \le m \le n$, then $C_{n+1}(\xi)$ is uniquely determined by (1.2). Hence, by induction, the existence and uniqueness

D. STROOCK

of $\{C_n(\xi) : n \ge 0\}$ present no problems. At the same time, (1.2) and induction show that $C_n(\xi)$ is an *n*th order polynomial and that $C_n(-\xi) = (-1)^n C_n(\xi)$. Finally, because, for any $t, \cos 0t = 1, \cos 1t = \cos t$, and $\cos(n+1)t = -\cos(n-1)t + 2\cos nt$, the uniqueness assertion about the $C_n(\xi)$'s with $\xi = \cos t$ leads to (1.1). \Box

Lemma 1.3 gives us the tool with which to construct the polynomials described at the end of §0. Namely, because $C_{2n}(-\xi) = C_{2n}(\xi)$, we know that $C_{2n}(\xi) = \frac{1}{2} (C_{2n}(\xi) + C_{2n}(-\xi))$. Hence, all the terms corresponding to odd powers of ξ are missing when $C_{2n}(\xi)$ is expressed as a polynomial in ξ , and so we can find a $B_n \in \mathfrak{P}_n$ so that $C_{2n}(\xi) = (-1)^n B_n(\xi^2)$. Moreover, by (1.1),

$$B_n(\sin^2 t) = B_n\left(\cos^2\left(t - \frac{\pi}{2}\right)\right) = (-1)^n \cos\left(2nt - n\pi\right) = \cos 2nt.$$

Hence,

(1.4)
$$|B_n(\xi)| \le 1 \quad \text{for all } \xi \in [0,1], \quad B_n\left(\sin^2 \frac{m\pi}{2n}\right) = (-1)^m \quad \text{for } 0 \le m \le n,$$

and $B_n\left(\sin^2 \frac{(2m-1)\pi}{4n}\right) = 0 \quad \text{for } 1 \le m \le n.$

$\S2$: Back to the Extremal Problem

Having shown that they exist, we now want to show that the B_n 's solve the extremal problem stated in $\S0$; and a key role will be played by the following observation about polynomials.

Lemma 2.1. If all the roots of $P \in \mathfrak{P}_n$ are non-negative and if P(0) > 0, then $P(\xi) = \sum_{m=0}^{n} \xi^m p_m$ where $(-1)^m p_m > 0$ for each $0 \le m \le n$.

Proof. Remember that, by the fundamental theorem of algebra,

$$P(\xi) = \alpha \prod_{j=1}^{n} (\rho_j - \xi)$$

where (ρ_1, \ldots, ρ_n) are all (including multiple and complex) the roots of P.

In particular, if all the ρ_j are non-negative and P(0) > 0, then it is clear that α and all the ρ_j 's must be positive. Hence, when we write $P(\xi) = \sum_{m=0}^n \xi^m p_m$, we see that $p_m = (-1)^m \alpha \sum_{|J|=n-m} \rho_J$ where the sum is over n-m element subsets $J \subseteq \{1,\ldots,n\}$ and $\rho_J = \rho_{j_1} \cdots \rho_{j_{n-m}}$ when $J = \{j_1,\ldots,j_{n-m}\}$. \Box

 We^1 can now deliver the *coup de grâce*.

Theorem 2.2. Suppose that $P \in \mathfrak{P}_n$ satisfies $|P(\xi)| \leq 1$ for all $\xi \in [0,1]$. Then, for each $0 \leq m \leq n$,

(2.3)
$$|P^{(m)}(0)| \le (-1)^m B_n^{(m)}(0),$$

¹In truth, it was Markov who invented the beautiful line a reasoning on which we are relying here.

where $P^{(m)}$ is used to denote the mth derivative of P. In particular, $|P'(0)| \leq -B'_n(0) = 2n^2$.

Proof. Let $\lambda \in (-1,1)$ be given, and consider $R = B_n - \lambda P$. Clearly R is an element of \mathfrak{P}_n . In addition, if $\xi_m \equiv \sin^2 \frac{m\pi}{2n}$, then $R(\xi_m) > 0$ if $0 \leq m \leq n$ is even and $R(\xi_m) < 0$ if $0 \leq m \leq n$ is odd. Hence R must have all its roots in the interval [0,1], which, by Lemma 2.1, means that

$$B_n(\xi) - \lambda P(\xi) = \sum_{m=0}^n t^m r_m \text{ where } (-1)^m r_m > 0.$$

But $m!r_m = B_n^{(m)}(0) - \lambda P^{(m)}(0)$, and so we now know that $(-1)^m B_n^{(m)}(0) > (-1)^m \lambda P^{(m)}(0)$ for all $0 \le m \le n$ and $\lambda \in (-1, 1)$. After letting $\lambda \nearrow 1$ if $(-1)^m P^{(m)}(0) \ge 0$ or $\lambda \searrow -1$ otherwise, we arrive at $(-1)^m B_n^{(m)}(0) \ge |P^{(m)}(0)||$.

Finally, to evaluate $B'_n(0)$, we use the relation $\cos 2nt = B_n(\sin^2 t)$ to see that

$$-2n\sin 2nt = 2\sin t\cos tB'_n(\sin^2 t) = \sin 2tB_n(\sin^2 t),$$

which means that

$$B'_{n}(0) = -\lim_{t \searrow 0} \frac{2n \sin 2nt}{\sin 2t} = -2n^{2}. \quad \Box$$

Notice that the only property of B_n which we used in the first part of the preceding proof is the existence of $0 = \xi_0 < \cdots < \xi_n \leq 1$ such that $B_n(\xi_m) = (-1)^m$. That is, if Q is any element of \mathfrak{P}_n for which such ξ_m exist, then $(-1)^m Q^{(m)}(0) \geq |P^{(m)}(0)|$ for all $0 \leq m \leq n$ and $P \in \mathfrak{P}_n$ with $|P| \leq 1$ on [0, 1]. In particular, this shows that B_n is the one and only $Q \in \mathfrak{P}_n$ with the properties that $|Q| \leq 1$ on [0, 1] and $Q(\xi_m) = (-1)^m$ for some $0 = \xi_0 < \cdots < \xi_n \leq 1$. Actually, as the following shows, we can do slightly better.

Theorem 2.4. B_n is the one only $Q \in \mathfrak{P}_n$ with the properties that $|Q| \leq 1$ on [0,1] and $Q(\xi_m) = (-1)^m$ for some $0 \leq \xi_0 < \cdots < \xi_n \leq 1$.

Proof. In view of the preceding remark, all that we have to do is check that Q(0) = 1 whenever Q has the stated properties. Thus, suppose not. That is, suppose that Q(0) < 1. Clearly this would mean that $\xi_0 > 0$ and that $\lambda \equiv \frac{1}{2}(1+Q(0)) \in (-1,1)$. But this would imply that $R \equiv Q - \lambda B_n$ is an *n*th order polynomial which vanishes somewhere on each of the n+1 intervals $(0,\xi_0)$ and (ξ_{m-1},ξ_m) , $1 \leq m \leq n$, which is possible only if $R \equiv 0$. On the other hand, $1 = Q(\xi_0) > \lambda B_n(\xi_0)$, and so it cannot be true that Q(0) < 1. \Box

Exercises:

1) Show that

$$2B_n(\xi)^2 = B_n(4\xi(1-\xi)) + 1,$$

first for all $0 \le \xi \le 1$ and then for all real ξ .

2) Compute the second derivative $B''_n(0)$ of B_n at 0, and conclude that $|P''(0)| \leq \frac{4}{3}n^2(n^2-1)$ for any $\mathbb{P} \in \mathcal{P}_n$ satisfying $|P(\xi)| \leq 1$ when $\xi \in [0, 1]$.