## CHEBYCHEV POLYNOMIALS

D. Stroock

## §0: An Extremal Problem

Consider the collection $\mathfrak{P}_{n}$ of all $n$th order polynomials $P: \mathbb{R} \longrightarrow \mathbb{R}$. The starting point for what follows is the problem of finding the least upper bound on the numbers $\left|P^{\prime}(0)\right|$ as $P$ runs through $P \in \mathfrak{P}_{n}$ which satisfy $|P(\xi)| \leq 1$ for $\xi \in[0,1]$.

After a little thought, it becomes clear that what one should do is look for the $P \in \mathfrak{P}_{n}$ whose values on the interval $[0,1]$ oscillate as much as possible subject to the constraint that they remain between -1 and 1 . More precisely, because a non-trivial $n$th order polynomial can have at most $n$ roots, what we should be looking for is a $B_{n} \in \mathfrak{P}_{n}$ which oscillates between 1 and $-1 n$ times during the interval $[0,1]$. In the next section, we will show that such polynomials exists.

## §1: The Chebychev Polynomials

Perhaps the most appealing way to introduce the family $\left\{C_{n}(\xi): n \geq 0\right\}$ of Chebychev polynomials is to consider the problem of writing $\cos n t$ as a polynomial in $\cos t$. That is, for each $n \geq 0$, we seek a polynomial $C_{n}$ such that

$$
\begin{equation*}
\cos n t=C_{n}(\cos t) \quad \text { for all } t \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

Clearly, $C_{0}(\xi) \equiv 1$ and $C_{1}(\xi)=\xi$. In addition, because

$$
\cos 2 t=\cos ^{2} t-\sin ^{2} t=2 \cos ^{2} t-1
$$

we see that $C_{2}(\xi)=2 \xi^{2}-1$. To go further, notice that, for general $n \geq 1$,

$$
\cos (n+1) t+\cos (n-1) t=\cos n t \cos t-\sin n t \sin t+\cos n t \cos t+\sin n t \sin t=2 \cos t \cos n t
$$

and so we should expect that, for any $\xi \in \mathbb{R}$,

$$
\begin{equation*}
C_{n+1}(\xi)=-C_{n-1}(\xi)+2 \xi C_{n}(\xi) \text { for all } n \geq 1 \tag{1.2}
\end{equation*}
$$

Lemma 1.3. For each $\xi \in \mathbb{R}$ there is a unique sequence $\left\{C_{n}(\xi): n \geq 1\right\} \subseteq \mathbb{R}$ such that $C_{0}(\xi)=1, C_{1}(\xi)=1$, and (1.2) holds for all $n \geq 1$. Moreover, for each $n \geq 0, C_{n}(\xi)$ is an $n$th order polynomial in $\xi, C_{n}(-\xi)=(-1)^{n} C_{n}(\xi)$, and (1.1) holds.

Proof. Working by induction on $n \geq 1$, one sees that if $C_{m}(\xi)$ are known for $0 \leq m \leq n$, then $C_{n+1}(\xi)$ is uniquely determined by (1.2). Hence, by induction, the existence and uniqueness
of $\left\{C_{n}(\xi): n \geq 0\right\}$ present no problems. At the same time, (1.2) and induction show that $C_{n}(\xi)$ is an $n$th order polynomial and that $C_{n}(-\xi)=(-1)^{n} C_{n}(\xi)$. Finally, because, for any $t, \cos 0 t=1, \cos 1 t=\cos t$, and $\cos (n+1) t=-\cos (n-1) t+2 \cos n t$, the uniqueness assertion about the $C_{n}(\xi)$ 's with $\xi=\cos t$ leads to (1.1).

Lemma 1.3 gives us the tool with which to construct the polynomials described at the end of $\S 0$. Namely, because $C_{2 n}(-\xi)=C_{2 n}(\xi)$, we know that $C_{2 n}(\xi)=\frac{1}{2}\left(C_{2 n}(\xi)+C_{2 n}(-\xi)\right)$. Hence, all the terms corresponding to odd powers of $\xi$ are missing when $C_{2 n}(\xi)$ is expressed as a polynomial in $\xi$, and so we can find a $B_{n} \in \mathfrak{P}_{n}$ so that $C_{2 n}(\xi)=(-1)^{n} B_{n}\left(\xi^{2}\right)$. Moreover, by (1.1),

$$
B_{n}\left(\sin ^{2} t\right)=B_{n}\left(\cos ^{2}\left(t-\frac{\pi}{2}\right)\right)=(-1)^{n} \cos (2 n t-n \pi)=\cos 2 n t
$$

Hence,

$$
\begin{align*}
& \left|B_{n}(\xi)\right| \leq 1 \quad \text { for all } \xi \in[0,1], \quad B_{n}\left(\sin ^{2} \frac{m \pi}{2 n}\right)=(-1)^{m} \quad \text { for } 0 \leq m \leq n \\
&  \tag{1.4}\\
& \text { and } B_{n}\left(\sin ^{2} \frac{(2 m-1) \pi}{4 n}\right)=0 \quad \text { for } 1 \leq m \leq n
\end{align*}
$$

## §2: Back to the Extremal Problem

Having shown that they exist, we now want to show that the $B_{n}$ 's solve the extremal problem stated in $\S 0$; and a key role will be played by the following observation about polynomials.

Lemma 2.1. If all the roots of $P \in \mathfrak{P}_{n}$ are non-negative and if $P(0)>0$, then $P(\xi)=$ $\sum_{m=0}^{n} \xi^{m} p_{m}$ where $(-1)^{m} p_{m}>0$ for each $0 \leq m \leq n$.

Proof. Remember that, by the fundamental theorem of algebra,

$$
P(\xi)=\alpha \prod_{j=1}^{n}\left(\rho_{j}-\xi\right)
$$

where $\left(\rho_{1}, \ldots, \rho_{n}\right)$ are all (including multiple and complex) the roots of $P$.
In particular, if all the $\rho_{j}$ are non-negative and $P(0)>0$, then it is clear that $\alpha$ and all the $\rho_{j}$ 's must be positive. Hence, when we write $P(\xi)=\sum_{m=0}^{n} \xi^{m} p_{m}$, we see that $p_{m}=$ $(-1)^{m} \alpha \sum_{|J|=n-m} \rho_{J}$ where the sum is over $n-m$ element subsets $J \subseteq\{1, \ldots, n\}$ and $\rho_{J}=\rho_{j_{1}} \cdots \rho_{j_{n-m}}$ when $J=\left\{j_{1}, \ldots, j_{n-m}\right\}$.
$\mathrm{We}^{1}$ can now deliver the coup de grâce.
Theorem 2.2. Suppose that $P \in \mathfrak{P}_{n}$ satisfies $|P(\xi)| \leq 1$ for all $\xi \in[0,1]$. Then, for each $0 \leq m \leq n$,

$$
\begin{equation*}
\left|P^{(m)}(0)\right| \leq(-1)^{m} B_{n}^{(m)}(0) \tag{2.3}
\end{equation*}
$$

[^0]where $P^{(m)}$ is used to denote the mth derivative of $P$. In particular, $\left|P^{\prime}(0)\right| \leq-B_{n}^{\prime}(0)=2 n^{2}$. Proof. Let $\lambda \in(-1,1)$ be given, and consider $R=B_{n}-\lambda P$. Clearly $R$ is an element of $\mathfrak{P}_{n}$. In addition, if $\xi_{m} \equiv \sin ^{2} \frac{m \pi}{2 n}$, then $R\left(\xi_{m}\right)>0$ if $0 \leq m \leq n$ is even and $R\left(\xi_{m}\right)<0$ if $0 \leq m \leq n$ is odd. Hence $R$ must have all its roots in the interval [0,1], which, by Lemma 2.1, means that
$$
B_{n}(\xi)-\lambda P(\xi)=\sum_{m=0}^{n} t^{m} r_{m} \quad \text { where }(-1)^{m} r_{m}>0
$$

But $m!r_{m}=B_{n}^{(m)}(0)-\lambda P^{(m)}(0)$, and so we now know that $(-1)^{m} B_{n}^{(m)}(0)>(-1)^{m} \lambda P^{(m)}(0)$ for all $0 \leq m \leq n$ and $\lambda \in(-1,1)$. After letting $\lambda \nearrow 1$ if $(-1)^{m} P^{(m)}(0) \geq 0$ or $\lambda \searrow-1$ otherwise, we arrive at $\left.(-1)^{m} B_{n}^{(m)}(0) \geq \mid P^{(m)}(0)\right) \mid$.

Finally, to evaluate $B_{n}^{\prime}(0)$, we use the relation $\cos 2 n t=B_{n}\left(\sin ^{2} t\right)$ to see that

$$
-2 n \sin 2 n t=2 \sin t \cos t B_{n}^{\prime}\left(\sin ^{2} t\right)=\sin 2 t B_{n}\left(\sin ^{2} t\right)
$$

which means that

$$
B_{n}^{\prime}(0)=-\lim _{t \searrow 0} \frac{2 n \sin 2 n t}{\sin 2 t}=-2 n^{2}
$$

Notice that the only property of $B_{n}$ which we used in the first part of the preceding proof is the existence of $0=\xi_{0}<\cdots<\xi_{n} \leq 1$ such that $B_{n}\left(\xi_{m}\right)=(-1)^{m}$. That is, if $Q$ is any element of $\mathfrak{P}_{n}$ for which such $\xi_{m}$ exist, then $(-1)^{m} Q^{(m)}(0) \geq\left|P^{(m)}(0)\right|$ for all $0 \leq m \leq n$ and $P \in \mathfrak{P}_{n}$ with $|P| \leq 1$ on $[0,1]$. In particular, this shows that $B_{n}$ is the one and only $Q \in \mathfrak{P}_{n}$ with the properties that $|Q| \leq 1$ on $[0,1]$ and $Q\left(\xi_{m}\right)=(-1)^{m}$ for some $0=\xi_{0}<\cdots<\xi_{n} \leq 1$. Actually, as the following shows, we can do slightly better.

Theorem 2.4. $B_{n}$ is the one only $Q \in \mathfrak{P}_{n}$ with the properties that $|Q| \leq 1$ on $[0,1]$ and $Q\left(\xi_{m}\right)=(-1)^{m}$ for some $0 \leq \xi_{0}<\cdots<\xi_{n} \leq 1$.
Proof. In view of the preceding remark, all that we have to do is check that $Q(0)=1$ whenever $Q$ has the stated properties. Thus, suppose not. That is, suppose that $Q(0)<1$. Clearly this would mean that $\xi_{0}>0$ and that $\lambda \equiv \frac{1}{2}(1+Q(0)) \in(-1,1)$. But this would imply that $R \equiv Q-\lambda B_{n}$ is an $n$th order polynomial which vanishes somewhere on each of the $n+1$ intervals $\left(0, \xi_{0}\right)$ and $\left(\xi_{m-1}, \xi_{m}\right), 1 \leq m \leq n$, which is possible only if $R \equiv 0$. On the other hand, $1=Q\left(\xi_{0}\right)>\lambda B_{n}\left(\xi_{0}\right)$, and so it cannot be true that $Q(0)<1$.

## Exercises:

1) Show that

$$
2 B_{n}(\xi)^{2}=B_{n}(4 \xi(1-\xi))+1
$$

first for all $0 \leq \xi \leq 1$ and then for all real $\xi$.
2) Compute the second derivative $B_{n}^{\prime \prime}(0)$ of $B_{n}$ at 0 , and conclude that $\left|P^{\prime \prime}(0)\right| \leq \frac{4}{3} n^{2}\left(n^{2}-1\right)$ for any $\mathbb{P} \in \mathcal{P}_{n}$ satisfying $|P(\xi)| \leq 1$ when $\xi \in[0,1]$.


[^0]:    ${ }^{1}$ In truth, it was Markov who invented the beautiful line a reasoning on which we are relying here.

