CHEBYCHEV POLYNOMIALS

D. STROOCK

§0: AN EXTREMAL PROBLEM

Consider the collection B, of all nth order polynomials P : R — R. The starting point
for what follows is the problem of finding the least upper bound on the numbers |P’(0)| as P
runs through P € 93,, which satisfy |P(£)| <1 for € € [0, 1].

After a little thought, it becomes clear that what one should do is look for the P € 33,
whose values on the interval [0, 1] oscillate as much as possible subject to the constraint that
they remain between —1 and 1. More precisely, because a non-trivial nth order polynomial
can have at most n roots, what we should be looking for is a B,, € 3,, which oscillates
between 1 and —1 n times during the interval [0,1]. In the next section, we will show that
such polynomials exists.

§1: THE CHEBYCHEV POLYNOMIALS

Perhaps the most appealing way to introduce the family {C, (&) : n > 0} of Chebychev
polynomials is to consider the problem of writing cos nt as a polynomial in cost. That is, for
each n > 0, we seek a polynomial (', such that
(1.1) cosnt = Cy(cost) for all t € R.

Clearly, Cy(§) =1 and C1(§) = . In addition, because
cos 2t = cos’t —sin®t = 2cos?t — 1,
we see that Co (&) = 262 — 1. To go further, notice that, for general n > 1,

cos(n + 1)t + cos(n — 1)t = cosnt cost — sinntsint + cosnt cost + sinntsint = 2 cost cos nt,

and so we should expect that, for any ¢ € R,

(1.2) Cnt1(§) = —Cpn_1(8) +2£C,, (&) for alln > 1.
Lemma 1.3. For each & € R there is a unique sequence {C,(§) : n > 1} C R such that
Co(&) =1, C1(&) =1, and (1.2) holds for all n > 1. Moreover, for each n > 0, C,(&) is an

nth order polynomial in &, C, (=€) = (—=1)"C,(§), and (1.1) holds.

Proof. Working by induction on n > 1, one sees that if C,,(£) are known for 0 < m < n, then
Crn+1(§) is uniquely determined by (1.2). Hence, by induction, the existence and uniqueness
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of {C),(§) : n > 0} present no problems. At the same time, (1.2) and induction show that
Cr (&) is an nth order polynomial and that C),(—=¢) = (—1)"C,,(§). Finally, because, for any

t, cos0t = 1, cos 1t = cost, and cos(n+ 1)t = — cos(n— 1)t +2 cos nt, the uniqueness assertion
about the C),(£)’s with £ = cost leads to (1.1). O

Lemma 1.3 gives us the tool with which to construct the polynomials described at the end
of §0. Namely, because Cap(—¢) = Cap(€), we know that Co,(§) = 5(C2n (&) + Can(=E)).
Hence, all the terms corresponding to odd powers of £ are missing when Cs,, () is expressed

as a polynomial in £, and so we can find a B,, € B, so that Cy,,(£) = (=1)"B,,(£?). Moreover,
by (1.1),
B, (sin’t) = B, (cos2 (t — E)) = (—1)" cos(2nt — n7) = cos 2nt.

Hence,

Ba(6)] <1 forall¢€[0,1], B, (sin2 %) = (-1)™ for 0<m<n,

(1.4)

and Bn<sin2 W) =0 forl<m<n.

§2: BACK TO THE EXTREMAL PROBLEM

Having shown that they exist, we now want to show that the B,’s solve the extremal
problem stated in §0; and a key role will be played by the following observation about poly-
nomials.

Lemma 2.1. If all the roots of P € B,, are non-negative and if P(0) > 0, then P(§) =
szzo EM Py, where (—1)"p,, > 0 for each 0 < m < n.

Proof. Remember that, by the fundamental theorem of algebra,

P(&) =a ][ (p; - ¢)
j=1
where (p1,...,pn) are all (including multiple and complex) the roots of P.

In particular, if all the p; are non-negative and P(0) > 0, then it is clear that o and all
the p;’s must be positive. Hence, when we write P(§) = >_" _ ™ py,, we see that p,, =
(=1)™a ) jj=p—m ps Where the sum is over n — m element subsets J C {1,...,n} and

pJ:pjlu'pjn—7n When‘]:{jla-”vjn—m}- |:|
We! can now deliver the coup de grace.

Theorem 2.2. Suppose that P € PB,, satisfies |P(€)| < 1 for all £ € [0,1]. Then, for each
0<m<n,

(2.3) [PU™(0)] < (=1)™Bi™(0),

n truth, it was Markov who invented the beautiful line a reasoning on which we are relying here.
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where P is used to denote the mth derivative of P. In particular, |P'(0)| < —B’ (0) = 2n2.

Proof. Let A € (—1,1) be given, and consider R = B,, — A\P. Clearly R is an element of
PB,. In addition, if &, = sin® 2=, then R({,) > 0if 0 < m < n is even and R(&,,) < 0 if
0 < m < nis odd. Hence R must have all its roots in the interval [0, 1], which, by Lemma

2.1, means that
n

Bn(€) = AP(§) = Y t™ry,  where (—1)™ry, > 0.

m=0

But m!r,, = Bém)(O) — AP(™)(0), and so we now know that (—l)mB,(lm)(O) > (—=1)™AP™)(0)
for all 0 < m < n and X € (—1,1). After letting A 7 1 if (=1)™P™(0) > 0 or A \, —1
otherwise, we arrive at (—1)™B{™ (0) > |P(™)(0))].

Finally, to evaluate B/, (0), we use the relation cos2nt = B, (sin*t) to see that

—2nsin2nt = 2sint cost B, (sin® t) = sin 2B, (sin’t),

which means that )
2nsin2nt

B’ = —lim~———— " = -92p%2. O
n(0) t{% sin 2t "

Notice that the only property of B,, which we used in the first part of the preceding proof
is the existence of 0 = &y < -+ < &, < 1 such that B, (&) = (=1)™. That is, if @ is any
element of 9, for which such &, exist, then (=1)"Q(™ (0) > |P(™)(0)] for all 0 < m < n and
P €9, with |P| <1 on [0,1]. In particular, this shows that B, is the one and only @ € 33,
with the properties that |Q| < 1 on [0, 1] and Q(&,,) = (—1)™ for some 0 =&y < --- < &, < 1.
Actually, as the following shows, we can do slightly better.

Theorem 2.4. B, is the one only Q € PB,, with the properties that |Q| < 1 on [0,1] and
Q&) = (=1)™ for some 0 <& < -+ <&, <1.

Proof. In view of the preceding remark, all that we have to do is check that Q(0) = 1 whenever
@ has the stated properties. Thus, suppose not. That is, suppose that Q(0) < 1. Clearly
this would mean that & > 0 and that A = (14 Q(0)) € (—1,1). But this would imply that
R = @ — A\B,, is an nth order polynomial which vanishes somewhere on each of the n + 1
intervals (0,&y) and (£,-1,&m), 1 < m < n, which is possible only if R = 0. On the other
hand, 1 = Q(&) > AB, (&), and so it cannot be true that Q(0) < 1. O

Exercises:
1) Show that

2B, (£)* = B, (46(1 - €)) + 1,
first for all 0 < £ <1 and then for all real &.

2) Compute the second derivative By, (0) of B, at 0, and conclude that |P”(0)| < 3n?(n®—1)
for any P € P, satisfying |P(£)| <1 when £ € [0, 1].



